
The Transactional Object Cache:
A foundation for high performance persistent system construction.

Stephen M. Blackburn and Robin Stanton�

Department of Computer Science
Australian National University
Canberra ACT 0200 Australia

fSteve.Blackburn,Robin.Stanton g@cs.anu.edu.au

Abstract

This paper argues that caching, atomicity and layering are fundamental to persistent systems, and
that the transactional object cache architecture, as an embodiment of these concerns, provides a foun-
dation for high performance persistent system construction. Central to the paper is a description of
the semantics of an abstract transactional object cache architecture that supports a wide range of trans-
actional models and is open to a broad spectrum of transactional cache coherency algorithms. The
centrality of the abstraction is a consequence of its role in facilitating the definition of a transactional
interface, which is the key to the practical application of the transactional object cache architecture.
The utility of the architectural framework in general, and the interface in particular, is argued for in the
context of existing systems and systems currently under construction within that framework.

1 Introduction
If orthogonal persistence is to have a future beyond academe, its merits will have to be demonstrated to
the commercial world in a performance context. It is our contention that the transactional object cache
provides implementers of orthogonally persistent systems with an architectural framework which will
expedite the process of developing high performance orthogonally persistent systems. Our argument
rests on the role of caching and atomicity in addressing the interrelated engineering challenges of concur-
rency, replication, coherency, latency, and stability, and on the role of layering in aiding implementation
through abstraction and the promotion of reuse (and with it, collaboration).

While there exist well-known examples of stores that, to varying degrees, exhibit the transactional
object cache architecture (e.g. EXODUS [Carey and DeWitt 1986], Mneme [Moss 1990]), the novelty of
this paper lies in the identification of a generalized architecture as a basis for the development of high
performance persistent systems, and in the pinning down of its semantics.

The paper begins with an identification of the roles of atomicity, caching, and layering, and their
coming together in the form of the transactional object cache (TOC) architecture. This is followed by the
core of the paper—a detailed definition of the architecture through a semantic framework. The utility of
the transactional object cache architecture as an approach to store construction is then discussed in the
context of PSI, a transactional interface based on the architecture and defined in terms of the semantic
framework [Blackburn 1997]. The discussion of PSI includes references to PSI-based systems in existence
and under development and results which lend support to our contention that the TOC architecture will
expedite the process of developing high performance orthogonally persistent systems.

2 The Transactional Object Cache
2.1 Fundamentals of High Performance Persistent Systems

Among the challenges of engineering high performance persistence systems, the concerns of concur-
rency, replication, coherency, latency, and stability appear to be dominant. While there are many ap-
proaches to addressing each of these, we claim that the devices of atomicity and caching are basic, and
further, that layering is fundamental in aiding implementation through abstraction and the promotion
of reuse and collaboration.

�The authors wish to acknowledge that this work was carried out within the Cooperative Research Centre for Advanced
Computational Systems established under the Australian Government’s Cooperative Research Centres Program.



Atomicity Atomicity has a central place in computing as the basic property of operations which move
machines between well defined states in the presence of concurrent operations and shared data. The
powerful “all or nothing” behavior of an atomic operation provides a guarantee that all changes to vari-
ables made in the associated execution processes will have occurred at the termination of the operation,
or that none of them will. When combined with visibility restrictions between concurrent operations,
atomicity provides isolation and well defined points for determining coherency conditions.

Transaction systems address coherency in the face of concurrency and replication by using atomic-
ity to give isolation and serializability to concurrent computations. In addition, they implement failure
resilience mechanisms by adding coherency to stability through well defined recovery points that arise
from atomicity. A side effect of atomicity is the shifting of temporal grain which, by inducing tem-
poral clustering of communications and so amortizing latency costs, can combat latency in distributed
systems.

Caching Caching is fundamental to modern computing systems because of its role as a latency hider
and data replicator. The role of the cache as a hider of latencies such as those induced by networks and
disks is well understood and the challenge of maintaining coherence in the face of data replication in
such contexts has been widely studied. Caching also has a role as a means of facilitating controlled
incoherence through data replication in optimistic systems including some transactional systems and
many AI languages.

The cache is a central part of most persistent architectures, either explicitly—such as the buffer cache
in most database systems, or implicitly—as in ‘workspaces’, which are prominent in optimistic systems
such as Flask/DataSafe [Scheuerl et al. 1996]. The cache is also central to distributed persistent systems
such as client server databases, where the role of the cache extends to hiding network latencies [Franklin
et al. 1997].

Layered Software In a layered view of software systems, bottom layers are specific to platform ar-
chitectures while the top layers are platform independent problem solutions. The layered model then
represents steps in the abstraction away from architectural features such as those associated with poten-
tial speed of computation. Abstractions over concerns such as distribution, recoverability, and coherence
can greatly simplify design and implementation. Such abstraction also serves as a means of separating
concerns and so allows a focusing of research and design activities.

The use of layering is widespread in architectures for persistent systems, both with an end to mak-
ing the implementation of complex systems tractable, and also as means of promoting software reuse
[Munro et al. 1994; Carey et al. 1994]. In the context of expediting the construction of high performance
persistent systems, layering will aid system design and implementation through abstraction, and will
help bridge the existing programming language/storage technology divide by providing an interface
through which the separate concerns may be brought together.

