
JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 105

Abstract
The past 10 years have delivered two significant revolu-
tions. (1) Microprocessor design has been transformed by
the limits of chip power, wire latency, and Dennard scal-
ing—leading to multicore processors and heterogeneity. (2)
Managed languages and an entirely new software landscape
emerged—revolutionizing how software is deployed, is sold,
and interacts with hardware. Researchers most often exam-
ine these changes in isolation. Architects mostly grapple
with microarchitecture design through the narrow software
context of native sequential SPEC CPU benchmarks, while
language researchers mostly consider microarchitecture in
terms of performance alone. This work explores the clash
of these two revolutions over the past decade by measur-
ing power, performance, energy, and scaling, and considers
what the results may mean for the future. Our diverse find-
ings include the following: (a) native sequential workloads
do not approximate managed workloads or even native
 parallel workloads; (b) diverse application power profiles
suggest that future applications and system software will
need to participate in power optimization and management;
and (c) software and hardware researchers need access to
real measurements to optimize for power and energy.

1. INTRODUCTION
Quantitative performance analysis is the foundation for
computer system design and innovation. In their classic
paper, Emer and Clark noted that “A lack of detailed tim-
ing information impairs efforts to improve performance.”5
They pioneered the quantitative approach by characterizing
instruction mix and cycles per instruction on time-sharing
workloads. They surprised expert reviewers by demonstrating a
gap between the theoretical 1 MIPS peak of the VAX-11/780
and the 0.5 MIPS it delivered on real workloads. Industry and
academic researchers in software and hardware all use and
extend this principled performance analysis methodology.
Our research applies this quantitative approach to measured
power. This work is timely because the past decade heralded
the era of power- and energy-constrained hardware design.a
Furthermore, demand for energy efficiency has intensified
in large-scale systems, in which energy began to dominate
costs, and in mobile systems, which are limited by battery
life. A lack of detailed energy measurements is impairing
efforts to reduce energy consumption on modern workloads.

DOI:10.1145/2209249.2209272

Looking Back and Looking
Forward: Power, Performance,
and Upheaval
By Hadi Esmaeilzadeh, Ting Cao, Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley

Original version: “Looking Back on the Language and Hardware
Revolutions: Measured Power, Performance, and Scaling,” ACM
Conference on Architecture Support for Programming
Languages and Operating Systems, pp. 319–332, Newport
Beach, CA, 2011. Also published as “What Is Happening to
Power, Performance and Software?,” IEEE Micro Top Picks
from the Computer Architecture Conferences of 2011,
May/June 2012, IEEE Computer Society.

a Energy = power × execution time.

Society has benefited enormously from exponential
 hardware performance improvements. Moore observed that
transistors will be smaller and more numerous in each new
generation.15 For a long time, this simple rule of integrated
circuit fabrication came with an exponential and transpar-
ent performance dividend. Shrinking a transistor lowers
its gate delay, which raises the processor’s theoretical clock
speed (Dennard scaling3). Until recently, shrinking transis-
tors delivered corresponding clock speed increases and more
 transistors in the same chip area. Architects used the transis-
tor bounty to add memory, prefetching, branch prediction,
multiple instruction issue, and deeper pipelines. The result
was exponential single-threaded performance improvements.

Unfortunately, physical power and wire-delay limits
will derail the clock speed bounty of Moore’s law in cur-
rent and future technologies. Power is now a first-order
hardware design constraint in all market segments.
Power constraints now severely limit clock scaling and
prevent using all transistors simultaneously.6, 8, 16 In addi-
tion, the physical limitations of wires prevent single cycle
access to a growing number of the transistors on a chip.9
To effectively use more transistors at smaller technologies,
these limits forced manufacturers to turn to chip multi-
processors (CMPs) and recently to heterogeneous parallel
systems that seek power efficiency through specializa-
tion. Parallel heterogeneous hardware requires parallel
software and exposes software developers to ongoing
hardware upheaval. Unfortunately, most software today
is not parallel, nor is it designed to modularly decompose
onto a heterogeneous substrate.

Moore’s transistor bounty also drove orthogonal and
disruptive changes in how software is deployed, is sold, and
interacts with hardware over this same decade. Demands for
correctness, complexity management, programmer pro-
ductivity, time-to-market, reliability, security, and portability
pushed developers away from low-level compiled ahead-of-time
(native) programming languages. Developers increasingly

106 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

research highlights

choose high-level managed programming languages with
a selection of safe pointer disciplines, garbage collection
(automatic memory management), extensive standard librar-
ies, and dynamic just-in-time compilation for hardware porta-
bility. For example, modern Web services combine managed
languages, such as PHP on the server side and JavaScript on
the client side. In markets as diverse as financial software
and cell phone applications, Java and .NET are the domi-
nant choices. The exponential performance improvements
provided by hardware hid many of the costs of high-level
languages and helped create a virtuous cycle with ever more
capable and high-level software. This ecosystem is result-
ing in an explosion of developers, software, and devices that
continue to change how we live and learn.

Unfortunately, a lack of power measurements is impair-
ing efforts to reduce energy consumption on traditional and
modern software.

2. OVERVIEW
Our work quantitatively examines power, performance,
and scaling during this period of disruptive software and
hardware changes (2003–2011). Voluminous research
explores performance analysis and a growing body of work
explores power (see Section 6), but our work is the first to
systematically measure the power, performance, and energy
characteristics of software and hardware across a range of
processors, technologies, and workloads.

We execute 61 diverse sequential and parallel bench-
marks written in three native languages and one managed
language, all widely used: C, C++, Fortran, and Java. We
choose Java because it has mature virtual machine technol-
ogy and substantial open source benchmarks. We choose
eight representative Intel IA32 processors from five tech-
nology generations (130 nm to 32 nm). Each processor has
an isolated processor power supply with stable voltage on
the motherboard, to which we attach a Hall effect sensor
that measures power supply current, and hence processor
power. We calibrate and validate our sensor data. We find
that power consumption varies widely among benchmarks.
Furthermore, relative performance, power, and energy are
not well predicted by core count, clock speed, or reported
Thermal Design Power (TDP). TDP is the nominal amount
of power the chip is designed to dissipate (i.e., without
exceeding the maximum transistor junction temperature).

