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Abstract
Garbage collection is a performance-critical feature of most
modern object oriented languages, and is characterized by
poor locality since it must traverse the heap. In this pa-
per we show that by combining two very simple ideas we
can significantly improve the performance of the canonical
mark-sweep collector, resulting in improvements in applica-
tion performance. We make three main contributions: 1) we
develop a methodology and framework for accurately and
deterministically analyzing the tracing loop at the heart of
the collector, 2) we offer a number of insights and improve-
ments over conventional design choices for mark-sweep col-
lectors, and 3) we find that two simple ideas — edge order
traversal and software prefetch — combine to greatly im-
prove garbage collection performance although each is un-
productive in isolation.
We perform a thorough analysis in the context of MMTk

and Jikes RVM on a wide range of benchmarks and four
different architectures. Our baseline system (which includes
a number of our improvements) is very competitive with
highly tuned alternatives.We show a simple markingmecha-
nism which offers modest but consistent improvements over
conventional choices. Finally, we show that enqueuing the
edges (pointers) of the object graph rather than the nodes
(objects) significantly increases opportunities for software
prefetch, despite increasing the total number of queue op-
erations. Combining edge ordered enqueuing with software
prefetching yields average performance improvements over
a large suite of benchmarks of 20-30% in garbage collection
time and 4-6% of total application performance in moderate
heaps, across four architectures.
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1. Introduction
The mark-sweep algorithm dates back to 1960 [10] and in a
variety of forms it remains widely used today. The basic al-
gorithm is simple. The collector starts with a set of roots and
traverses the graph of objects, making a mark against each
object encountered in the transitive closure, to indicate that
it is live. The collector then performs a sweep of the heap,
reclaiming all unmarked objects. The most performance-
critical component of the algorithm is the tracing loop which
performs the transitive closure over the graph of live objects.
In this paper we present a detailed examination of the perfor-
mance of this loop and propose a number of optimizations
which lead to signicant improvements in garbage collection
performance and total application running time.
We begin by describing a methodology and framework

for analyzing the performance of the tracing loop. Our ap-
proach is at each collection, to capture the exact visit order
of a trace of the heap, and then during the collection, replay
that trace, each time measuring the cost of performing dif-
ferent aspects of the tracing loop, including touching, mark-
ing, scanning, and tracing through each object. By suitably
combining the replay operations, we are able to tease apart
tracing costs and examine in detail the pros and cons of stan-
dard variations on the mark-sweep trace algorithm. Since we
piggyback this process on a conventional mark-sweep col-
lector, we are able to analyze actual costs in the context of
real applications. Our focus here is on the tracing loop of a
mark-sweep collector, but our methodology and framework
could be extended to copying collectors. We will make our
framework publicly available.
Using replay tracing, we draw a number of insights. First,

we find that performance is limited by the memory costs of
two distinct phases; marking and scanning, corresponding to
temporally distinct visits to the object and its metadata (each
of which may be co-located or spatially disjoint). This obser-
vation leads to our new approach to prefetching, described



later in the paper. Second, we confirm the conventional wis-
dom that densely packed mark bits improve the locality of
the mark phase. However, we find that although performance
improves when marking is done in isolation, this advantage
is completely neutralized by the cache-displacing proprieties
of other parts of the tracing loop. Third, we measure the syn-
chronization costs associated with different mark schemes.
Finally, we propose and evaluate a simple hybrid marking
scheme that out-performs each of the primary alternatives.
Having analyzed and optimized the performance of a ba-

sic tracing loop, we then explore opportunities for prefetch-
ing values in the tracing loop. The conventional tracing loop
visits each object and/or its metadata twice in each collec-
tion, corresponding to the two primary costs identified in
our replay tracing analysis. A trivial variation on the con-
ventional tracing algorithm is to enqueue an object for each
edge in the graph rather than an object for each node in
the graph. This variation, which we call edge enqueuing,
while performing exactly the same number of marks and
scans, obviously increases queue work from N nodes be-
ing enqueued to E edges being enqueued, where N ≤ E.
We find that the modest locality advantage associated with
edge enqueuing outweighs the queuing overhead. However,
edge enqueuing greatly increases opportunities for software
prefetching [5, 6]. We then perform a systematic analysis
of the effect of prefetching on four architectures using both
queuing algorithms and two metadata mechanisms. We find
that by combining our hybrid metadata scheme with edge
enqueuing and prefetching, we are able to improve garbage
collection performance by as much as 25% and total applica-
tion performance by up to 15% in space-constrained heaps,
on average, across a large benchmark suite. This is a sub-
stantial improvement over prior work, which was only able
to showmodest average improvements on a small number of
benchmarks [5, 6]. We compare directly with the approach
used in the prior art in Section 7. Edge enqueuing has been
previously identified in the literature [9], but to our knowl-
edge has not been used and has never been carefully studied.
We finish the paper with insights and lessons we learned

when porting our prefetch mechanisms to a different VM
code base. We hope these will help anyone wishing to im-
plement prefetching in their own code base.

