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Abstract
At the heart of all garbage collectors lies the process of identifying
and processing reference fields within an object. Despite its key
role, and evidence of many different implementation approaches,
to our knowledge no comprehensive quantitative study of this de-
sign space exists. The lack of such a study means that implementers
must rely on ‘conventional wisdom’, hearsay, and their own costly
analysis. Starting with mechanisms described in the literature and
a variety of permutations of these, we explore the impact of a
number of dimensions including: a) the choice of data structure,
b) levels of indirection from object to metadata, and c) specializa-
tion of scanning code. We perform a comprehensive examination of
these tradeoffs on four different architectures using eighteen bench-
marks and hardware performance counters. We inform the choice
of mechanism with a detailed study of heap composition and object
structure as seen by the garbage collector on these benchmarks. Our
results show that choice of scanning mechanism is important. We
find that a careful choice of scanning mechanism alone can im-
prove garbage collection performance by 16% and total time by
2.5%, on average, over a well tuned baseline. We observe sub-
stantial variation in performance among architectures, and find that
some mechanisms–particularly specialization, layout of reference
fields in objects, and encoding metadata in object headers–yield
consistent, significant advantages.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection)

General Terms Design, Performance, Algorithms

Keywords Java, Mark-Sweep

1. Introduction
Enumerating object reference fields is key to all precise garbage
collectors. For tracing collectors, liveness is established via a tran-
sitive closure from some set of roots. This requires the collector
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to identify and then follow all reference fields within every reach-
able object. For reference counting collectors, once an object’s ref-
erence count falls to zero, each of its referents must be identified
and have its reference count decremented. The process of reference
field identification is known as object scanning. In order to be pre-
cise in the absence of hardware support, object scanning requires
assistance from the language runtime. Otherwise, tracing must con-
servatively assume all fields are references [6, 7, 14]. This paper
quantitatively explores the design tradeoffs for object scanning in
precise garbage collectors.

Object scanning is performance-critical since it constitutes the
backbone of the tracing mechanism, and therefore may be exe-
cuted millions of times for each garbage collection. The extensive
literature on garbage collection records a variety of object scan-
ning mechanisms, but despite its performance-critical role, to our
knowledge there has been no prior study quantitatively evaluating
the various approaches. As we show here, a detailed understanding
of these tradeoffs informs the design of the best performing object
scanning mechanisms.

The mechanism for scanning an object typically involves pars-
ing metadata that is explicitly or implicitly associated with the ob-
ject. The means of parsing and the form of the metadata can vary
widely from one implementation to another. We identify four ma-
jor dimensions in the design space: i) compiled versus interpreted
evaluation of metadata, ii) encoding and packing of metadata, iii)
levels of indirection between each object and its metadata, and iv)
variations in object layout.

To inform our study of design tradeoffs, we first perform a de-
tailed analysis of heap composition and object structure as seen by
the garbage collector. We conduct our study within Jikes RVM [1],
a high performance research JVM with a well tuned garbage collec-
tion infrastructure [4]. First, to characterize the workload seen by
any scanning mechanism, we execute eighteen benchmarks from
the DaCapo [5] and SPEC [16, 17] suites, and at regular intervals
examine the heap and establish the distribution of object layouts
among traced objects. We were not surprised to find that a rela-
tively small number of object layout patterns account for the vast
majority of scanned objects. We include in this study the extent to
which packing of reference fields within objects changes the distri-
bution of layout patterns.

Guided by this information, we conduct a performance anal-
ysis of various object scanning implementation alternatives. We
evaluate each alternative on four architectures against the DaCapo
and SPEC suites. We observe substantial variation in performance
among architectures but find that some mechanisms yield consis-
tent, significant advantages, averaging 16% or more relative to a
well tuned baseline. Specifically, we find that metadata encoding
offers consistent modest advantages, object field reordering gives
little measurable advantage (but improves the effectiveness of other
optimizations), and that specialized compiled scanning code for



common cases significantly outperforms interpretation of metadata.
The most effective scheme uses a small amount of metadata en-
coded cheaply into the object header to encode the most common
object patterns.

We also implement and evaluate the bidirectional object lay-
out used by SableVM [9] and find that it performs well compared
to orthodox object layout schemes. The Sable object model com-
bined with specialization of object scanning code outperforms the
alternatives in almost all benchmarks. There is however a small but
consistent overhead in mutator time for this object model, giving it
an advantage in overall time when the heap is small, and a slight
disadvantage in large heaps.

This study is the first in-depth evaluation of object scanning
techniques and the tradeoffs they are exposed to. As far as we
know, our findings are the first to provide a quantitative foundation
for the design and implementation of tracing, the performance-
critical mechanism at the heart of all modern garbage collection
implementations.

2. Related Work
Sansom [15] appears to have been the first to propose compiling
specialized code for scanning objects (see Section 4.2), although he
did not perform a performance analysis of the benefits of this tech-
nique. Jones and Lins [14], authors of the standard text on garbage
collection, make reference to Sansom’s work and subsequent work,
but do not directly discuss the question of design options for scan-
ning mechanisms. Grove and Cheng did a proof-of-concept imple-
mentation of scanning specialization for Jikes RVM and concluded
that it was a profitable idea, but did not publish this work or incor-
porate it into the main code base [12]. David Grove kindly provided
us with their implementation, which we forward-ported and used as
the basis for our implementation of specialization. This implemen-
tation has been the default scanning mechanism in Jikes RVM since
2007.