2.2 The Transactional Object Cache Architecture

Having identified the roles of atomicity, caching, and lay-

Transactional
InterfaceCache

Object Store

Application
Program

Language
Run-time

Figure 1: The transactional object cache
architecture. The architecture of the
object store is transparent to the appli-
cation.

ered software in persistent systems construction, we now de-
scribe the transactional object cache architecture, which explic-
itly embodies these concerns. Central to the architecture is the
cache, to which the underlying store, the language run-time
and the application may have direct access. A transactional in-
terface mediates the movement of data in and out of the cache,
giving the language run-time (and through it the application),
transactional guarantees of atomicity, isolation, coherency and
durability with respect to its accesses to the cache. The layering
of storage and programming language concerns is explicit in
the architecture.

The explicit acknowledgement of the centrality of the cache
and the provision for mediated direct access to it contrasts
with other architectures for persistent systems [Matthes et al.
1996; Munro et al. 1994] which provide the abstraction of a
‘persistent heap’, implemented with a relatively expensive pro-
cedure call interface for data access. This aspect of the transac-
tional object cache architecture makes it far more conducive to high performance implementations than
such alternatives.



By providing an abstraction over the object store through layering, the architecture is transparent to
distribution of the underlying store, and coupled with the concurrency control delivered by the trans-
actional interface, facilitates the implementation of multi-user client-server or highly scalable multi-
processor implementations independently of the language run time or application [Blackburn and Stan-
ton 1997]. This potential for transparently scalable store implementations reinforces the applicability of
the architecture to a high performance context.

server

store client

cache

app. RTS

store client

cache

app. RTS

store client

cache

app. RTS

store client

cache

app. RTS

store client

cache

app. RTS

store client

cache

app. RTS

store client

cache

app. RTS

store client

cache

app. RTS

server server

server server

Figure 2: Client server (left) and client peer (right) realizations of the underlying object store. The
abstraction over store architecture provided by the transactional object cache architecture gives distri-
bution transparency to the client application and run time system.

3 An Abstraction of the Transactional Object Cache Architecture
The cornerstone of the transactional object cache architecture is the interface which separates storage and
programming language concerns, and through which all cache operations are mediated. The effective
realization of the architecture therefore depends on the existence of a well defined interface. The inter-
face definition must capture the separation of storage and programming language concerns in a manner
that does not rob the persistent programming language implementer of efficiency or functionality, nor
deny the store implementer of flexibility in approach.

Central to the design of such an interface is a clear understanding of the architecture. The definition
of a clear abstraction of the transactional object cache architecture thus forms the core of this paper. The
abstraction is based on, and is a refinement of, the abstraction presented in [Blackburn 1997].

3.1 Architectural Elements

Although the key building blocks for a transactional interface may be fairly clear (begin, commit, abort
etc.), the goal of flexibility both above and below the interface makes identification of the precise seman-
tics of these operations with respect to the various areas of store management difficult. For example, a
number of questions are raised by a simple write to the cache. When is that write made stable? When
may the buffer associated with that data be freed? When will that change be made visible to other trans-
actions? Formulating answers to these questions is made all the more difficult by a tendency for the
various concerns to be blurred in the literature.

The transactional object cache can be viewed in terms of transactions operating over an abstract
store consisting of a collection of ‘deltas’, where each delta has associated with it an object image that
corresponds to some update to the store. A transaction’s (potentially invalid) ‘view’ of the store can then
be defined as some projection of the deltas. From the perspective of a transaction operating over such a
store, the state of a delta (or set of deltas) can be modeled in terms of three concerns:

� stability,
� visibility,
� and availability.

The concept of stability allows reasoning about the permanency of any deltas that might be contributed by
a transaction to the store. Visibility provides a means of determining the validity of a particular projection



of deltas (according to some notion of correctness). Availability models the presence in a transaction’s
cache of object images associated with the deltas forming a transaction’s projection of the store.

By developing abstract interfaces with respect to each of these concerns, a transaction’s interaction
with the store can then be precisely modeled in terms of the three concerns. The remainder of this
section will focus on the development of those abstract interfaces. Having developed the models and
abstract interfaces to them, there will be a discussion on how the three concerns come together to give a
complete understanding of a transaction’s interaction with the store.

3.1.1 Core and Extended Functionality

In the following sections, each of the above three areas of concern are described and abstract interfaces
with respect to them are identified. The approach taken is fundamentally influenced by the objective
of this task of abstraction—providing a basis for the subsequent development of a rich and yet flexible
(concrete) transactional interface. In order to maintain a simple kernel while at the same time offer-
ing richness and generality in any subsequently developed concrete interface, the following areas of
transactional functionality have been identified and will guide the development of each of the abstract
interfaces:

Core This functionality is fundamental and should be supported by all transactional storage implemen-
tations.

Logging Facilities such as intra-transaction optimistic computation and intra-transaction stability are
desirable, but are usually only supported by logging stores.

Extended Transactions Through extended transactions some of the restrictions of simple ACID trans-
actions are broken, leading to a wide range of possible transactional semantics including chaining
and nesting.

3.2 Stability

Stability is fundamental to most transaction models. The commit of an ACID transaction requires that
all changes made by that transaction be made durable. Durability combines stability with irrevocability.
By contrast, changes made stable (but not durable) may be subsequently rolled back.

In order to properly describe the stability semantics of a transactional object cache, it is helpful to
first develop an abstract model of stability. Stability in this context concerns the maintenance of a stable
image of a system state that corresponds in a meaningful way with the state of a dynamic system that is
otherwise volatile.