Using controlled hardware configurations, we explore the
energy impact of hardware features and workload. We per-
form historical and Pareto analyses that identify the most
power- and performance-efficient designs in our architecture
configuration space. We make all of our data publicly avail-
able in the ACM Digital Library as a companion to our origi-
nal ASPLOS 2011 paper. Our data quantifies a large number
of workload and hardware trends with precision and depth,
some known and many previously unreported. This paper
highlights eight findings, which we list in Figure 1. Two
themes emerge from our analysis: workload and architecture.

Workload. The power, performance, and energy trends of
native workloads substantially differ from managed and par-
allel native workloads. For example, (a) the SPEC CPU2006
native benchmarks draw significantly less power than

 parallel benchmarks and (b) managed runtimes exploit par-
allelism even when executing single-threaded applications.
The results recommend that systems researchers include
managed and native, sequential and parallel workloads
when designing and evaluating energy-efficient systems.

Architecture. Hardware features such as clock scaling,
gross microarchitecture, simultaneous multithreading, and
chip multiprocessors each elicit a huge variety of power,
performance, and energy responses. This variety and the
difficulty of obtaining power measurements recommend
exposing on-chip power meters and, when possible, power
meters for individual structures, such as cores and caches.
Modern processors include power management techniques
that monitor power sensors to minimize power usage and
boost performance. However, only in 2011 (after our origi-
nal paper) did Intel first expose energy counters, in their
production Sandy Bridge processors. Just as hardware event
counters provide a quantitative grounding for performance
innovations, future architectures should include power and/or
energy meters to drive innovation in the power-constrained
computer systems era.

Measurement is key to understanding and optimization.

3. METHODOLOGY
This section presents an overview of essential elements of
our methodology. We refer the reader to the original paper
for a more detailed treatment.

3.1. Software
We systematically explore workload selection and show that it
is a critical component for analyzing power and performance.
Native and managed applications embody different trade-offs
between performance, reliability, portability, and deployment.
It is impossible to meaningfully separate language from

Figure 1. Eight findings from an analysis of measured chip power,
performance, and energy on 61 workloads and eight processors.
The ASPLOS paper includes more findings and analysis.

Findings
Power consumption is highly application dependent and is poorly correlated

to TDP.

Power per transistor is relatively consistent within microarchitecture family,

independent of process technology.

Energy-efficient architecture design is very sensitive to workload.

Configurations in the native non-scalable Pareto Frontier substantially differ

from all the other workloads.

Comparing one core to two, enabling a core is not consistently energy efficient.

The Java Virtual Machine induces parallelism into the execution of single-

threaded Java benchmarks.

Simultaneous multithreading delivers substantial energy savings for recent

hardware and for in-order processors.

Two recent die shrinks deliver similar and surprising reductions in energy,

even when controlling for clock frequency.

Controlling for technology, hardware parallelism, and clock speed, the out-of-

order architectures have similar energy efficiency as the in-order ones.

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 107

workload and we offer no commentary on the virtue of lan-
guage choice. We create four workloads from 61 benchmarks.

Native non-scalable: C, C++, and Fortran single-threaded
compute-intensive benchmarks from SPEC CPU2006.

Native scalable: Multithreaded C and C++ benchmarks from
PARSEC.

Java non-scalable: Single and multithreaded benchmarks
that do not scale well from SPECjvm, DaCapo 06-10-MR2,
DaCapo 9.12, and pjbb2005.

Java scalable: Multithreaded Java benchmarks from DaCapo
9.12 that scale in performance similarly to native scalable
on the i7 (45).

We execute the Java benchmarks on the Oracle HotSpot 1.6.0
virtual machine because it is a mature high-performance
 virtual machine. The virtual machine dynamically optimizes
each benchmark on each architecture. We use best practices for
virtual machine measurement of steady state performance.2
We compile the native non-scalable workload with icc at –o3.
We use gcc at –o3 for the native scalable workload because
icc did not correctly compile all benchmarks. The icc compiler
generates better performing code than gcc. We execute the
same native binaries on all machines. All the parallel native
benchmarks scale up to eight hardware contexts. The Java scal-
able workload is the subset of Java benchmarks that scale well.

3.2. Hardware
Table 1 lists our eight Intel IA32 processors which cover four
process technologies (130 nm, 65 nm, 45 nm, and 32 nm)
and four microarchitectures (NetBurst, Core, Bonnell, and
Nehalem). The release price and date give context regarding
Intel’s market placement. The Atoms and the Core 2Q (65)
Kentsfield are extreme market points. These processors are
only examples of many processors in each family. For example,
Intel sells over 60 Nehalems at 45 nm, ranging in price from
around $190 to over $3700. We believe that these samples are
representative because they were sold at similar price points.

To explore the influence of architectural features, we selec-
tively down-clock the processors, disable cores on these chip
multiprocessors (CMP), disable simultaneous multithread-
ing (SMT), and disable Turbo Boost using BIOS configuration.

3.3. Power, performance, and energy measurement
We isolate the direct current (DC) power supply to the pro-
cessor on the motherboard and measure its current with
Pololu’s ACS714 current sensor board. The supply voltage
is very stable, varying by less than 1%, which enables us to
correctly calculate power. Prior work used a clamp amme-
ter, which can only measure alternating current (AC), and is
therefore limited to measuring the whole system.10, 12 After
publishing the original paper, Intel made chip-level and
core-level energy measurements available on Sandy Bridge
processors.4 Our methodology should slightly overstate chip
power because it includes losses due to the motherboard’s
voltage regulator. Validating against the Sandy Bridge energy
counter shows that our power measurements consistently
measure about 5% more current.