2. Related work
The basic mark-sweep algorithm has been continuously re-
fined since 1960 [10]. Our work builds directly upon prior
work on lazy sweeping [5] and prefetching [5, 6].
Boehm [5] first describes and evaluates lazy sweeping

in the context of the Boehm-Demers-Weiser (BDW) col-
lector. Instead of sweeping the whole heap immediately af-
ter each mark phase, the GC only sweeps completely free
(unmarked) blocks of memory, and the remainder are lazily
swept on demand by the allocator. This approach is effective
when mark bits are maintained on the side, allowing free

blocks to be cheaply identified. Boehm saw up to 17% net
performance win from lazy sweeping.
In the same paper, Boehm is the first to apply software

prefetching to garbage collection. He introduces a prefetch
strategy called prefetch on gray, where an object is pre-
fetched upon insertion into the mark stack. This strategy is
somewhat effective in a heap implementation using a mark
bitmap on the side. Boehm saw speedups of up to 17%
in synthetic GC-dominated benchmarks and 8% on a real
application (ghostscript). However, when mark bit metadata
is embedded in the object header, objects are guaranteed
to be in cache when they are pushed on the mark stack,
obviating the need for a prefetch. Prefetch on gray has two
key limitations: many items are prefetched too soon, and by
the time the depth-first search pops the stack back to the
item, it is no longer in cache; and secondly, many items are
prefetched too late, since the last object pointed to by any
given object is accessed immediately after it is pushed on
the stack and prefetched, allowing no time for the prefetch
to take effect. Boehm measures costs using profiling, and
reports results for a small number of C benchmarks.
Cher et al. [6] build on Boehm’s investigation, using sim-

ulation to measure costs and explore the effects of prefetch-
ing in the BDW collector. They find that when evaluated
across a broad range of benchmarks, Boehm’s prefetch on
gray strategy attains only limited speedups under simula-
tion, and no noticeable speedups on contemporary hardware.
Cher et al. introduce the buffered prefetch strategy that we
also adopt (see Figure 1). Buffered prefetching observes that
the LIFO discipline used in the mark stack when perform-
ing depth-first search is unsuitable for prefetching as the pat-
tern of future accesses in a LIFO structure is hard to predict.
They recover predictability by placing a small FIFO prefetch
buffer between the mark stack and the tracing process. When
the tracing loop pops the next entry from the mark stack (line
5), a prefetch is issued on its referent (line 6) and the entry is
inserted at the tail of the prefetch FIFO (line 7). The entry at
the head of the prefetch FIFO is then selected for scanning
(line 8). The depth of the FIFO defines the prefetch distance.
Cher et al. validate their simulated results using a Pow-

erPC 970 (G5), almost identical to the system that we obtain
our results on. They obtain significant speedups on bench-
marks from the jolden suite, but less impressive results for
the SPECjvm98 suite, with their best result being 8% on
202 jess, and 2% on 213 javac. All of these results were

1 void add(Address item)
2 stack.push(item)
3

4 Address remove()
5 Address pf = stack.pop()
6 pf.prefetch()
7 fifo.insert(pf) // FIFO buffer allows
8 return fifo.pop() // prefetch time

Figure 1. The FIFO-Buffered Prefetch Queue [6].



achieved in very space-constrained heaps; about 1.125× the
minimum heap size, sufficiently small that GC time is a large
fraction of total time, amplifying the effect of any GC im-
provements. In Section 7 we show that by combining Cher et
al.’s approach with edge ordered enqueuing, we see consis-
tent, sizable performance improvements across a large num-
ber of benchmarks.
Hicks et al. [7] use a technique similar to our replay col-

lector to study the costs of copying garbage collection mech-
anisms. Their tool, Oscar, captures snapshots of heaps for
offline analysis, and is language-independent. They use Os-
car to analyse the performance of mechanisms for copying
collectors. Our approach uses online analysis and measures
multiple collections across the lifetime of a benchmark.