The state of such a system can be represented as a history (an ordered set), h of atomic events, ei :

h= e0:e1:e2 : : :en

where ‘.’ is used to denote the append operation with respect to both histories and events thus: e:e0 =
fe;e0g; h:e= fe1; : : : ;eng:e= fe1; : : : ;en;eg; and h:h0 = fe1; : : : ;eng:fe0

1; : : : ;e
0

mg= fe1; : : : ;en;e0

1; : : : ;e0

mg.
By identifying a durable global stability history, ϕ, and a set of non-durable local stability histories,

Φ = fh0;φ0i;h1;φ1i; : : : ;hn;φnig, the atomicity and durability of a simple transactional system can be de-
fined by describing the changes of state associated with a given transaction t in φt (where ht;φti 2 Φ). In
this model, a transaction is made durable via an operation which appends φt to ϕ (i.e. ϕ0 = ϕ:φt , where ϕ
and ϕ0 denote before and after values of ϕ respectively). Three types of events, e, are defined: e2fδ;s;mg,
where δ denotes state changing events, s denotes stability events, and m denotes marker events. These
event types allow changes in store state, intra-transactional stability semantics, and checkpoint/rollback
semantics to be modeled respectively.

Having set in place a simple abstract model of stability capable of representing a wide range of sta-
bility scenarios, the remainder of this section will identify a series of stability primitives in terms of
that model. In keeping with the notion of core and extended functionality, the most restrictive set of
primitives (those needed to support basic ACID transactions) is described first, with subsequent prim-
itives adding generality. The complete set of well-defined primitives are sufficient to fully describe the
stability semantics of a transactional object cache.

The global stability history is initially empty and there are no local stability histories (ϕinitial = fg^
Φinitial = fg). In the following, shorthand will be used to refer to simple modifications of local history,
the effects on Φ being implicit. For example, the notation:

φ0

t = φt :e



Core
BeginUpdates
NotifyUpdate
AbortUpdates
MakeDurable
EvictVolatile

Logging
CheckpointUpdates

RollbackUpdates
StabilizeUpdates

Extended Trans.
DelegateUpdates

Table 1: Stability primitives.

should be read as shorthand for:

Φ0 = fhti ;φti i 2 Φjti 6= tg[fht;φt :eijht;φti 2 Φg

3.2.1 Stability and Core Functionality

The following primitives, described in terms of the above stability model, are sufficient to describe the
stability semantics of a basic flat ACID transaction, t:

BeginUpdates(t) (φt = fg) ^ (Φ0 = Φ[fht;φtig)

NotifyUpdate(t,o) φ0

t = φt :δo, where δo is an event describing a change of state to some object, o.

AbortUpdates(t) Φ0 = fhti ;φti i 2 Φjti 6= tg

MakeDurable(t) (ϕ0 = ϕ:φt ) ^ (Φ0 = fhti ;φti i 2 Φjti 6= tg)

In addition to these, there needs to be a primitive with global scope that describes the eviction of all
volatile data (allowing system crash and program termination to be modeled):

EvictVolatile Φ0 = fht;φtS:sij(9ht;φtS:s:φtE i 2 Φjs 62 φtE )g

In the absence of a primitive for adding stability events, s, to local histories, all local histories will be
deleted by the EvictVolatile primitive, leaving only the global durable history, ϕ, intact.

A simple ACID transaction would thus consist of BeginUpdates followed by zero or more NotifyUp-
dates and then one of MakeDurable, EvictVolatile or AbortUpdates.

3.2.2 Stability and Logging

Logging adds the capacity to roll back to an identifiable point in the transaction, undoing the effect
of all NotifyUpdates that occurred after that point in the transaction’s history. The addition of intra-
transactional stability allows transaction histories to be made stable without making them atomically
durable. Three primitives are needed to capture logging as part of stabilization. They are described here
again with respect to a given transaction, t:

CheckpointUpdates(t) φ0

t = φt :mi , where mi denotes a uniquely labeled marker event.

RollbackUpdates(t,i) φ0

t :mi :φR = φt . In other words, the history φR comprising the events after mi is
rolled back.

StabilizeUpdates(t) φ0

t = φt :s, where s denotes a stabilize event.

StabilizeUpdates will give an otherwise volatile transaction history stability with respect to EvictVolatile
events (see definition of EvictVolatile above).

3.2.3 Stability and Extended Transaction Models

Chrysanthis and Ramamritham [1994] have shown delegation to be a powerful facility that can be used
as basis for extended transaction models. Delegation refers to the delegation of responsibility for the
stability of some operation/s from one transaction to another. Delegation can be thought of as the
moving of some set of events from one transaction’s history to that of another.

The concept of delegation is fundamental to a number of families of extended transaction models
including nested transactions [Moss 1981], joint transactions [Pu et al. 1988], and split transactions [Pu
et al. 1988]. For this reason the following call with respect to two transactions ti and t j and some object o
is added:



DelegateUpdates(t i ,tj ,o) (φ0

ti = φti nφo
ti ) ^ (φ0

t j
= φt j :φo

ti ), where φo
ti is a sub-history of φti consisting of all

events δo relating to a change in state of o.

The efficient implementation of delegation in the context of a log-based recovery system is addressed in
[Martin and Ramamritham 1997].

3.3 Visibility

Visibility is another issue of fundamental importance to transaction models. ACID transactions ensure
isolation by restricting visibility of changes made by uncommitted transactions. Extended transaction
models often allow the controlled relaxation of isolation. There are a wide range of approaches to im-
plementing visibility control, the design space for which spans many dimensions [Franklin et al. 1997].