We execute each benchmark multiple times on every
architecture, log its power values, and then compute average
power consumption. The aggregate 95% confidence inter-
vals of execution time and power range from 0.7% to 4%. The
measurement error in time and power for all processors and
benchmarks is low. We compute arithmetic means over the
four workloads, weighting each workload equally. To avoid
biasing performance measurements to any one architec-
ture, we compute a reference performance for each bench-
mark by averaging the execution time on four architectures:
Pentium 4 (130), Core 2D (65), Atom (45), and i5 (32). These
choices capture four microarchitectures and four technol-
ogy generations. We also normalize energy to a reference,
since energy = power × time. The reference energy is the aver-
age benchmark power on the four processors multiplied by
their average execution time.

We measure the 45 processor configurations (8 stock
and 37 BIOS configurations) and produce power and

Table 1. Specifications for the eight processors used in the experiments.

Processor mArch Processor sSpec
Release
date

Price
(USD)

CMP
SMT LLC (B)

Clock
(GHz) nm

Trans
M

Die
(mm2)

VID
Range

(V)
TDP
(W)

FSB
(MHz)

B/W
(GB/s)

DRAM
Model

Pentium 4 NetBurst Northwood SL6WF May ‘03 – 1C2T 512K 2.4 130 55 131 – 66 800 – DDR-
400

Core 2 Duo
E6600

Core Conroe SL9S8 Jul ‘06 316 2C1T 4M 2.4 65 291 143 0.85–
1.50

65 1066 – DDR2-
800

Core 2 Quad
Q6600

Core Kentsfield SL9UM Jan ‘07 851 4C1T 8M 2.4 65 582 286 0.85–
1.50

105 1066 – DDR2-
800

Core i7
920

Nehalem Bloomfield SLBCH Nov ‘08 284 4C2T 8M 2.7 45 731 263 0.80–
1.38

130 – 25.6 DDR3-
1066

Atom
230

Bonnell Diamondville SLB6Z Jun ‘08 29 1C2T 512K 1.7 45 47 26 0.90–
1.16

4 533 – DDR2-
800

Core 2 Duo
E7600

Core Wolfdale SLGTD May ‘09 133 2C1T 3M 3.1 45 228 82 0.85–
1.36

65 1066 – DDR2-
800

Atom
D510

Bonnell Pineview SLBLA Dec ‘09 63 2C2T 1M 1.7 45 176 87 0.80–
1.17

13 665 – DDR2-
800

Core i5
670

Nehalem Clarkdale SLBLT Jan ‘10 284 2C2T 4M 3.4 32 382 81 0.65–
1.40

73 – 21.0 DDR3-
1333

108 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

research highlights

performance data for each benchmark and processor.
Figure 2 shows an example of this data, plotting the power
versus performance characteristics for one of the 45 proces-
sor configurations, the stock i7 (45).

4. PERSPECTIVE
We organize our analysis into eight findings, as summarized
in Figure 1. The original paper contains additional analyses
and findings. We begin with broad trends. We show that
applications exhibit a large range of power and performance
characteristics that are not well summarized by a single
number. This section conducts a Pareto energy efficiency
analysis for all of the 45 nm processor configurations. Even
with this modest exploration of architectural features, the
results indicate that each workload prefers a different hard-
ware configuration for energy efficiency.

4.1. Power is application dependent
The nominal thermal design power (TDP) for a processor is
the amount of power the chip may dissipate without exceed-
ing the maximum transistor junction temperature. Table 1
lists TDP for each processor. Because measuring real proces-
sor power is difficult and TDP is readily available, TDP is often
substituted for real measured power. Figure 3 shows that this
substitution is problematic. It plots measured power on a log-
arithmic scale for each benchmark on each stock processor
as a function of TDP and indicates TDP with an “!.” TDP is
strictly higher than actual power. The gap between peak mea-
sured power and TDP varies from processor to processor and
TDP is up to a factor of four higher than measured power. The
variation among benchmarks is highest on the i7 (45) and i5
(32), likely reflecting their advanced power management. For
example, on the i7 (45), measured power varies between 23 W
for 471.omnetpp and 89 W for fluidanimate! The smallest

variation between maximum and minimum is on the Atom
(45) at 30%. This trend is not new. All the processors exhibit
a range of benchmark-specific power variation. TDP loosely
correlates with power consumption, but it does not provide a
good estimate for (1) maximum power consumption of indi-
vidual processors, (2) comparing among processors, or (3)
approximating benchmark-specific power consumption.

Finding: Power consumption is highly application dependent
and is poorly correlated to TDP.

Figure 2 plots power versus relative performance for each
benchmark on the i7 (45), which has eight hardware contexts
and is the most recent of the 45 nm processors. Native (red) and
managed (green) are differentiated by color, whereas scalable
(triangle) and non-scalable (circle) are differentiated by shape.
Unsurprisingly, the scalable benchmarks (triangles) tend to
perform the best and consume the most power. More unex-
pected is the range of power and performance characteristics of
the non-scalable benchmarks. Power is not strongly correlated
with performance across workload or benchmarks. The points
would form a straight line if the correlation were strong. For
example, the point on the bottom right of the figure achieves
almost the best relative performance and lowest power.

4.2. Historical overview
Figure 4(a) plots the average power and performance for
each processor in their stock configuration relative to the
reference performance, using a log/log scale. For example,
the i7 (45) points are the average of the workloads derived
from the points in Figure 2. Both graphs use the same color
for all of the experimental processors in the same family.
The shapes encode release age: a square is the oldest, the
diamond is next, and the triangle is the youngest, smallest
technology in the family.

20

30

40

50

60

70

80

90

100

2.00 3.00 4.00 5.00 6.00 7.00 8.00

P
ow

er
 (

W
)

Performance/Reference

Native non-scale Native scale

Java non-scale Java scale

Figure 2. Power/performance distribution on the i7 (45). Each point
represents one of the 61 benchmarks. Power consumption is highly
variable among the benchmarks, spanning from 23 W to 89 W. The
wide spectrum of power responses from different applications
points to power saving opportunities in software.