3. Replay Tracing
One of the contributions of this work is a methodology
for detailed performance analysis of the tracing loop. The
remainder of this paper builds on the insights we gained
through this methodology.
The tracing loop is the most performance-critical element

of many modern garbage collection algorithms. Previous
work has used sample-based profiling [5] and simulation [6]
to analyze the mechanism, each of which have shortcomings.
Simulation has the disadvantage of long running times, mak-
ing it difficult to use benchmarks with a significant memory
load. It also limits the available target architectures to those
supported by the simulation packages available, and is en-
tirely dependent on the fidelity of the simulation infrastruc-
ture with respect to real hardware. Sample-based profiling
limits analytical flexibility: in order to sample a collector, it
must be a working real-world collector; this makes it time
consuming to experiment with algorithmic and implementa-
tion variations, and very hard to tease apart the contributions
of various details of the implementation. Furthermore, sam-
pling is inherently probabilistic rather than exact.

3.1 The Replay Tracing Framework
We call our solution replay tracing. Our approach allows us
to experiment with a great many variations on the tracing
loop, and by using timers and hardware performance coun-
ters we can analyze the various costs in great detail. Our
initial implementation uses a modified mark-sweep garbage
collector. The system works by modifying the garbage col-
lector so that at every collection, in addition to performing
collection work, the collector gathers a trace of visited ob-
jects and then replays and measures that trace multiple times
for analytical purposes.
At each collection, we first trace the live objects in

the heap, exactly as the unmodified mark-sweep collector
would, except that whenever an object is processed (popped
from the mark stack), we record a pointer to the object in a
replay buffer. The replay buffer gives us a record of the ob-
jects accessed during the trace, in exactly the order in which

1 for p in root-set
2 mark(p)
3 queue.add(p)
4

5 while !queue.isEmpty()
6 obj = queue.remove()
7 gcmap = obj.getGcMap()
8 for p in gcmap.pointers()
9 child = p.load()
10 if child != null
11 if child.testAndMark()
12 queue.add(child)

Figure 2. The Standard Tracing Loop

they are accessed. We then use the replay buffer to execute
multiple replay scenarios. Each scenario performs different
operations on each object in the buffer, in exactly the same
order each time.
For example, a scenario which just performs a mark oper-

ation on each object allows us to isolate the cost of marking
and thus evaluate different marking strategies. Likewise, a
scenario could just touch each object, scan each object, or
perform a complete mark, scan and trace of each object. By
carefully constructing scenarios and measuring their costs,
we can break down the contributions of the various elements
of the tracing loop and systematically explore alternatives.
In order to minimize distortion of results due to cache

pollution, we flush the cache between each use of the re-
play buffer by reading a large (8MB) table sequentially. We
also need to take care when setting mark bits—their state
must be flipped after each phase in which they are changed.
We repeat all of this—creating the replay buffer, replaying
scenarios, and flushing the cache—each time a collection is
triggered. We aggregate results across collections so that at
the end of the program we have measurements for each sce-
nario with respect to the entire GC workload of the program.

3.2 Replay Scenarios
We now describe a number of example replay scenarios,
including those we use in our subsequent analysis.
Figure 2 shows pseudo-code for the standard mark-sweep

tracing loop, from which most of the scenarios in Figure 3
are derived. We have described the queue operations that
maintain the work list abstractly as add and remove. If a col-
lector implements these operations as push and pop (LIFO–
a stack), it will perform a depth-first traversal of the heap
graph, while tail-insert and pop (FIFO–a queue) will pro-
duce a breadth-first traversal. The major components of the
basic tracing loop in Figure 2 are: a) queuing costs (lines 3,
5, 6 & 12), b) accessing the pointer map for each object (line
7), c) enumerating pointers (line 9), and d) the test and mark
of referenced objects (line 11).
In order to evaluate the relative costs of these operations,

we use the scenarios shown in Figure 3. The harness cost
scenario measures the cost of the replay buffer and thus
the overhead of our framework. The queue cost scenario



measures the approximate queue management cost of the
standard tracing loop, alternately inserting N items onto the
queue and popping N-1 items (we use N = 10) so that the
effects of growing and shrinking the queue across block
boundaries are measured.
The object touch scenario measures the cost of accessing

the first word of each reachable object in the heap. The
GC map, describing the location of any pointers within the
object, is typically only found via touching (and possibly
dereferencing) the header of the object to be scanned. The
scan scenario measures the cost of visiting each object in
the heap, iterating its GC map, and loading each pointer
field. Comparing the cost of this scenario with a scenario
that simply visits each heap object can tell us about the cost