Gagnon carefully examined the question of object layout and
garbage collection efficiency in his PhD thesis [8]. He proposed
the bidirectional object layout, where reference and non-reference
fields are laid out on opposite sides of the object header. SableVM
implements this object layout [9]. This design has two signifi-
cant properties: a) it maintains separation of reference and non-
reference fields in spite of accretion of fields due to inheritance, and
b) object scanning logic is trivial since reference fields are always
contiguous. Since SableVM did not have an optimizing compiler,
it was hard for Gagnon to perform a detailed performance evalua-
tion of this design. More recently Gu, Verbrugge and Gagnon [13]
set out to compare the performance of this layout in Jikes RVM
but concluded that it was difficult to accurately evaluate such de-
sign choices in the context of a complex, non-deterministic JVM.
Dayong Gu generously made available to us his port to Jikes RVM
of the SableVM bidirectional object model, which we forward-
ported, tuned, and used in our evaluation of the bidirectional object
model reported here. We use replay compilation to remove the non-
determinism of the adaptive optimization system and found signif-
icant, repeatable results across four architectures.

3. Analysis of Scanning Patterns
To ground our study of scanning mechanisms, we begin with a
comprehensive analysis of the distribution of object layout patterns,
as seen at garbage collection (GC) time for a large suite of bench-
marks. Since scanning consists of identifying and then acting on
the reference fields of objects transitively in the heap, understand-
ing the distribution of the patterns in which reference fields occur
is important to the design decisions.

We use the term reference to describe a language-level refer-
ence to an object. The live object graph is defined as the set of
objects that are transitively referenced from some set of roots. By
contrast, we use the term pointer as an implementation-level ad-
dress (‘void *’) which may or may not point to an object. We
define the reference pattern of an object to be the number and lo-
cation of reference fields within the object. All objects of a given
class have the same reference pattern, and two classes may have
the same pattern even though they differ in such aspects as size (in
bytes), number of fields, or inheritance depth.

Because the policy for the layout of references within an object
will affect the distribution of reference patterns, we consider two
key object layout regimes; declaration order, and references first.
These alternatives are straightforward design choices and were de-
scribed in Etienne Gagnon’s PhD work as ‘naive’ and ‘traditional’
layouts respectively [8]. In the first case object fields appear within
the object in the order in which they are statically declared (with
minor adjustments to ensure efficient packing in the face of align-
ment requirements). This is the approach used by Jikes RVM. In the
second case, references are packed together before non-reference
fields, at each level of the inheritance tree for each class. Note that
for efficiency reasons, language implementations generally require
that field offsets are fixed across an inheritance hierarchy, allow-
ing the same code to access fields of a class and all of its sub-
classes. So in practice, the field layout for any subclass may only
be additive with respect to its super class. Thus the ‘references first’
layout will typically result in alternating regions of references and
non-references corresponding to levels of inheritance for the given
type. Gagnon’s bidirectional object layout [8] avoids this problem
by growing the object layout in two directions, with references on
one side and non-references on the other. Thus references will al-
ways be packed on one side of the object header regardless of in-
heritance.

A minor variant on the ‘references first’ scheme involves al-
ternating the packing of reference fields first or last in an attempt
to maximize the opportunity for contiguous groups of reference
fields, and could in principle lead to further speedups. In practice
we found that such schemes perform almost identically to the ‘ref-
erences first’ scheme, and in the interests of space we omit any
further discussion.

3.1 Analysis Methodology
In order to conduct our analysis of scanning patterns, we instrument
Jikes RVM to identify and then record the reference pattern for each
object that it scans at collection time. At the end of the execution
of each benchmark, the collector prints a histogram indicating
the frequency with which each reference pattern was seen by the
scanning mechanism throughout the execution of the benchmark.
We hold the collection workload constant by setting a fixed heap of
2× the minimum heap size for each benchmark. This is a moderate
heap size and is same size as we use in our performance study in
Section 6. We chose 2× as representative of a ‘reasonable’ heap,
although our analysis is largely insensitive to heap size. If the heap
were made significantly tighter, very short lived objects may be
slightly more prominent, and of course if the heap were made
considerably larger collections would happen less frequently or not
at all, making our analysis more difficult.