1

10

100

1 10 100

M
ea

su
re

d
po

w
er

 (
W

)
(l

og
)

TDP (W) (log)

P4 (130) C2D (65) C2Q (65) i7 (45)
Atom (45) C2D (45) AtomD (45) i5 (32)

Figure 3. Measured power for each processor running 61 benchmarks.
Each point represents measured power for one benchmark. The
“!”s are the reported TDP for each processor. Power is application
dependent and does not strongly correlate with TDP.

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 109

While historically mobile devices have been extensively
optimized for power, general-purpose processor design
has not. Several results stand out that illustrate that power
is now a first-order design goal and trumps performance in
some cases. (1) The Atom (45) and Atom D (45) are designed
as low-power processors for a different market; however,
they successfully execute all these benchmarks and are the
most power-efficient processors. Compared to the Pentium 4
(130), they degrade performance modestly and reduce power
enormously, consuming as little as one-twentieth the power.
Device scaling from 130 nm to 45 nm contributes significantly
to the power reduction from Pentium to Atom. (2) A compari-
son between 65 nm and 45 nm generations using the Core 2D
(65) and Core 2D (45) shows only a 25% increase in perfor-
mance, but a 35% drop in power. (3) A comparison of the two
most recent 45 nm and 32 nm generations using the i7 (45) and
i5 (32) shows that the i5 (32) delivers about 15% less perfor-
mance, while consuming about 40% less power. This result
has three root causes: (a) the i7 (45) has four cores instead
of two on the i5 (32); (b) since half the benchmarks are scal-
able multithreaded benchmarks, the software parallelism
benefits more from the additional two cores, increasing the
advantage to the i7 (45); and (c) the i7 (45) has significantly
better memory performance. Comparing the Core 2D (45) to
the i5 (32) where the number of processors are matched, we

find that the i5 (32) delivers 50% better performance, while
consuming around 25% more power than the Core 2D (45).

Contemporaneous comparisons also reveal the ten-
sion between power and performance. For example, the
contrast between the Core 2D (45) and i7 (45) shows that
the i7 (45) delivers 75% more performance than the Core
2D (45), but this performance is very costly in power, with
an increase of nearly 100%. These processors thus span a
wide range of energy trade-offs within and across the gen-
erations. Overall, these results indicate that optimizing for
both power and performance is proving a lot more chal-
lenging than optimizing for performance alone.

Figure 4(b) explores the effect of transistors on power and
performance by dividing them by the number of transistors
in the package for each processor. We include all transistors
because our power measurements occur at the level of the
package, not the die. This measure is rough and will downplay
results for the i5 (32) and Atom D (45), each of which have a
Graphics Processing Unit (GPU) in their package. Even though
the benchmarks do not exercise the GPUs, we cannot discount
them because the GPU transistor counts on the Atom D (45)
are undocumented. Note the similarity between the Atom (45),
AtomD (45), Core 2D (45), and i5 (32), which at the bottom right
of the graph are the most efficient processors by the transistor
metric. Even though the i5 (32) and Core 2D (45) have five to
eight times more transistors than the Atom (45), they all eke
out very similar performance and power per transistor. There
are likely bigger differences to be found in power efficiency per
transistor between chips from different manufacturers.

Finding: Power per transistor is relatively consistent within micro-
architecture family, independent of process technology.

The leftmost processors in the graph yield the smallest
amount of performance per transistor. Among these proces-
sors, the Core 2Q (65) and i7 (45) yield the least performance
per transistor and use the largest caches among our set. The
large 8MB caches are not effective. The Pentium 4 (130) is per-
haps most remarkable—it yields the most performance per
transistor and consumes the most power per transistor by a
considerable margin. In summary, performance per transistor
is inconsistent across microarchitectures, but power per tran-
sistor is more consistent. Power per transistor correlates well
with microarchitecture, regardless of technology generation.

4.3. Pareto analysis at 45 nm
The Pareto optimal frontier defines a set of choices that are
most efficient in a trade-off space. Prior research uses the
Pareto frontier to explore power versus performance using
models to derive potential architectural designs on the fron-
tier.1 We present a Pareto frontier derived from measured
performance and power. We hold the process technology con-
stant by using the four 45 nm processors: Atom (45), Atom
D (45), Core 2D (45), and i7 (45). We expand the number of
processor configurations from 4 to 29 by configuring the
number of hardware contexts (SMT and CMP), by clock scal-
ing, and disabling/enabling Turbo Boost. The 25 non-stock
configurations represent alternative design points. For each
configuration, we compute the averages for each workload

2.0

20.0

0.30 3.00

P
ow

er
 (

W
)

(l
og

)

Performance/Reference performance (log)

Pentium4 (130)

C2D (65)

C2Q (65)

i7 (45)

Atom (45)

C2D (45)

AtomD (45)

i5 (32)

(a)

0.02

0.22

0.004

P
ow

er
 (

W
)/

10
6 tr

an
si

st
or

s
(l

og
)

Performance/106 transistors (log)

Pentium4 (130)

C2D (65)

C2Q (65)

i7 (45)

Atom (45)

C2D (45)

AtomD (45)

i5 (32)

0.008

(b)

0.012 0.016

Figure 4. Power/performance trade-off by processor. Each point is
an average of the four workloads. (a) Power/performance trade-offs
have changed from Pentium 4 (130) to i5 (32). (b) Power and
performance per million transistors. Power per million transistors
is consistent across different microarchitectures regardless of the
technology node. On average, Intel processors burn around 1 W for
every 20 million transistors.

110 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

research highlights

points, the points fall in different places on the curves
because each workload exhibits a different energy/perfor-
mance trade-off. Compare the scalable and non-scalable
benchmarks at 0.40 normalized energy on the y-axis. It is
impressive how well these architectures effectively exploit
software parallelism, pushing the curves to the right and
increasing performance from about 3 to 7 while holding
energy constant. This measured behavior confirms prior
model-based observations about the role of software parallel-
ism in extending the energy/performance curve to the right.1

Finding: Energy-efficient architecture design is very sensitive to
workload. Configurations in the native non-scalable
Pareto frontier differ substantially from all other
workloads.