Central to an understanding of visibility is the notion of transactions operating over potentially in-
valid images of the state of a store. The responsibility of the visibility control mechanism is to ensure
that no transaction exposed to an invalid image of the store be allowed to commit. As outlined by
Franklin et al. [1997], there are two broad implementation alternatives: avoidance based schemes, where
transactions are prevented from ever being exposed to invalid images of the store; and detection based
schemes, where exposure to an invalid image of the store is detected and the transaction prevented from
committing. In either case, the visibility control mechanism must be able to determine the validity of
the image of a store seen by a given transaction. Transactional validity is usually defined in terms of
serializability—a transaction is valid only if it can be serialized with respect to all previously validated
transactions.

In order to describe visibility semantics concisely, a reference model for visibility will first be de-
scribed. Note that this model is distinct from the model for stability presented in the previous section.
The integration of stability, visibility and cache management semantics to fully capture the semantics of
the transactional object cache is addressed in section 3.5.

The visibility semantics of a transactional system can be described in terms a single history, ψ, of
visibility events, ei :

ψ = e0:e1:e2 : : :en

A transaction, t, is then modeled as a sub-history of ψ, ψt , and the store image seen by t is defined by
the visibility events composing ψt . T denotes the set of all transactions in ψ, where all transactions are
disjoint with respect to ψ, and T completely covers ψ:

(e2 ψ)) (9ti 2 Tj(e2 ψti j(8t j 2 Tj(i 6= j))je 62 ψt j ))

The notion of irrevocability, which is central to modeling transactions, is introduced by defining ψI ,
a sub-history of ψ whose members are irrevocably part of ψ. The property of immutability can be used
to capture the notion of transaction commit—the commit of a transaction corresponds to the movement
of events from ψt to ψI . Uncommitted transactions are mutable (both revocable and appendable).

The visibility events which compose the histories must capture sufficient semantic detail such that
the validity of the store image as projected by a given sub-history can be determined. Furthermore,
the events must capture the range of visibility scenarios possible in a cached store. Three key ideas are
introduced to this end: temporal breadth of activities, the notion of object versions, and the concept of
workspaces.

By giving temporal breadth to read and write events we reflect the reality of cached access to data—an
object is made available to a transaction for reading or writing over a period of time. A visibility model
must therefore be constructed in terms of read and write events with well defined temporal breadth. To
this end we introduce read and write intention and completion events: r, r̄ , w, and w̄.

The notion of object versions is used to capture the reality that every valid read to an object must be
with respect to some prior write to that object. In a coherent store and in the absence of replication,
one might expect a read to always be with respect to the object state as determined by the most recent
write to the object. However, in the context of revocability, replication and the possibility of incoherent
views of the store, the constraint may be weaker. To accommodate the notion of versions, we adopt the
convention of associating a unique version with each write completion, and associating with each read
intention a version that reflects the write seen by that read: (with respect to an object, o) w̄ov, rov, where
rov is a read that saw an image of o as defined by the write completion event w̄ov.

The concept of workspaces is introduced to reflect the fact that in a cached store, overlapping reads
and writes with respect to a common object may be with respect to either distinct or common instances
of that object. In the case where they are with respect to distinct instances, concurrent writes will not be



visible to the reader. However, in the case where they are with respect to the same instance, write activity
is implicitly visible to the reader. A trivial example of that latter is the case where overlapping reads and
writes occur within a single transaction. More complex examples arise when advanced transaction
models are used or when transactions share caches for space efficiency reasons. In order to reflect this
possibility in the visibility model, we associate a workspace identifier, w, with read and write events
when the distinction is necessary: row; r̄ow;wow;w̄ow.

Having constructed such a model of visibility, a number of functions are defined that will enable
a user to reason about the validity of an image of the store as seen by a particular transaction t. The
first of these is a termination function T (ψi) which tests termination on all reads and writes within a
sub-history ψi (the notation a� b is used to denote a preceding b in ψ):

T (ψi) = (8ro 2 ψi j(9r̄o 2 ψi j(ro � r̄o))) ^ (8wo 2 ψi j(9w̄o 2 ψi j(wo � w̄o)))

In addition, a workspace isolation function, W (ψi ;ψ j ), is defined to be true only if read events in ψi

do not conflict with any write events in ψ j with respect to the same object, o, when sharing a common
workspace, w:

W (ψi ;ψ j) = 8row; r̄ow 2 ψi ; j(6 9wow;w̄ow 2 ψ j j(row � w̄ow)^ (wow � r̄ow))

Finally, a serializability function S(ψi ;ψ j ;ψk) is defined such that S(ψi ;ψ j ;ψk) is true only if the store
image as seen by ψi is consistent (serializable) with respect to ψ j , where ψk denotes a sub-history of all
events with which conflicts are ignored1:

S(ψi ;ψ j ;ψk) = 8rov 2 ψi j(9w̄ov 2 (ψi [ψ j [ψk)j(6 9w̄ov0
2 ψ j j(w̄ov � w̄ov0

)))

In other words, all reads in transaction ti were with respect to writes within either ti (ψi) or t j (ψ j), or
were writes with respect to which ti was ignoring conflicts (ψk). Furthermore, all reads were with respect
to writes that did not occur before the most recent write in ψ j to the object concerned (o). Typically S is
used such that ψ j = ψI (the immutable set).

With a visibility model and three validity functions defined, an abstract interface with respect to
visibility in a transactional object cache can now be defined. The model is sufficiently rich to allow
the user of the abstract interface to assess the transactional validity of a very wide range of visibility
scenarios. The abstract interface will be introduced in terms of core and extended functionality (as with
the stability interface) and consequently begins with the particular (i.e. basic ACID) and extends to the
general.