Encoding and Counting Patterns We study the frequency dis-
tribution of reference layout patterns in objects. Since the number
of different possible reference layouts is enormous, to make the
study tractable, we consider a fixed set of 216 + 4 layouts. We ex-
haustively consider all 216 layouts possible for non-array reference
patterns of up to 16 words in length. We bound the set by grouping
together all non-array reference patterns of 17-32 words in length,
and all non-array reference patterns greater than 32 words in length.
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1 no references 33.02 33.02 30.28 33.01 44.09 37.44 31.41 33.94 46.36 32.36 30.01 27.88 26.67 39.16 27.42 31.34 29.96 18.85 32.70 41.54
2 00 0000 0000 0001 18.19 51.21 21.65 20.32 15.93 33.10 19.05 19.14 15.01 20.15 18.85 18.62 11.99 1.53 12.79 20.72 19.24 16.97 15.27 27.05
3 00 0000 0000 0111 16.99 68.20 20.17 22.42 11.60 11.72 21.63 22.05 9.30 20.92 21.41 21.72 17.13 1.94 19.97 20.40 21.59 17.98 19.89 4.00
4 00 0000 0011 1111 10.95 79.15 13.54 17.96 8.78 9.31 12.13 16.36 7.00 14.69 13.04 13.00 7.41 1.03 5.85 13.41 13.74 18.67 8.63 2.53
5 00 0000 0000 0011 7.14 86.29 4.16 3.07 6.96 1.60 7.70 3.74 7.63 4.09 7.86 7.19 10.16 19.00 12.92 7.89 6.57 6.41 10.55 1.00
6 refarray 5.55 91.84 5.86 0.70 9.28 2.96 1.68 1.21 10.90 2.36 2.21 2.82 9.64 18.42 6.28 1.83 2.17 13.97 3.92 3.76
7 00 0000 0011 1101 1.03 92.88 18.22 0.41
8 00 0000 0111 0111 0.92 93.80 0.78 0.37 0.25 0.22 0.97 0.66 0.21 0.57 1.31 1.19 1.35 0.17 3.13 1.02 1.11 1.27 1.82 0.18
9 00 0000 0001 1011 0.80 94.59 0.89 0.82 0.40 0.44 0.79 0.80 0.32 0.90 1.21 0.85 1.13 0.12 2.58 0.63 0.88 0.59 0.86 0.15
10 00 0111 1001 1111 0.73 95.32 0.72 0.33 0.23 0.20 0.91 0.54 0.19 0.52 0.99 0.91 1.03 0.12 2.23 0.76 0.85 0.94 1.42 0.17
11 00 0000 0001 1101 0.66 95.98 0.02 11.93
12 00 0000 0000 1111 0.64 96.63 0.28 0.17 1.04 0.12 0.29 0.24 1.21 1.04 0.31 0.96 0.93 0.04 1.98 0.37 0.44 1.13 0.98 0.04
13 00 0000 0000 0010 0.47 97.10 0.16 0.01 2.51 0.01 0.01 0.52 0.01 0.14 3.50 0.57 0.06 0.37 0.26 0.40
14 00 0001 0110 0001 0.40 97.50 0.01 0.01 0.50 0.11 0.96 0.54 1.81 1.98 0.01 0.85 0.28 0.12
15 00 0000 0001 1111 0.40 97.90 0.31 0.21 0.13 0.09 0.62 0.38 0.10 0.72 0.48 0.45 0.60 0.09 0.77 0.38 0.46 0.43 0.81 0.10
16 00 0000 0011 0111 0.36 98.26 0.30 0.19 0.11 0.08 0.60 0.35 0.09 0.32 0.52 0.46 0.66 0.09 0.87 0.36 0.42 0.40 0.64 0.10
17 00 0111 1100 0011 0.30 98.56 0.39 0.14 0.12 0.09 0.47 0.23 0.09 0.29 0.47 0.40 0.47 0.03 0.90 0.18 0.24 0.38 0.47 0.06
18 00 0000 1111 1101 0.22 98.78 4.00
19 > 31 bits 0.14 98.92 0.15 0.06 0.04 0.04 0.14 0.10 0.03 0.10 0.16 0.13 0.20 0.02 0.62 0.16 0.17 0.15 0.25 0.02
20 00 0000 0000 1101 0.13 99.06 0.39 0.01 2.00
21 00 0000 0000 0110 0.12 99.18 0.02 0.08 0.01 0.02 0.76 0.03 0.01 0.06 0.11 0.50 0.01 0.18 0.05 0.15 0.03 0.07
22 > 16 bits 0.11 99.29 0.03 1.77 0.02 0.14
23 01 0000 0011 1111 0.07 99.36 1.31
24 00 0001 1111 1111 0.06 99.42 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.79 0.07 0.02 0.05 0.01 0.01
25 00 0000 1001 1111 0.06 99.47 0.02 0.01 0.01 0.01 0.01 0.05 0.01 0.02 0.09 0.09 0.10 0.02 0.05 0.09 0.09 0.15 0.19
26 00 1110 0110 1111 0.05 99.53 0.43 0.52
27 11 1111 0000 1111 0.04 99.57 0.78
28 00 0000 0100 0011 0.03 99.60 0.12 0.40
29 00 1110 1100 0011 0.03 99.63 0.02 0.01 0.02 0.10 0.05 0.02 0.03 0.04 0.02 0.01 0.04 0.03 0.03 0.02 0.07 0.01
30 00 0000 1101 1111 0.03 99.65 0.50
31 01 1100 0001 1111 0.02 99.68 0.44
32 00 0000 0000 0101 0.02 99.70 0.10 0.16 0.07 0.08

Table 1. Detailed reference layout pattern distributions for ‘references first’ object layout (all numbers expressed as percentages).
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Figure 1. Cumulative frequency distribution curves for reference layout patterns. Each graph plots cumulative percentage of all objects
(y-axis) covered by the N most common patterns (x-axis).

In practice, such patterns comprise just 0.58% and 0.10% of all ob-
jects respectively. Because all other patterns are counted precisely,
our study is precise with respect to 99.32% of all objects for the
benchmarks we study. The relative size of the pattern groups is as
follows: a) objects with no references (29.60%), b) arrays of ref-
erences (6.17%, 35.77% cumulatively), c) the 216 reference layout
patterns that can potentially arise in objects with up to 16 words in
length (63.55%, 99.32% cumulatively), d) non-array objects with
references that are 17–32 words in length (0.58%, 99.90% cumula-
tively), and e) non-array objects with references that are larger than
32 words in length (0.10%, 100% cumulatively).

Our instrumentation works as follows. We modify Jikes RVM to
encode each non-array object’s reference pattern as a 32 bit vector
in the per-class metadata. Each bit maps to a word in the object and
identifies whether that word is a reference or not. For example, an
object which contained (only) two references, in its first and third
words, would be encoded as 0...0101 (0x5). An object with
references (only) in the first, third and sixth fields would be encoded
as 0...0100101 (0x25). We create a histogram with 216 + 4

bins (to account for each of our fixed set of reference layouts) and
initialize the bins to zero at the start of execution. As each object
is scanned during each garbage collection, we determine its pattern
either as one of the four special cases, or by using the low 16 bits
of the object’s encoding. We then increment the appropriate bin in
the histogram. At the end of execution we print out the histogram.

We also inform our study of the Sable object layout by counting
the number of reference fields in each object.