In summary, architects should use a variety of workloads,
and in particular, should avoid only using native non-scalable
workloads.

5. FEATURE ANALYSIS
Our original paper evaluates the energy effect of a range of
hardware features: clock frequency, die shrink, memory
hierarchy, hardware parallelism, and gross microarchitec-
ture. This analysis resulted in a large number of findings
and insights. Reader and reviewer feedback yielded a diver-
sity of opinions as to which findings were most surprising
and interesting. This section presents results exploring chip
multiprocessing (CMP), simultaneous multithreading (SMT),
technology scaling with a die shrink, and gross microarchi-
tecture, to give a flavor of our analysis.

5.1. Chip multiprocessors
Figure 7 shows the average power, performance, and energy
effects of chip multiprocessors (CMPs) by comparing one
core to two cores for the two most recent processors in our
study. We disable Turbo Boost in these analyses because
it adjusts power dynamically based on the number of idle
cores. We disable Simultaneous Multithreading (SMT)
to maximally expose thread-level parallelism to the CMP
hardware feature. Figure 7(a) compares relative power, per-
formance, and energy as a weighted average of the work-
loads. Figure 7(b) shows a break down of the energy as a
function of workload. While average energy is reduced by
9% when adding a core to the i5 (32), it is increased by 12%
when adding a core to the i7 (45). Figure 7(a) shows that the
source of this difference is that the i7 (45) experiences twice
the power overhead for enabling a core as the i5 (32), while
producing roughly the same performance improvement.

Finding: Comparing one core to two, enabling a core is not
consistently energy efficient.

Figure 7(b) shows that native non-scalable and Java non-
scalable suffer the most energy overhead with the addition
of another core on the i7 (45). As expected, performance
for native non-scalable is unaffected. However, turning on
an additional core for native non-scalable leads to a power
increase of 4% and 14%, respectively, for the i5 (32) and

and their average to produce an energy/performance scat-
ter plot (not shown here). We next pick off the frontier—the
points that are not dominated in performance or energy effi-
ciency by any other point—and fit them with a polynomial
curve. Figure 5 plots these polynomial curves for each work-
load and the average. The rightmost curve delivers the best
performance for the least energy.

Each row of Figure 6 corresponds to one of the five curves
in Figure 5. The check marks identify the Pareto-efficient
configurations that define the bounding curve and include
15 of 29 configurations. Somewhat surprising is that none of
the Atom D (45) configurations are Pareto efficient. Notice
the following: (1) Native non-scalable shares only one choice
with any other workload. (2) Java scalable and the average
share all the same choices. (3) Only two of eleven choices
for Java non-scalable and Java scalable are common to both.
(4) Native non-scalable does not include the Atom (45) in
its frontier. This last finding contradicts prior simulation
work, which concluded that dual-issue in-order cores and
dual-issue out-of-order cores are Pareto optimal for native
non-scalable.1 Instead, we find that all of the Pareto-efficient
points for native non-scalable in this design space are
quad-issue out-of-order i7 (45) configurations.

Figure 5 starkly shows that each workload deviates sub-
stantially from the average. Even when the workloads share

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.00 2.00 4.00 6.00

N
or

m
al

iz
ed

 w
or

kl
oa

d
en

er
gy

Workload performance/Workload reference performance

Average

Native non-scale

Native scale

Java non-scale

Java scale

Figure 5. Energy/performance Pareto frontiers (45 nm). The energy/
performance optimal designs are application dependent and
significantly deviate from the average case.

Figure 6. Pareto-efficient processor configurations for each
workload. Stock configurations are bold. Each “"” indicates that the
configuration is on the energy/performance Pareto-optimal curve.
Native non-scalable has almost no overlap with any other workload.

At
om

(4
5)

1C
2T

@
1.

7G
Hz

Co
re

2D
(4

5)
2C

1T
@

1.
6G

Hz

Co
re

2D
(4

5)
2C

1T
@

3.
1G

Hz

i7
(4

5)
1C

1T
@

2.
7G

Hz
 N

oT
B

i7
(4

5)
1C

1T
@

2.
7G

Hz

i7
(4

5)
1C

2T
@

1.
6G

Hz

i7
(4

5)
1C

2T
@

2.
4G

Hz

i7
(4

5)
2C

1T
@

1.
6G

Hz

i7
(4

5)
2C

2T
@

1.
6G

Hz

i7
(4

5)
4C

1T
@

2.
7G

Hz
 N

oT
B

i7
(4

5)
4C

1T
@

2.
7G

Hz

i7
(4

5)
4C

2T
@

1.
6G

Hz

i7
(4

5)
4C

2T
@

2.
1G

Hz

i7
(4

5)
4C

2T
@

2.
7G

Hz
 N

oT
B

i7
(4

5)
4C

2T
@

2.
7G

Hz

Native non-scalable
Native scalable

Java non-scalable
Java scalable

Average

! ! ! !
!!!!!!

! ! ! ! ! ! !
! ! !! ! !
! ! !! ! !

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 111

i7 (45), translating to energy overheads.
More interesting is that Java non-scalable does not incur

energy overhead when enabling another core on the i5 (32).
In fact, we were surprised to find that the reason for this is
that the single-threaded Java non-scalable workload runs
faster with two processors! Figure 8 shows the scalability
of the single-threaded subset of Java non-scalable on the
i7 (45), with SMT disabled, comparing one and two cores.
Although these Java benchmarks are single-threaded, the
JVMs on which they execute are not.

Finding: The JVM induces parallelism into the execution of sin-
gle-threaded Java benchmarks.

Since virtual machine runtime services for managed lan-
guages, such as just-in-time (JIT) compilation, profiling, and
garbage collection, are often concurrent and parallel, they
provide substantial scope for parallelization, even within
ostensibly sequential applications. We instrumented the
HotSpot JVM and found that its JIT compilation and gar-
bage collection are parallel. Detailed performance counter
measurements revealed that the garbage collector induced
memory system improvements with more cores by reducing
the collector’s displacement effect on the application thread.