Core
BeginVisibility
ReadIntention
ReadComplete
WriteIntention
WriteComplete
AbortVisibility
Terminated

Finalize
Expose

Logging
CheckpointVisibilty
RollbackVisibility

Extended Trans.
DelegateVisibility

IgnoreConflict

Table 2: Visibility primitives.

In the following description, a number of conventions will be used:

� Appending an event to a sub-history implies appending the event to ψ: (ψt
0 = ψt :ei)) (ψ0 = ψ:ei).

� Truncating a sub-history implies removal of events from ψ: (ψt
0
:ei = ψt)) (ψ0 = ψ nei), where n

denotes history difference.
� The operation ψi [ψ j denotes the order-preserving merging (union) of two sub-histories.

Furthermore, by definition any manipulation of the immutable sub-history, ψI is not permitted.

1Conflict ignorance is important for some advanced transaction models. See section 3.3.3.



3.3.1 Visibility and Core Functionality

Using the above model of visibility, the following primitives are sufficient to describe the visibility se-
mantics of a simple flat ACID transaction, t:

BeginVisibility(t) (ψt = fg) ^ (T 0 = T [ftg)

ReadIntention(t,o) ψt
0 = ψt :rov

ReadComplete(t,o) ψt
0 = ψt :r̄o

WriteIntention(t,o) ψt
0 = ψt :wo

WriteComplete(t,o) ψt
0 = ψt :w̄ov

AbortVisibility(t) (ψ0 = ψnψt) ^ (T 0 = T nftg), where the symbol n denotes history difference and set
difference respectively (i.e. the events composing sub-history ψt are removed from ψ).

Terminated(t,o) T (ψto), where ψto refers to a sub-history of ψ consisting of all events in transaction t
relating to object o.

Finalize(t) (T (ψt)^S(ψt ;ψI ;ψict )^W (ψt ;ψw)), where ψict is the sub-history of ψ consisting of all events
with which t is ignoring conflicts, and ψw = ψ n (ψI [ψt [ψict ) (i.e. all events in other unfinalized
transactions except those events with which conflicts are being ignored).

Expose(t) (ψI
0 = ψI [fw̄2ψtg)^(ψ0 = ψnfe2ψt je 6= w̄g). Thus the write completion events of t become

irrevocable and all other events in ψt are discarded.

3.3.2 Visibility and Logging

Rollback must be handled by the visibility mechanism. After a rollback, no evidence of any updates or
reads that were rolled back should be visible. The following primitives are required to support rollback
with respect to visibility:

CheckpointVisibility(t) ψt
0 = ψt :mi

RollbackVisibility(t,i) ψt
0
:mi :ψR = ψt

3.3.3 Visibility and Extended Transaction Models

Delegation of transactional responsibility for an operation impacts on visibility just as it does on stability
(section 3.2.3). When operations are delegated, visibility of those operations is transferred to the target
transaction (i.e. visibility events are removed from the sub-history of one transaction and become part
of the sub-history of another transaction—their place in the history ψ is unchanged). In addition, some
advanced transaction models allow controlled relaxation of isolation. The following primitives define
advanced visibility semantics with respect to visibility operations on o between ti and t j :

DelegateVisibility(t i ,tj ,o) ((ψti
0 = ψti nψtio)^ (ψt j

0 = ψt j [ψtio ))j(T (ψtio )^ S(ψtio ;ψt j ;ψk), where ψtio is a
sub-history of ψti consisting of all events eo relating to o, and ψk = (ψn (ψtio [ψt j )).

IgnoreConflict(t i,tj ,o) (ψicti
0 = ψicti

[ψt jo
) ^ (ψict j

0 = ψict j
[ψtio ): Thus for all events relating to object o,

ti and t j are added to each other’s ‘ignore conflict’ sub-histories (ψict ). A subsequent call to Finalize
will thus ignore conflicts between hti and ht j for those events.

A meaningful implementation of IgnoreConflict would allow participating transactions to use the
same workspace for accesses to o. This will present implementation challenges in the context of a dis-
tributed cache as some form of transparent, coherent distributed shared memory (DSM) would need to
exist with respect to those transactions and the set of objects.

3.4 Availability

A third dimension of the transactional cache architecture is availability. A cached store design is mo-
tivated by the desire to hide IO latency and introduce replication through caching. While stability is
concerned with what changes to store state are made durable, and visibility is concerned with the valid-
ity of the image of the store as it might be seen by a given transaction, cache management is concerned
with the availability of that image to the transaction.



Core
Fix

Unfix

Table 3: Availability primitives.

Availability can be modeled in terms of each active transaction, t, operating over a logically distinct
cache ct within which is present some set of objects: ct = fo0;o1; : : : ;ong. An object is only available to a
transaction if present in that transaction’s (logically distinct) cache.

Only two primitives are necessary for the description of an availability model:

Fix(t,o) c0

t = ct [fog

Unfix(t,o) c0

t = ct nfog

With these the client can notify the store of when it requires access to a given object. The stability
and validity of the available object images is a function of the stability and visibility control mechanisms
respectively.

3.5 Integrating the models

The preceding sections have developed rich abstractions for each of the three previously identified as-
pects of a transaction’s perspective of a delta or set of deltas composing some part of the store. From
the perspective of a running transaction, the operational interactions of these three abstractions is fairly
straight-forward.