Jikes RVM We use Jikes RVM and MMTk for all of our ex-
periments. Jikes RVM [1] is an open source high performance
Java virtual machine (VM) written almost entirely in a slightly ex-
tended Java. Jikes RVM does not have a bytecode interpreter. In-
stead, a fast template-driven baseline compiler produces machine
code when the VM first encounters each Java method. The adap-
tive compilation system then judiciously optimizes the most fre-
quently executed methods [2]. Using a timer-based approach, it
schedules periodic interrupts. At each interrupt, the adaptive sys-
tem records the currently executing method. Using a threshold, it
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1 0 33.02 33.02 30.31 33.01 44.09 37.44 31.41 33.94 46.36 32.35 29.96 27.88 26.65 39.16 27.42 31.37 29.97 18.83 32.65 41.54
2 1 18.68 51.70 21.79 20.34 15.94 35.61 19.06 19.15 15.01 20.70 18.94 18.81 15.57 1.53 13.44 20.79 19.59 17.27 15.70 27.05
3 3 17.17 68.87 20.18 22.43 11.60 11.72 22.02 22.05 9.30 20.91 21.37 21.81 17.10 1.94 19.97 20.51 22.16 18.06 19.91 6.01
4 6 11.97 80.85 14.37 18.34 9.07 9.54 13.21 17.11 7.24 15.29 14.47 14.41 8.87 1.22 9.06 14.53 14.90 20.09 10.74 3.08
5 2 7.31 88.16 4.31 3.18 6.99 1.64 8.64 3.81 7.65 4.24 7.90 7.85 10.25 19.00 13.10 8.02 6.85 6.44 10.67 1.09
6 refarray 5.56 93.72 5.83 0.70 9.28 2.96 1.68 1.21 10.90 2.38 2.30 2.82 9.67 18.42 6.27 1.83 2.15 13.95 3.91 3.77
7 4 2.50 96.22 1.23 1.00 1.95 0.56 1.19 1.04 2.48 1.97 2.07 3.62 4.04 0.16 4.56 1.01 2.14 1.72 2.11 12.25
8 5 1.84 98.06 0.62 0.41 0.25 0.18 1.22 0.74 0.20 1.21 1.04 1.19 1.49 18.39 1.64 0.75 0.88 0.83 1.48 0.61
9 9 0.87 98.93 0.74 0.34 0.67 0.20 0.92 0.56 0.71 0.53 1.02 0.92 1.96 0.13 2.30 0.78 0.89 0.95 1.45 0.52
10 7 0.67 99.59 0.45 0.16 0.13 0.10 0.48 0.25 0.10 0.31 0.72 0.46 0.47 0.03 1.51 0.21 0.26 1.70 0.57 4.06
11 32 0.14 99.73 0.15 0.06 0.04 0.04 0.14 0.10 0.03 0.09 0.16 0.13 0.20 0.02 0.62 0.16 0.16 0.15 0.21 0.01
12 12 0.10 99.83 1.60 0.02 0.11
13 10 0.04 99.87 0.78
14 8 0.04 99.91 0.02 0.05 0.44 0.07 0.09
15 15 0.02 99.93 0.33 0.02 0.04 0.06

Table 2. Detailed reference field count distributions (all numbers expressed as percentages).
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Figure 2. Cumulative frequency distribution curves for reference field counts. Each graph plots cumulative percentage of all objects (y-axis)
covered by the N most common reference field counts (x-axis).

then selects frequently executing methods to optimize. Finally, the
optimizing compiler thread re-compiles these methods at increas-
ing levels of optimizations. All of our experiments were run using
Jikes RVM’s replay compilation feature, which provides determin-
istic hot method compilation using adaptive compilation profiles
gathered on previous runs.

MMTk MMTk is Jikes RVM’s memory management sub-system.
It is a composable memory management toolkit that implements a
wide variety of collectors that reuse shared components [3]. Any
full heap tracing collector could be used to perform this analy-
sis; we use MMTk’s mark-sweep collector (MarkSweep). To per-
form our analysis of reference patterns, we instrument MarkSweep
to gather information on the distribution of reference patterns in
objects scanned at GC time. This instrumentation does not affect
the garbage collection workload (the exact same set of objects are
scanned with or without the instrumentation). The instrumentation
slows the collector down considerably, but since our analysis of
scanning patterns is simply concerned with demographics, not col-
lector performance, this slowdown is irrelevant. We remove the in-
strumentation for our subsequent performance study (Section 6).

Benchmarks We use the DaCapo and SPECjvm98 benchmark
suites, and pseudojbb in all of the measurements taken in this
paper. The DaCapo suite [5] is a suite of non-trivial real-world
open source Java applications. We use version dacapo-2006-10-
MR2. We did not use eclipse because its use of classloaders is
incompatible with Jikes RVM’s replay mechanism. We did not use
chart because of problems on 64-bit Ubuntu with the Java libraries
that (only) chart depends on. pseudojbb is a variant of SPEC
JBB2000 [16, 17] that executes a fixed number of transactions to
perform comparisons under a fixed garbage collection load.

3.2 Reference Pattern Distributions
Table 1 and Figure 1 summarize the results of our study of scanning
pattern distribution.

Figure 1(a) shows a cumulative frequency plot of scanning
patterns. In this graph, the y-axis represents the percentage of all
scanned objects covered by the number of patterns on the x-axis.
The patterns are ordered from most to least coverage, so from left
to right each additional pattern has a diminishing impact on the
total coverage. The two curves in Figure 1(a) each plot the mean of
all eighteen DaCapo and SPEC benchmarks. We show curves for
both ‘references first’ and ‘declaration order’ object layouts.

Table 1 shows the 32 ‘reference first’ patterns which, when av-
eraged over all eighteen benchmarks, have the highest coverage of
object scans. The first column gives the rank importance, the sec-
ond column shows a binary representation of the reference pattern
(or identifies the special case), the third column states the percent-
age of scanned objects covered by the pattern (the mean of the per-
benchmark percentages) and the fourth column gives the cumula-
tive value of column three. Columns one and four correspond to
the x and y axes of Figure 1(a). The remaining columns give the
percentage coverage for the pattern on each benchmark.