5.2. Simultaneous multithreading
Figure 9 shows the effect of disabling simultaneous multi-
threading (SMT)19 on the Pentium 4 (130), Atom (45), i5 (32),

and i7 (45). Each processor supports two-way SMT. SMT pro-
vides fine-grain parallelism to distinct threads in the proces-
sors’ issue logic and in modern implementations; threads
share all processor components (e.g., execution units and
caches). Singhal states that the small amount of logic exclu-
sive to SMT consumes very little power.18 Nonetheless, this
logic is integrated, so SMT contributes a small amount to
total power even when disabled. Our results therefore slightly
underestimate the power cost of SMT. We use only one core,

0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60

Performance Power Energy

2
C

or
es

/1
 C

or
e

0.60

0.70

0.80

0.90

1.00

1.10

1.20

Native
scale

Java
non-scale

Java
scale

2
C

or
es

/1
 C

or
e

i7 (45) i5 (32)

(b)

Native
non-scale

i7 (45) i5 (32)

(a)

Figure 7. CMP: Comparing two cores to one core. (a) Impact of
doubling the number of cores on performance, power, and energy,
averaged over all four workloads. (b) Energy impact of doubling
the number of cores for each workload. Doubling the cores is not
consistently energy efficient among processors or workloads.

Figure 8. Scalability of single-threaded Java benchmarks.
Counterintuitively, some single-threaded Java benchmarks scale
well. This is because the underlying JVM exploits parallelism for
compilation, profiling, and garbage collection.

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

antlr

luindex
fo

p
jack db

bloat
jess

co
mpre

ss

mpegaudio
java

c

2
C

or
es

/1
 C

or
e

Figure 9. SMT: one core with and without SMT. (a) Impact of enabling
two-way SMT on a single-core with respect to performance, power, and
energy, averaged over all four workloads. (b) Energy impact of enabling
two-way SMT on a single core for each workload. Enabling SMT delivers
significant energy savings on the recent i5 (32) and the in-order Atom (45).

0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60

Performance Power Energy

2
Th

re
ad

s/
1

Th
re

ad

(a)

0.60

0.70

0.80

0.90

1.00

1.10

1.20

Native
non-scale

Native
scale

Java
non-scale

Java
scale

2
Th

re
ad

s/
1

Th
re

ad

(b)
Pentium 4 (130) i7 (45) Atom (45) i5 (32)

Pentium 4 (130) i7 (45) Atom (45) i5 (32)

112 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

research highlights

ensuring that SMT is the sole opportunity for thread-level
parallelism. Figure 9(a) shows that the performance advan-
tage of SMT is significant. Notably, on the i5 (32) and Atom
(45), SMT improves average performance significantly with-
out much cost in power, leading to net energy savings.

Finding: SMT delivers substantial energy savings for recent
hardware and for in-order processors.

Given that SMT was and continues to be motivated by the
challenge of filling issue slots and hiding latency in wide
issue superscalars, it may appear counterintuitive that
performance on the dual-issue in-order Atom (45) should
benefit so much more from SMT than the quad-issue i7
(45) and i5 (32) benefit. One explanation is that the in-order
pipelined Atom (45) is more restricted in its capacity to fill
issue slots. Compared to other processors in this study, the
Atom (45) has much smaller caches. These features accen-
tuate the need to hide latency, and therefore the value of
SMT. The performance improvements on the Pentium 4
(130) due to SMT are half to one-third that of more recent
processors, and consequently, there is no net energy advan-
tage. This result is not so surprising given that the Pentium
4 (130) is the first commercial implementation of SMT.

Figure 9(b) shows that, as expected, the native non-scal-
able workload experiences very little energy overhead due
to enabling SMT, whereas Figure 7(b) shows that enabling a
core incurs a significant power and thus energy penalty. The
scalable workloads unsurprisingly benefit most from SMT.

The excellent energy efficiency of SMT is impressive on
recent processors as compared to CMP, particularly given
its very low die footprint. Compare Figures 7 and 9. SMT
provides less performance improvement than CMP—SMT
adds about half as much performance as CMP on average
but incurs much less power cost. The results on the modern
processors show that SMT in a much more favorable light
than in Sasanka et al.’s model-based comparative study of
the energy efficiency of SMT and CMP.17

5.3. Die shrink
We use processor pairs from the Core (Core 2D (65)/Core
2D (45)) and Nehalem (i7 (45)/i5 (32)) microarchitectures to
explore die shrink effects. These hardware comparisons are
imperfect because they are not straightforward die shrinks.
To limit the differences, we control for hardware parallelism
by limiting the i7 (45) to two cores. The tools and processors
at our disposal do not let us control the cache size, nor do
they let us control for other microarchitecture changes that
accompany a die shrink. We compare at stock clock speeds
and control for clock speed by running both Cores at 2.4 GHz
and both Nehalems at 2.66 GHz. We do not directly control
for core voltage, which differs across technology nodes
for the same frequency. Although imperfect, these are the
first published comparisons of measured energy efficiency
across technology nodes.

Finding: Two recent die shrinks deliver similar and surprising
reductions in energy, even when controlling for clock
frequency.

Figure 10(a) shows the power and performance effects of
the die shrinks with the stock clock speeds for all the pro-
cessors. Figure 10(b) shows the same comparison with
matched clock speeds, and Figure 10(c) breaks down the
workloads for the matched clock speeds. The newer proces-
sors are significantly faster at their higher stock clock speeds
and significantly more power efficient. Figure 10(b) shows
the same experiment, but down-clocking the newer pro-
cessors to match the frequency of their older peers. Down-
clocking the new processors improves their relative power
and energy advantage even further. Note that as expected,
the die-shrunk processors offer no performance advantage
once the clocks are matched; indeed, the i5 (32) performs
10% slower than the i7 (45). However, power consumption
is reduced by 47%. This result is consistent with expecta-
tions, given the lower voltage and reduced capacitance at the
smaller feature size.