The stability abstraction can be used to model the permanency of some set of deltas contributed
by the running transaction. Assuming a conventional transactional framework, the correctness of the
deltas must be assured (through the visibility abstraction) prior to those deltas being made durable
(irrevocably stable). Under some transaction models, deltas may be made stable (but not irrevocable)
independent of their ‘correctness’. The availability abstraction relates to the stability abstraction as the
means by which a transaction may materialize and operate on new deltas. The visibility and availability
abstractions come together to materialize for the transaction a projection of the store which it can operate
over, and determine the validity of. Unless coupled with the visibility model, the availability model can
not materialize any meaningful view of the store.

Although the abstraction covers a wide range of transaction models, it seems likely that support
for layered transactions and other open transaction models[Weikum and Schek 1992] will require some
meta-level extensions to the abstraction. Finally it should be noted that although the abstraction is
presented in terms of object-grained semantics, it is applicable to data movement and coherency at any
granularity and may be trivially adapted to account for such.

4 Applying the Transactional Object Cache to Systems Construction
The utility of the transactional object cache architectural framework as a tool for expediting the con-
struction of high performance persistent systems hinges on the existence and utilization of a well de-
fined transactional interface. The abstraction of the architecture presented above paves the way for the
definition of such an interface. PSI (persistent store interface) [Blackburn 1997] is a first attempt to de-
velop a well-defined transactional interface for the architecture. The following sections report on the
development and utilization of the PSI interface.

4.1 PSI—an Interface Definition

PSI is a software interface definition for the transactional object cache architecture. In designing the
PSI interface, we sought to balance a number of objectives: to flexibly support the needs of persistent
programming languages (PPLs); to strongly separate storage and programming language concerns; and
to admit small and fast PPL implementations. This combination of objectives presented a constrained
trade-off space for the interface design, within which PSI represents just one point. It is not the purpose
of this paper to describe the PSI interface in detail nor to recount all of the various design decisions
made. The interested reader is instead referred to [Blackburn 1997].



PSI was shaped by the abstraction presented in the preceding section and the semantics of each call
were pinned down in terms of its semantic primitives. As with the abstraction, the interface is defined
in terms of core primitives which give support for basic ACID transactions, and extensions for logging,
extended transactions, and indexing. An appropriate separation of concerns between the object store
and the PPL was central to the interface design. Key design choices include the following:

� PSI requires the store to provide a persistent graph of objects reachable from a single root (for
efficiency reasons the store should be garbage collected);

� Residency checks and write detection are undertaken by the PPL;
� PSI includes a simple classing mechanism allowing store-side GC, but leaves swizzling to the PPL;
� PSI provides the PPL with primitives that will support a wide range of transactional models and

leaves concurrency control implementation to the store;
� PSI does not prescribe an approach to recovery, however implementation of checkpoint and roll-

back (PSI’s logging extensions) requires some form of logging.

Core
PSI Read
PSI Write
PSI New

PSI NewTransaction
PSI Commit
PSI Abort
PSI Unfix
PSI Fix

Logging
PSI Checkpoint

PSI Rollback
PSI ThisCheckpoint

PSI Stabilize

Extended Trans.
PSI Delegate

PSI IgnoreConflict

Indexing
PSI Insert
PSI Fetch
PSI Delete

Housekeeping
PSI Init

PSI Open
PSI Close

PSI Recover

Table 4: Key calls in the PSI interface.

4.2 Implementing PSI

The openness of the transactional object cache architecture to a range of transactional concurrency con-
trol and recovery schemes is an important attribute of PSI. With the exception of the logging and ex-
tended transaction primitives, which place strong demands on recovery and concurrency control, the
PSI interface should be implementable in terms of most of the wide range of transactional recovery
[Härder and Reuter 1983] and concurrency control [Franklin et al. 1997] schemes.

At the time of writing there exist two major PSI store implementations and two more implementa-
tions are underway. One implementation is relatively light-weight (does not support concurrent trans-
actions on a single processor), uses a log-based recovery scheme and the AOCC cache coherency algo-
rithm [Adya et al. 1995] in its multi-processor form. This implementation has been tested extensively
and demonstrated to perform well and to be highly scalable [Blackburn 1997]. The second implemen-
tation is built as a SHORE ‘value-added server’ (VAS) [Carey et al. 1994], and as such it inherits the
heavy-weight capabilities (and commensurate performance tradeoffs) of the SHORE system. The first
of two implementations currently in progress uses the PS-AA [Franklin et al. 1997] cache coherency
algorithm in place of AOCC used in our existing light-weight implementation. The second implemen-
tation builds PSI directly on top of the SHORE Storage Manager (SSM), with minor changes to some
aspects of the SSM. We expect this tighter coupling and fine tuning to lead to performance gains over
our SHORE-VAS implementation.

4.3 Utilizing PSI

The identification and formalization of the transactional object cache architecture and the subsequent
definition of the PSI interface was motivated by a desire to promote the implementation of high perfor-
mance persistent systems. Our particular objectives include the implementation of a high performance,
scalable, orthogonally persistent Java. Unfortunately our early plans of adapting PJama [Atkinson et al.
1996] to utilize PSI have been beset by source code licensing difficulties, which, at the time of writing,
appear to have just been resolved.

In order to gauge the performance of PSI implementations in relation to other systems, we have
implemented the OO7 benchmark [Carey et al. 1993] directly on top of the PSI interface. Despite the



limitations of such benchmarks, OO7 can provide a helpful guide to performance and in addition, the
size of the OO7 suite makes it a non-trivial ‘proof of implementation’ test [Carey et al. 1994]. Space
constraints preclude the inclusion of any detailed analysis of the OO7 results in this paper, however
we make the claim that given the breadth of the various OO7 operations measured, the overall results
provide a fair indication of the relative performance characteristics of the various systems measured.
The reader is refered to [Carey et al. 1993] for a detailed discussion of the benchmark. Figure 3 presents
results comparing our light-weight PSI implementation with PJama2, Texas [Singhal et al. 1992] and
SHORE.