Figure 1(a) shows that by packing references together as much
as possible, ‘references first’ requires significantly fewer patterns
to cover a given number of objects. We find that of the large space
of possible reference patterns, remarkably few are needed to cover
the vast majority of scanned objects. Specifically, 6 (11) patterns
cover 90% of scanned objects, 10 (16) patterns cover 95%, and
20 (30) patterns cover 99% for ‘references first’ and ‘declaration
order’ object layouts respectively.

Figure 1(b) and columns five onward of Table 1 show the fre-
quency distribution for each of the eighteen benchmarks using the
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‘references first’ object layout. In Figure 1(c), the cumulative to-
tal is separately calculated for each benchmark with respect to that
benchmark’s ordering of pattern importance. On the other hand,
Table 1 and Figure 1(b) present the data using a single global or-
dering of patterns. Here we see that on a benchmark-by-benchmark
basis, the situation is accentuated further, with very few patterns
required to cover most scanning cases. The left-most curve at the
80th percentile is for 209 db, and the two left most at the 95th
percentile are for 201 compress and hsqldb. 209 db requires
just 4, 6, and 8 patterns to cover 90%, 95% and 99% of all scanned
objects respectively. Only four benchmarks fall significantly below
the mean, namely fop, jython, pmd and xalan. The most promi-
nent outlier is fop, which requires 9, 14, and 21 patterns to cover
90%, 95% and 99% of scanned objects. Thus even at worst, very
few patterns are required to cover the vast bulk of scanned objects.

The data in Figure 1 and Table 1 show that a few special cases
and a small number of patterns cover the vast majority of objects
scanned, and furthermore that these common patterns are very
simple. This suggests that object scanning mechanisms which can
optimize for these few scenarios may be very effective.

3.3 Reference Field Count Distributions
The bidirectional Sable object layout depends only on the number
of reference fields in an object, since the pattern of references and
non-references is fixed. Table 2 and Figure 2 show the frequency
distribution of number of reference fields among our benchmarks.
This data shows that the vast majority of objects in all benchmarks
have a small number of reference fields. 93% or more of objects in
all benchmarks have 6 or fewer reference fields or are reference ar-
rays, and 99% of all objects have 12 or fewer reference fields. There
are however some outliers: the xalan benchmark has some scalar
objects with 46 reference fields. Figure 2(b) highlights the varia-
tion in frequency between benchmarks even in the most common
patterns.

These figures demonstrate that optimizations that focus on ob-
jects with a small number of reference fields have significant poten-
tial, especially in the bi-directional object model where reference
fields are contiguous.

4. Design Alternatives
We now discuss the primary design dimensions for object scanning.
We begin our discussion with a description of the object scanning
mechanism in Jikes RVM (as at version 3.1.0).

The Jikes RVM Scanning Mechanism Figure 3 shows three user
objects, A, B, and C, and Jikes RVM metadata associated with

1 void scan(Object object) {
2 TIB tib = getTIB(object);
3 RVMType type = tib.getObjectType();
4 int[] offsets = type.getReferenceOffsets();
5 if (offsets != null) {
6 Address base = objectAsAddress(object);
7 for (int i=0; i < offsets.length; i++) {
8 processEdge(object,base.plus(offsets[i]));
9 }

10 } else { /* scan reference array */ }
11 }

Figure 4. The default scanning loop in Jikes RVM.

object A (metadata for B and C is omitted for clarity). If A and
C were of the same type, they would both have pointers to the
same metadata. Each object has a two-word header, one of which
is a pointer to a TIB (type information block) for the object’s class.
The TIB incorporates a dispatch table, a pointer to a type (class)
object and some other per-type metadata. The type object points
to an array of offsets, indicating the location of reference fields
within each instance of the type (class). Thus to scan A, the garbage
collector must follow three indirections to reach the offsets array
for A, which identifies the location of each reference field. Figure 4
shows pseudocode for the default scanning code in Jikes RVM. 1

During tracing, Jikes RVM ‘interprets’ each object’s reference
field layout by scanning the offset array. The offset array contains
an entry for each reference field in a type, and encodes the offset
(in bytes) to the given field from the object header. Jikes RVM
makes no special effort to optimize object layouts for improved
object scanning time.

4.1 Inlining Common Cases

1 int[] offsets = type.getOffsets();
2 for (int i=0; i < offsets.length; i++) {
3 trace(obj, obj.plus(offsets[i]));
4 }

(a) Unoptimized scanning loop (using offset arrays).

1 static final int[] OFFSETS_ZERO = new int[0];
2 static final int[] OFFSETS_1 = new int[]{0};
3 static final int[] OFFSETS_7 = new int[]{0,4,8};
4 ...
5 int[] offsets = type.getOffsets();
6 // Optimized code for the frequent case
7 if (offsets == OFFSETS_ZERO) {
8 // Do nothing
9 } else if (offsets == OFFSETS_1) {

10 trace(obj,obj.plus(0));
11 } else if (offsets == OFFSETS_7) {
12 trace(obj,obj.plus(0));
13 trace(obj,obj.plus(4));
14 trace(obj,obj.plus(8));
15 } else {
16 for (int i=0; i < offsets.length; i++) {
17 trace(obj, obj.plus(offsets[i]));
18 } ...

(b) Optimized loop with hand-inlined code for patterns 0, 1 and 7.

Figure 5. Unoptimized and optimized versions of scanning code.

1 Jikes RVM now uses a version of specialized scanning implemented for an
early version of this study, but falls back to this array-of-offsets ‘interpreted’
metadata scheme.



One simple optimization is to hand-inline special case code
for the most frequently executed patterns. This trades additional
branches and code size for rare cases against faster execution of
common cases. An example of this optimization when using offset
arrays for scanning is given in Figure 5. Similar optimizations are
possible alongside other design choices in scanning mechanism and
object layout.