Figure 10. Die shrink: microarchitectures compared across technology
nodes. “Core” shows Core 2D (65)/Core 2D (45) while “Nehalem”
shows i7 (45)/i5 (32) when two cores are enabled. (a) Each processor
uses its native clock speed. (b) Clock speeds are matched in each
comparison. (c) Energy impact with matched clocks, as a function of
workload. Both die shrinks deliver substantial energy reductions.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Performance Power Energy

N
ew

/O
ld

Core Nehalem 2C2T

(a)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Performance Power Energy

N
ew

/O
ld

Core 2.4 GHz Nehalem 2C2T 2.6 GHz

(b)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Native
non-scale

Native
scale

Java
non-scale

Java
scale

N
ew

/O
ld

Core 2.4 GHz Nehalem 2C2T 2.6 GHz

(c)

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 113

Figures 10(a) and (b) reveal a striking similarity in power
and energy savings between the Core (65 nm/45 nm) and
Nehalem (45 nm/32 nm) die shrinks. This data suggests that
Intel maintained the same rate of energy reduction across the
two most recent generations. As a point of comparison, the
models used by the International Technology Roadmap for
Semiconductors (ITRS) predicted a 9% increase in frequency
and a 34% reduction in power from 45 nm to 32 nm.11 Figure
10(a) is both more and less encouraging. Clock speed increased
by 26% in the stock configurations of the i7 (45) to the i5 (32)
with an accompanying 14% increase in performance, but power
reduced by 23%, less than the 34% predicted. To more deeply
understand die shrink efficiency on modern processors, one
requires measuring more processors in each technology node.

5.4. Gross microarchitecture change
This section explores the power and performance effect of
gross microarchitectural change by comparing microarchitec-
tures while matching features such as processor clock, degree
of hardware parallelism, process technology, and cache size.

Figure 11 compares the Nehalem i7 (45) with the NetBurst
Pentium 4 (130), Bonnell Atom D (45), and Core 2D (45) micro-
architectures, and it compares the Nehalem i5 (32) with the
Core 2D (65). Each comparison configures the Nehalems to
match the clock speed, number of cores, and hardware threads
of the other architecture. Both the i7 (45) and i5 (32) compari-
sons to the Core show that the move from Core to Nehalem

yields a small 14% performance improvement. This finding is
not inconsistent with Nehalem’s stated primary design goals,
that is, delivering scalability and memory performance.

Finding: Controlling for technology, hardware parallelism,
and clock speed, the out-of-order architectures have
similar energy efficiency as the in-order ones.

The comparisons between the i7 (45) and Atom D (45) and
Core 2D (45) hold process technology constant at 45 nm. All
three processors are remarkably similar in energy consump-
tion. This outcome is all the more interesting because the i7
(45) is disadvantaged since it uses fewer hardware contexts
here than in its stock configuration. Furthermore, the i7 (45)
integrates more services on-die, such as the memory control-
ler, that are off-die on the other processors, and thus outside
the scope of the power meters. The i7 (45) improves upon
the Core 2D (45) and Atom D (45) with a more scalable, much
higher bandwidth on-chip interconnect, which is not exer-
cised heavily by our workloads. It is impressive that, despite
all of these factors, the i7 (45) delivers similar energy effi-
ciency to its two 45 nm peers, particularly when compared to
the low-power in-order Atom D (45). It is unsurprising that
the i7 (45) performs 2.6× faster than the Pentium 4 (130),
while consuming one-third the power, when controlling for
clock speed and hardware parallelism (but not for factors
such as memory speed). Much of the 50% power improve-
ment is attributable to process technology advances. This
speedup of 2.6 over 7 years is however substantially less than
the historical factor of 8 improvement experienced in every
prior 7-year time interval between 1970 through the early
2000s. This difference in improvements marks the begin-
ning of the power-constrained architecture design era.

6. RELATED WORK
The processor design literature is full of performance mea-
surement and analysis. Despite power’s growing impor-
tance, power measurements are still relatively rare.7,10,12 Here,
we summarize related power measurement and simulation
work. Our original paper contains a fuller treatment.

Power measurement. Isci and Martonosi combine a clamp
ammeter with performance counters for per unit power esti-
mation of the Intel Pentium 4 on SPEC CPU2000.10 Fan et al.
estimate whole system power for large-scale data centers.7
They find that even the most power-consuming workloads
draw less than 60% of peak possible power consumption.
We measure chip power and support their results by show-
ing that TDP does not predict measured chip power. Our
work is the first to compare microarchitectures, technology
generations, individual benchmarks, and workloads in the
context of power and performance.

Power modeling. Power modeling is necessary to thor-
oughly explore architecture design.1, 13, 14 Measurement
complements simulation by providing validation. For exam-
ple, some prior simulators used TDP, but our measure-
ments show that it is not accurate. As we look to the future,
we believe that programmers will need to tune their appli-
cations for power and energy, not only performance. Just
as hardware performance counters provide insight into

Figure 11. Gross microarchitecture: a comparison of Nehalem with
four other microarchitectures. In each comparison, the Nehalem
is configured to match the other processor as closely as possible.
(a) Impact of microarchitecture change with respect to performance,
power, and energy, averaged over all four workloads. (b) Energy
impact of microarchitecture for each workload. The most recent
microarchitecture, Nehalem, is more energy efficient than the
others, including the low-power Bonnell (Atom).