0.1

1

10

100

PSI 1.0 PJama 10.5 PJama-NP 1.5 PJama - PJama-NP 6.8 Texas 1.6 SHORE 29.8

T
im

e 
no

rm
al

iz
ed

 w
.r

.t.
 P

S
I

0.01

0.1

1

10

100

1000

PSI 1.0 PJama 7.4 PJama-NP 4.5 PJama - PJama-NP 0.9 Texas 0.5 SHORE 30.3

T
im

e 
no

rm
al

iz
ed

 w
.r

.t.
 P

S
I

Figure 3: Cold (top) and hot (bottom) times for light-weight PSI, PJama, Texas, and SHORE for 17 OO7
benchmark operations (t1. . . q8) running over the ‘small’ database. Each bar represents the time for
one benchmark operation normalized with respect to PSI and plotted on a log scale. The store costs
for PJama are approximated by the difference between persistent (’PJama’) and non-persistent (‘PJama-
NP’) times (‘PJama - PJama-NP’). The geometric means of the normalized times are printed to the right
of each label. All runs were performed on an unloaded 166MHz Ultra1 CPU with 128MB RAM and
separate store and log disks.

These performance results reflect the fact that in most respects SHORE is a different class of store
to the others, which by comparison are very light-weight. For example, SHORE is a client-server sys-
tem capable of supporting multiple simultaneous clients. Consequently OO7 runs in a separate process
to the store, and uses RPC and shared memory primitives to communicate. The slower performance
of Texas compared with PSI can probably be attributed to Texas’s relatively expensive commits, and
the inappropriateness of the page faulting mechanism in the context of pages full of fine-grained fre-
quently changing meta-data (such as indexes). By contrast, Texas’s page faulting mechanism helped it
to perform about twice as fast as PSI on the hot runs.

The costs associated with the Java VM are fairly clear in the non-persistent PJama results (PJama-
NP). On shorter operations such as queries (rightmost in each cluster) PJama-NP looks good relative
PSI because IO costs dominate for PSI. However, this is offset by poor performances on the traversals
(leftmost) where IO costs are amortized over many accesses. Overall PJama-NP runs about 1.5 times
slower than PSI.

PJama’s storage costs as approximated in the rightmost results above are significant compared with
total costs (storage plus run-time) for PSI. This, coupled with information from detailed discussions with
the PJama team which suggest that adapting PJama to utilize a PSI store should be relatively straight-

2Our Java OO7 implementation is publicly available at http://cs.anu.edu.au/ S̃teve.Blackburn/upside/dist/



forward, gives us confidence that a PSI-based persistent Java could be readily implemented and would
perform well. Furthermore, the transparency provided by PSI to the underlying architecture will allow
any such persistent Java to fully utilize scalable multicomputer PSI implementations.

In light of the aforementioned licensing difficulties we are proceeding with a persistent Java imple-
mentation based on GNU Kaffe. This implementation effort has resulted in close scrutiny of PSI as a
platform for orthogonally persistent programming languages and has lead to minor refinements to the
interface.

5 Future Work
The pinning down of transactional object cache architecture and the definition of the PSI transactional
interface opens a range of possibilities for new work and creates a new context for existing work. As out-
lined in the preceding section, a wide range of work is in progress, both on the store and programming
language sides of the interface. Among the milestones we see ahead are the following:

� Evolution of the model to account for the needs of layered transaction models (and more generally,
open transaction models) [Weikum and Schek 1992], which will most likely require a meta-layer.

� Completion of a high performance, ‘industrial strength’, garbage collected PSI store. We are using
the SHORE storage manager as the kernel for this effort.

� A highly scalable ‘single image store’ version of the above. This will depend on the success of our
current scalability experiments with garbage collection and the PS-AA cache coherency algorithm.

� An orthogonally persistent Java bound to the PSI interface, and so able to utilize various PSI stores.
We have a project underway based on GNU Kaffe.

� The use of PSI by other persistent programming language efforts, and the construction of other
PSI compliant stores.

In keeping with our view that reuse and collaboration are important to the success of high performance
orthogonal persistence, we aim to make our software developments publicly available where possible.
Finally, we do not see PSI as an immutable interface definition—it is our hope that through wider use,
the interface will undergo a process of refinement.

6 Conclusions
The transactional object cache architecture is the embodiment of three fundamental architectural de-
vices: atomicity, caching, and layering. We argue that the importance of these devices in addressing key
challenges of high performance persistent systems design makes the transactional object cache architec-
ture an ideal foundation for the construction of such systems.

An abstraction of a generalization of the architecture has been presented along with a formalizing
of its semantics. The generality of the abstraction opens it to a wide range of transaction models, cache
coherency algorithms, and recovery systems. The identification of the semantics of the model has paved
the way for the definition of a concrete interface and so a practical realization of the architectural ap-
proach.

The PSI transactional interface and examples of its implementation and application form early evi-
dence of the utility of the transactional object cache approach. The performance and scalability of initial
PSI implementations gives further support to the view that the approach may expedite the development
of high performance orthogonally persistent systems.

7 Acknowledgements
The authors wish to thank Laurent Daynès, John Zigman, Luke Kirby, David Walsh, and David Sitsky
for many helpful suggestions and comments on this work.