4.2 Compiled vs. Interpreted Evaluation
Sansom [15] realized that a compiler could statically generate spe-
cialized code for scanning each type. This idea allows the garbage
collector to use the standard dispatch method on each scanned ob-
ject to execute code optimized for scanning that particular type,
rather than interpreting metadata attached to the object. Advantages
of this approach include a lower data cache footprint by remov-
ing the memory accesses to per-instance metadata, and avoiding
branches associated with iteratively interpreting the metadata. On
the other hand, this approach incurs a dynamic dispatch overhead
and has a greater instruction cache footprint than interpreting. Vari-
ations on this approach may include specialization by object layout
pattern rather than object type (removing redundancy and reducing
instruction cache footprint), and limiting compilation to a modest
number of common patterns (falling back to interpretation in all
other cases).

4.3 Encoding and Packing of Metadata
The Jikes RVM mechanism uses a simple array of offsets to encode
the location of reference fields in each type. Alternative encodings
could be used, including a bitmap indicating which words are
references. Hybrids are also possible, whereby a fixed size bitmap
is used in common cases, with a fallback to an offset array for types
unable to fit in the bitmap. Packed representations may allow the
metadata to be directly encoded in the object header in many cases,
thereby avoiding any indirection to the metadata data structure for
those objects whose metadata could fit in the header.

In any virtual machine implementation, space in the object
header is generally at a premium. Adding a word to the object
header for GC metadata is an option, but the performance cost due
to increased heap pressure and decreased cache locality outweigh
any possible gains. JikesRVM makes eight bits available to MMTk,
which uses four of those bits for the mark state (see [10] for details).
Our implementation of the bi-directional object model uses an
additional bit to identify the word as a non-pointer in order to allow
the object header to be found when scanning the object (as per [8]),
which leaves three bits for encoding metadata in our case.

There is an alternative approach (which we use in this study)
that allows us to obtain these metadata bits for ‘free’. We exploit
the fact that the GC metadata is constant across all objects of a
given class. By selectively aligning the TIB (vtable) of each class,
we effectively encode metadata into the header field that stores the
TIB pointer. We achieve this quite simply: when allocating a TIB
and encoding n bits of metadata, we allocate a block of memory 2n

words larger than the TIB itself. Then we choose a start location
within this chunk of memory that puts our metadata value into bits
w . . .w+n−1, where w is the number of bits required to naturally
align a pointer (i.e. w = 2 in a 32-bit machine). This scheme also
has the advantage that it doesn’t require an additional initializing
store to the object header when an object is allocated. On a 32-bit
machine we incur a space cost of 32 bytes per loaded class, which
is insignificant.

4.4 Indirection to Metadata
The example of the Jikes RVM scanning mechanism (Figure 3)
indicates the potential to shorten the level of indirection from the
object to its metadata. We look at the effects of removing one of

these levels of indirection by allocating an additional field in the
TIB for holding a pointer to the reference offsets array. We evaluate
the cost of this in Section 6. Schemes where metadata is encoded
into the object header also benefit from the absence of indirection,
although we don’t directly study the effects of this.

4.5 Object Layout Optimizations
In addition to increasing opportunities for commonality among dis-
tinct types (Section 3), object layout strategies can more directly
impact object scanning performance. The bidirectional object lay-
out proposed by Gagnon [8] and used in SableVM [9] arranges
every object so that reference fields are packed on one side of the
object header, while non-reference fields are packed on the other.
SableVM itself encodes the number of references into the object
header, and in this study we look at the effects of the object lay-
out separately from the effect of the header metadata optimization.
As discussed in Section 3, an important property of the bidirec-
tional layout is that it maintains reference packing in the face of
inheritance. Unidirectional field packing may offer some benefits,
but sub-types must strictly append their declared fields, potentially
interrupting any grouping of reference and non-reference fields in-
herited from the parent class. Unidirectional field packing may be
profitable in hybrid schemes where common cases are handled dif-
ferently. In these scenarios, a field packing algorithm such as ‘refer-
ences first’ will increase the coverage of a given set of special cases
(Section 3, Figure 1 and Table 1), thereby improving the efficacy
of the special cases.

The potential drawback of the bi-directional object model is that
there is no longer a fixed offset from the start of the memory region
occupied by an object and its header/object pointer. Lazy sweeping
in particular can be adversely affected by this, and we see this in
our total time results in Section 6.6.

5. Methodology
The methodology used for our analysis work is described in Sec-
tion 3.1. We extend that here to describe the methodology used to
evaluate the performance of the various scanning mechanisms.

We implement each scanning mechanism in Jikes RVM’s mem-
ory management toolkit, MMTk [4]. We isolate and measure the
time spent in the garbage collector’s scanning phase (transitive clo-
sure), thereby excluding the time taken to establish roots etc, which
is unaffected by the scanning mechanism we evaluate here. On av-
erage, scanning takes up ∼80% of total garbage collection time,
and takes time proportional to the size of the heap. In Section 6.6
we also evaluate the effect on total time. We measure each of the
DaCapo and SPEC benchmarks, timing the second benchmark it-
eration in a 2× heap as described in Section 3.1, and using replay
compilation to avoid non-determinism due to adaptive compilation.
We use MMTk’s inbuilt timers which separately report total time
spent in each of the major GC phases, including scanning. We use
Jikes RVM’s ‘FastAdaptive’ builds, which remove assertion checks
and fully optimize all code for the virtual machine (and hence the
garbage collector), and incorporate execution profile data to fur-
ther optimize the code in the virtual machine. Experiments were
performed 6 times for each benchmark, with the average for each
benchmark normalized to the performance of the base configura-
tion on that benchmark. We report the geometric mean of this nor-
malized value across all benchmarks. The graphs show error bars
for a 90% confidence interval using Student’s t-distribution as out-
lined in [11].