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Performance Power Energy

N
eh

al
em

/O
th

er

(a)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Native
non-scale

Native
scale

Java
non-scale

Java
scale

N
eh

al
em

/O
th

er

(b)

Bonnell: i7 (45)/AtomD (45) NetBurst: i7 (45)/Pentium4 (130)
Core: i7 (45)/C2D (45) Core: i5 (32)/C2D (65)

114 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

research highlights

applications, so will power and energy measurements.
Methodology. Although the results show conclusively that

managed and native workloads have different responses
to architectural variations, perhaps this result should not
be surprising. Unfortunately, few architecture or operating
system publications with processor measurements or sim-
ulated designs use Java or any other managed workloads,
even though the evaluation methodologies we use here for
real processors and those for simulators are well developed.2

7. CONCLUSION
These extensive experiments and analyses yield a wide
range of findings. On this basis, we offer the following rec-
ommendations in this critical time period of hardware and
software upheaval. Manufacturers should expose on-chip
power meters to the community. System software and appli-
cation developers should understand and optimize power.
Researchers should use both managed and native workloads
to quantitatively examine their innovations. Researchers
should measure power and performance to understand and
optimize power, performance, and energy.

Acknowledgments
We thank Bob Edwards, Daniel Frampton, Katherine Coons,
Pradeep Dubey, Jungwoo Ha, Laurence Hellyer, Daniel
Jiménez, Bert Maher, Norm Jouppi, David Patterson, and
John Hennessy. This work is supported by ARC DP0666059
and NSF CSR-0917191.

Hadi Esmaeilzadeh (hadianeh@
cs.washington.edu), Department of
Computer Science and Engineering,
University of Washington.

Cao Ting, Stephen M Blackburn, Xi Yang
({Cao.Ting, Steve.Blackburn, Xi.Yang}@
anu.edu.au), Research School of Computer
Science, Australian National University.

Kathryn S McKinley (mckinley@
microsoft.com), Microsoft Research,
Redmond, WA; The University of Texas at
Austin, Department of Computer Science,
Austin, TX.

© 2012 ACM 0001-0782/12/07 $15.00

2. Blackburn, S.M. et al. Wake up
and smell the coffee: Evaluation
methodologies for the 21st century.
CACM 51, 8 (2008), 83–89.

3. Bohr, M. A 30 year retrospective on
Dennard’s MOSFET scaling paper. IEEE
SSCS Newsletter 12, 1 (2007), 11–13
(http://dx.doi.org/10.1109/N-SSC.2007.
4785534).

4. David, H., Gorbatov, E., Hanebutte, U.R.,
Khanna, R., Le, C. RAPL: memory power
estimation and capping. In ISLPED
(2010).

5. Emer, J.S., Clark, D.W. A characterization
of processor performance in the VAX-
11/780. In ISCA (1984).

 6. Esmaeilzadeh, H., Blem, E., St. Amant,
R., Sankaralingam, K., Burger, D. Dark
silicon and the end of multicore scaling.
In ISCA (2011).

7. Fan, X., Weber, W.D., Barroso, L.A. Power
provisioning for a warehouse-sized
computer. In ISCA (2007).

8. Hardavellas, N., Ferdman, M., Falsafi,
B., Ailamaki, A. Toward dark silicon in
servers. IEEE Micro 31, 4 (2011), 6–15.

9. Hrishikesh, M.S., Burger, D., Jouppi, N.P.,
Keckler, S.W., Farkas, K.I., Shivakumar,
P. The optimal logic depth per pipeline
stage is 6 to 8 FO4 inverter delays. In
International Symposium on Computer
Architecture (2002).

10. Isci, C., Martonosi, M. Runtime power
monitoring in high-end processors:

Methodology and empirical data. In
MICRO (2003).

11. ITRS Working Group. International tech-
nology roadmap for semiconductors, 2011.

12. Le Sueur, E., Heiser, G. Dynamic voltage
and frequency scaling: the laws of
diminishing returns. In HotPower (2010).

13. Li, S., Ahn, J.H., Strong, R.D., Brockman,
J.B., Tullsen, D.M., Jouppi, N.P. McPAT:
an integrated power, area, and timing
modeling framework for multicore and
manycore architectures. In MICRO (2009).

14. Li, Y., Lee, B., Brooks, D., Hu, Z., Skadron, K.
CMP design space exploration subject to
physical contraints. In HPCA (2006).

15. Moore, G.E. Cramming more components
onto integrated circuits. Electronics 38, 8
(19 Apr 1965), 114–117.

16. Mudge, T. Power: a first-class
architectural design constraint.
Computer 34, 4 (Apr. 2001), 52–58.

17. Sasanka, R., Adve, S.V., Chen, Y.K., Debes,
E. The energy efficiency of CMP vs.
SMT for multimedia workloads. In ICS
(2004).

18. Singhal, R. Inside Intel next generation
Nehalem microarchitecture. Intel
Developer Forum (IDF) presentation
(August 2008), 2011.

19. Tullsen, D.M., Eggers, S.J., Levy,
H.M. Simultaneous multithreading:
maximizing on-chip parallelism. In
ISCA (1995).

References
1. Azizi, O., Mahesri, A., Lee, B.C., Patel,

S.J., Horowitz, M. Energy-performance

tradeoffs in processor architecture and
circuit design: a marginal cost analysis.
In ISCA (2010).

You’ve come a long way.
Share what you’ve learned.

ACM has partnered with MentorNet, the award-winning nonprofit e-mentoring network in engineering,
science and mathematics. MentorNet’s award-winningOne-on-OneMentoring Programs pair ACM
student members with mentors from industry, government, higher education, and other sectors.

• Communicate by email about career goals, course work, and many other topics.
• Spend just 20minutes a week - and make a huge difference in a student’s life.
• Take part in a lively online community of professionals and students all over the world.

Make a difference to a student in your field.
Sign up today at: www.mentornet.net

Find out more at: www.acm.org/mentornet
MentorNet’s sponsors include 3M Foundation, ACM, Alcoa Foundation, Agilent Technologies, Amylin Pharmaceuticals, Bechtel Group Foundation, Cisco
Systems, Hewlett-Packard Company, IBM Corporation, Intel Foundation, Lockheed Martin Space Systems, National Science Foundation, Naval Research
Laboratory, NVIDIA, Sandia National Laboratories, Schlumberger, S.D. Bechtel, Jr. Foundation, Texas Instruments, and The Henry Luce Foundation.

	p104-patterson
	p105-esmaeilzadeh.pdf