Bibliography
ADYA, A., GRUBER, R., LISKOV, B., AND MAHESHWARI, U. 1995. Efficient optimistic concurrency

control for distributed transactions. In M. J. CAREY AND D. A. SCHNEIDER Eds., Proceedings on the



1995 ACM-SIGMOD International Conference on the Management of Data, Volume 24 of SIGMOD Record
(San Jose, CA, U.S.A., May 22–25 1995), pp. 23–34. ACM.

ATKINSON, M. P., DAYNÈS, L., JORDAN, M. J., PRINTEZIS, T., AND SPENCE, S. 1996. An orthogo-
nally persistent java. SIGMOD Record 25, 4 (Dec.), 86–75.

BLACKBURN, S. M. 1997. Persistent Store Interface: A foundation for scalable persistent system
design. PhD thesis, Australian National University, Canberra, Australia. Available online at
http://cs.anu.edu.au/˜Steve.Blackburn/ .

BLACKBURN, S. M. AND STANTON, R. B. 1997. Scalable multicomputer object spaces: a foundation
for high performance systems. In J. DARLINGTON Ed., Third International Working Conference on Mas-
sively Parallel Programming Models (London, Nov. 12–14 1997).

CAREY, M. J., DE WITT, D. J., AND NAUGHTON, J. F. 1993. The OO7 benchmark. In P. BUNEMAN
AND S. JAJODIA Eds., Proceedings of the 1993 ACM-SIGMOD Conference on the Management of Data,
Volume 22 of SIGMOD Record (Washington D.C., U.S.A., May 26–28 1993), pp. 12–21. ACM.

CAREY, M. J. AND DEWITT, D. J. 1986. The architecture of the EXODUS extensible DBMS. In Proceed-
ings of the First International Workshop on Object-Oriented Database Systems (Pacific Grove, CA, U.S.A.,
Sept. 1986), pp. 52–65. IEEE.

CAREY, M. J., FRANKLIN, M. J., AND ZAHARIOUDAKIS, M. 1994. Fine-grained sharing in a page
server OODBMS. In R. T. SNODGRASS AND M. WINSLETT Eds., Proceedings of the 1994 ACM-SIGMOD
International Conference on the Management of Data, Volume 23 of SIGMOD Record (Minneapolis, MN,
U.S.A., May 24–27 1994), pp. 359–370. ACM.

CHRYSANTHIS, P. AND RAMAMRITHAM, K. 1994. Synthesis of extended transaction models using
ACTA. ACM Transactions on Database Systems 19, 3 (Sept.), 450–491.

FRANKLIN, M. J., CAREY, M. J., AND LIVNY, M. 1997. Transactional client-server cache consistency:
Alternatives and performance. ACM Transactions on Database Systems 22, 3 (Sept.), 315–363.

HÄRDER, T. AND REUTER, A. 1983. Principles of transaction-oriented database recovery. ACM Com-
puting Surveys 15, 4 (Dec.), 287–317.

MARTIN, C. P. AND RAMAMRITHAM, K. 1997. Delegation: Efficiently rewriting history. In A. GRAY
AND P.-Å. LARSON Eds., Proceedings of the Thirteenth International Conference on Data Engineering
(Birmingham U.K., April 7–11 1997). IEEE Computer Society Press.

MATTHES, F., MÜLLER, R., AND SCHMIDT, J. W. 1996. Towards a unified model of untyped object
stores: Experiences with the Tycoon Store Protocol. In Advances in Databases and Information Systems
(ADBIS’96), Proceedings of the Third International Workshop of the Moscow ACM SIGMOD Chapter (1996).

MOSS, J. E. B. 1981. Nested Transactions: An Approach to Reliable Distributed Computing. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, U.S.A.

MOSS, J. E. B. 1990. Design of the Mneme persistent object store. ACM Transactions on Information
Systems 8, 2 (April), 103–139.

MUNRO, D. S., CONNOR, R. C., MORRISON, R., SCHEUERL, S., AND STEMPLE, D. W. 1994. Con-
current shadow paging in the Flask architecture. In M. ATKINSON, V. BENZAKEN, AND D. MAIER
Eds., Sixth International Workshop on Persistent Object Systems, Workshops in Computing Series (WICS)
(Tarascon, France, Sept. 5–9 1994), pp. 16–37. Springer-Verlag.

PU, C., KAISER, G. E., AND HUTCHINSON, N. C. 1988. Split-transactions for open-ended activities.
In F. BANCILHON AND D. J. DEWITT Eds., VLDB’88, Proceedings of the 14th International Conference on
Very Large Data Bases (Los Angeles, CA, U.S.A., Aug. 29–Sept. 1 1988), pp. 26–37. Morgan Kaufmann.

SCHEUERL, S. J. G., CONNOR, R. C. H., MORRISON, R., AND MUNRO, D. S. 1996. The DataSafe
failure recovery mechanism in the Flask architecture. In Proceedings of the Australian Computer Science
Conference (Melbourne, Australia, Jan. 1996), pp. 573–581.

SINGHAL, V., KAKKAD, S. V., AND WILSON, P. R. 1992. Texas: An efficient, portable persistent
store. In A. ALBANO AND R. MORRISON Eds., Fifth International Workshop on Persistent Object Systems,
Workshops in Computing Series (WICS) (San Miniato, Italy, Sept. 1–4 1992), pp. 11–33. Springer.

WEIKUM, G. AND SCHEK, H.-J. 1992. Concepts and applications of multilevel transactions and open
nested transactions. In A. K. ELMAGARMID Ed., Database Transaction Models for Advanced Applications,
Chapter 13, pp. 515–553. San Mateo, CA, U.S.A.: Morgan Kaufmann.