We use as a baseline an optimized version of the original MMTk
implementation described in Section 4 (see Figure 3), and which we
refer to in the remainder of the paper as Off-3/Decl. This configu-
ration has three levels of indirection from the object to the offset
array and uses the ‘declaration order’ object layout. Because this



Platform Clock DRAM L1 D L1 I LLC
Atom D510 1.8GHz 4GB 32KB 32KB 1MB
Core i5 670 3.4GHz 4GB 64KB 64KB 4MB
Core 2 Duo E7600 3.1GHz 4GB 32KB 32KB 3MB
AMD Phenom II X6 1055T 2.8GHz 4GB 64KB 64KB 6MB

Table 3. Hardware platforms.

Primary
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Layout
Off-2/Decl Offset Array 2 N Decl
Off-3/Decla Offset Array 3 N Decl
Off-3/Ref Offset Array 3 N Ref
Off-3+Inl/Ref Offset Array 3 Y Ref
Off-3/Sable Offset Array 3 N Sable
Hdr[1R]/Ref 1-bit Header 1 Y Ref
Hdr[1Z]/Ref 1-bit Header 1 Y Ref
Hdr[2]/Ref 2-bit Header 1 Y Ref
Hdr[3]/Decl 3-bit Header 1 Y Decl
Hdr[3]/Ref 3-bit Header 1 Y Ref
Hdr[3]+Spec/Ref 3-bit Headerb 1 Y Ref
Hdr[3]/Sable 3-bit Header 1 Y Sable
Spec/Decl Specialization 2 N Decl
Spec/Ref Specialization 2 N Ref
Spec/Sable Specialization 2 N Sable
Count-3/Sable 32-bit countc 3 Y Sable
Bmp-3/Decl 32-bit bitmap 3 Y Decl
Bmp-3/Ref 32-bit bitmap 3 Y Ref

a Baseline configuration.
b Falls back to specialization, and then to Offset-3.
c Only possible with the Sable object layout.

Table 4. Configurations evaluated.

is the configuration to which all others are normalized, it does not
appear explicitly in the graphs.

Hardware Platforms We use four different hardware platforms
in our analysis, described in detail in Table 3. The systems were
running Linux 2.6.32 kernels with Ubuntu 10.04.1 LTS. All CPUs
were operated in 64-bit mode, although JikesRVM is a 32-bit ap-
plication.

Configurations For our performance results we evaluate 18 con-
figurations combining features from the design space outlined in
Section 4. The specific configurations evaluated are summarised in
Table 4. The metadata representations we use are:

• An array of 32-bit offsets.
• A 32-bit count field (only applicable to the Sable object model).
• A 32-bit bitmap. Two special values indicate that the object

is a reference array or cannot be described in 32 bits. This is
necessarily held outside the object header.
• A 3-bit field in the object header. We use this to encode the

six most common patterns in Table 1, interpreting results with
a series of ‘if’ statements in the scanning code. The seventh
value indicates a fallback to the more general case. When using
the bi-directional object model we use this field to encode the
five most frequent reference field counts. The coverage of this
scheme for both object models is shown in Table 5.
• A 2-bit field in the object header, indicating whether the object

is a reference array, has zero references, a single reference in
position 1, or the fallback case. The coverage of this scheme for
both object models is shown in Table 5.
• A 1-bit header field indicating whether the object is a reference

array (‘1R’).
• A 1-bit header field indicating whether the object has no refer-

ence fields (‘1Z’).

In the declaration order and references first object layouts, our spe-
cialization implementation compiles 66 specialized methods, cov-
ering all objects with reference fields in the first six positions, with
an additional method for reference arrays and a fallback method for
the fallback case. In the Sable object layout, we compile 18 special-
ized methods, covering objects with up to 16 reference fields plus
reference arrays and the fallback case.

Layout % Objects
Bits Scheme Patterns Min. Mean Max.

3 Ref-first 6 most common 79.9 91.8 97.5
Sable 5 most common 81.0 93.0 98.9

2 Ref-first 0, 1, refarray 46.5 56.8 73.5
Sable 0, 1, refarray 47.1 57.3 76.0

Table 5. Header encoding: Percentage of objects covered by the
schemes evaluated.

6. Results
We now evaluate the performance of the design space described in
Section 4. Since our focus is on the scanning mechanism, and the
designs we explore have little or no impact outside of the scanning
loop (which typically dominates garbage collection performance),
unless otherwise stated, we present the relative performance of
the scanning loop alone. Since many of the design dimensions are
independent, we evaluate many combinations of the design choices
in order to help understand which combinations of choices are most
profitable. In total we implemented and evaluated around twenty
five which combine multiple optimizations. We only report results
for the most significant of these.

This section concludes with a summary of the best performing
designs, and their impact on scanning time and total execution time.

6.1 Inlining Common Cases
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Figure 6. The effect of inlining common cases. Geometric mean
of 18 benchmarks.

The speedup gained by hand-inlining the most frequently exe-
cuted patterns (as described in Section 4.1) is illustrated in Figure 6,
using Off-3/Ref and Off-3+Inl/Ref. The Off-3+Inl/Ref configuration
uses the technique illustrated in Figure 5 to avoid interpreting the
offset array for the most common object patterns. This shows that
inlining common cases delivers a clear performance advantage. We
use this technique in most of the configurations evaluated (the ex-
ceptions are identified in column four of Table 4).

6.2 Compiled vs. Interpreted Evaluation
In Figure 7 we compare specialized scanning (Section 4.2) across
the three object layout schemes. Specialization performs well on
average compared to the baseline Off-3/Decl configuration, but as
we show in Section 6.6, not as well as three bits of header metadata.
The reason is clear: for the 90% of objects that can be encoded by
the 3-bit header field, scanning requires a load and then on average
three conditional branches to the specialized code for scanning that
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Figure 7. The effect of specialization. Geometric mean of 18
benchmarks.

object. Specialization requires two (dependent) loads and a jump,
and on the Core i5 processor where an L1 cache hit costs four
cycles, it is not difficult to see how this can be more expensive than
the header metadata approach.

On the Atom processor, specialization offers less advantage.
While header metadata obtains an average 15% speedup, special-
ization only yields a 7% speedup. The out-of-order processors ap-
pear to be able to absorb more of the stall time caused by the indi-
rect jump than the in-order Atom.

6.3 Encoding and Packing of Metadata
We now explore the header metadata design space described in
Section 4.3. Where not otherwise specified we use the ‘references
first’ object layout.
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Figure 8. Effect of varying header encodings. Geometric mean of
18 benchmarks.

Figure 8 shows results for four configurations that use one, two, or
three bits of header metadata. In each case we use the ‘references
first’ object layout, and when optimizing special cases in the code
we only optimize for the cases covered by the metadata. The 1-
bit header fields reduce performance on all architectures except the
Core 2. The 3-bit header field performs best, significantly outper-
forming the 2-bit header field, as predicted by the coverage figures
given in Section 4.3.

6.4 Indirection to Metadata
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Figure 9. Effect of different levels of indirection. Geometric mean
of 18 benchmarks.

In Figure 9 we explore the impact of indirection to metadata.
The Off-2/Decl configuration differs only from the base Off-3/Decl
configuration by one level of indirection. Since we can’t practically

build an Off-1/Decl configuration without adding a word to the
object header, the graph also includes Hdr[3]/Decl which while
not directly comparable, only uses one indirection to its metadata
before applying its specific optimization.

The results show that shortening the path to the metadata
achieves a modest 3–6% speedup, with the largest gain on the
in-order Atom processor. Since Hdr[3]/Decl is the result of re-
moving one further level of indirection before applying the opti-
mization evaluated in Section 6.1, we can see that the majority of
Hdr[3]/Decl’s speedup over Off-3/Decl is due to the elimination of
indirection versus hand-inlining.

6.5 Object Layout Optimizations
In this section we investigate the effect of changing the object lay-
outs, both in the context of the default scanning mechanism, as well
as interactions with design choices across the other dimensions.
Figure 10 compares ten configurations, illustrating the effect of ob-
ject layout on four different schemes.

Figure 10(a) shows that for the most part, the choice of ‘ref-
erences first’ or Sable object layout has very little impact on per-
formance in the absence of any other optimizations. The slight im-
provement in performance on the out-of-order processors might be
explained by small locality improvements.

The graphs in Figures 10(b), (c) and (d) show that where another
optimization is used, object layout has a significant impact on the
effectiveness of the optimization. In all these cases the ‘references
first’ layout improves significantly over the ‘declaration order’ ob-
ject layout, while the Sable layout provides a small improvement
over ‘references first’.

6.6 Summary
Figures 11(a)–11(g) show the scan time and total time performance
of six of the best performing designs. The performance of some de-
sign choices is highly affected by architecture. A bitmap performs
poorly on the in-order Atom processor, as does specialized scan-
ning. The combination Hdr[3]+Spec/Ref performs best on all archi-
tectures (taking into account experimental error). The 3-bit field in
the object header is a universally beneficial optimization when cou-
pled with an object model that enhances its effectiveness. However,
Figures 11(e)–11(g) show that for benchmarks like hsqldb—where
the object demographics are not a good match for the assumptions
underlying the Hdr[3]/Decl configuration—Spec/Ref has a measur-
able advantage due its more comprehensive coverage of object pat-
terns. Hdr[3]+Spec/Ref also performs well in this case as its less
expensive fallback provides a ‘soft landing’ for these edge cases.

Figure 11(b) shows the effect of optimizations on total time.
While the magnitude of the improvement is modest due to our
choice of heap size, the Sable object model is less effective than
the others due to a slight increase in mutator time. Nonetheless,
these results show clearly that the choice of scanning design has a
measurable effect on total execution time.

The important features of a high performance scanning mecha-
nism (at least on the architectures we have benchmarked) are: a) the
elimination of memory loads, both through indirection to metadata
and in the metadata itself (see the performance of Bmp-3/Decl vs.
Off-3/Decl); b) good choice of object layout, to facilitate the perfor-
mance of the optimizations used; and c) good coverage of reference
patterns.

The Hdr[3]+Spec/Ref design combines the best effects of all
the optimizations discussed here. The 3-bit header field eliminates
loads for the majority of objects, while 64 specialized patterns as
a fallback provide good performance for benchmarks like hsqldb
which are a poor match for the 3-bit field. This configuration
achieves speedups in scan time of over 25% on several benchmarks,
at no cost to mutator performance.
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(a) Offset Array.
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(b) Bitmap.
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(c) Header Metadata.
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(d) Specialization.

Figure 10. Effect of various object layout optimizations. Geometric mean of 18 benchmarks.

7. Conclusion
Object scanning is the mechanism at the heart of tracing garbage
collectors. A number of object scanning mechanisms have been
described in the literature, but—despite their performance-critical
role—we are unaware of any prior work that provides a comprehen-
sive study of their performance. In this paper we outline the design
space for object scanning mechanisms, and then use a comprehen-
sive analysis of heap composition and object structure as seen by
the garbage collector to inform key design decisions. We imple-
ment a large number of object scanning mechanisms, and measure
their performance across a wide range of benchmarks. We include
an implementation and evaluation of the bidirectional object layout
used by SableVM [9], and find that it performs well at collection
time (although not significantly better than the more orthodox ‘ref-
erences first’ optimized layout) but comes at a small but measurable
cost to mutator performance. Our study shows that careful choice
of object scanning mechanism alone can improve average scanning
performance against a well tuned baseline by 21%, leading to a
16% reduction in GC time and an improvement of 2.5% in total
application time in a moderate sized heap.
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(a) Scan time, geometric mean.
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(b) Total time, geometric mean.
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(c) Mutator time, geometric mean.
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(d) GC time, geometric mean.
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(e) Core i5 scan time.
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(f) Core 2 scan time.
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(g) Atom D510 scan time.

Figure 11. Summary, showing six well-performing designs.