1 for item in buffer
2 item.load()

(a) Harness Cost Scenario

1 i=0
2 for item in buffer
3 queue.add(item.load())
4 if ++i == N
5 while --i > 0 && !queue.isEmpty()
6 queue.remove()
7 --i
8 while !queue.isEmpty()
9 queue.remove()

(b) Queue Cost Scenario

1 for item in buffer
2 item.load().load()

(c) Object Touch Scenario

1 for item in buffer
2 obj = item.load()
3 gcmap = obj.getGCMap()
4 for p in gcmap.pointers()
5 child = p.load()

(d) Scan Scenario

1 for item in buffer
2 obj = item.load()
3 gcmap = obj.getGCMap()
4 for p in gcmap.pointers()
5 child = p.load()
6 if (child != null)
7 child.load()

(e) Trace Scenario

1 for item in buffer
2 obj = item.load()
3 gcmap = obj.getGCMap()
4 for p in gcmap.pointers()
5 child = p.load()
6 if (child != null)
7 child.testAndMark()

(f) Mark Scenario

Figure 3. Replay Scenarios

of the operations that have been added to the scenario. The
trace scenario adds to the scan scenario a dereference of
every non-null child of the scanned object. Finally, the mark
scenario performs a mark on each non-null child of every
object in the replay buffer. The mark scenario thus performs
all of the work of the standard tracing loop except the final
enqueuing operation; compare lines 7 to 11 in Figure 2 with
lines 3 to 7 in Figure 3(f).
One might be tempted to assume that the change in work-

load of two scenarios where the second scenario strictly adds
work to the first one can be measured by simple subtraction.
This is true for wall clock time (at least in our observations),
but not necessarily true for other measures such as cache
misses. In fact, the object touch scenario (Figure 3(c)) that
visits the first word of each object in the heap actually has
a higher L2 miss rate than the scan scenario (Figure 3(d)),
on some architectures, even though the scan scenario does
strictly more work (obj.getGCMap() involves at least one
load()). We suspect that the additional work in the scan
scenario is allowing a hardware prefetch mechanism time to
take effect, eliminating some of the misses seen by the first
scenario.

4. Key Mark-Sweep Design Choices
Although the basic mark-sweep algorithm is well doc-
umented and well understood, there are several design
choices that have the potential to significantly affect per-
formance [14, 9, 5]. These include: a) the allocation mech-
anism and free-list structure, b) the mechanism for storing
mark state, c) the technique used to sweep the heap, and d)
the structure of the collector’s work queue.
Allocation We use the same allocation mechanism and
free-list structure for all mark-sweep configurations we eval-
uate in this paper. The free list is structured as a two level
segregated fit free-list structure [14]. The allocator divides
memory into coarse grain blocks of which there are several
distinct sizes. When required, it assigns individual blocks to
a single object size class and divide them into N equal sized
cells. The allocator always satisfies requests by the first entry
on the free list for the smallest size class that is large enough.
This approach reduces worse case fragmentation while en-
suring a fast simple allocation path as any request is always
satisfied by the head of the free-list.
Mark state The collector’s mark phase depends on being
able to store mark state for each object. Mark state is typi-
cally stored either as a field within the header of each object,
or in a dense bitmap on the side. We refer to these two ap-
proaches as header and side bitmap respectively. The side
bitmap has a potential locality advantage because it is far
more tightly packed than mark bits embeddedwithin headers
of objects which are dispersed throughout the heap. An im-
portant optimization for header state is to change the sense
of the mark bit at each garbage collection, which avoids hav-
ing to reset all mark bits after every collection. Side bitmaps



can be trivially and cheaply zeroed in bulk, thereby avoiding
this issue.
An alternative to side bitmaps is a bytemap, a byte-

grained data structure on the side. Bytemaps trade an 8×
space overhead to avoid synchronizing on each set operation
(if we assume support for atomic byte-grained stores). In
a parallel collector, it is possible to lose updates in a race
to set a bit unless the bit can be set atomically. We include
both a side bitmap and the header approach for comparison
throughout our evaluation. We also evaluate the overhead of
synchronization on the bitmap.

Sweep A classic mark-sweep collector will sweep the en-
tire heap at the end of each collection, identifying unmarked
memory and returning it to free lists. The sweep comprises
two components: examining each block’s metadata to iden-
tify marked objects, and populating the free lists with any
freed memory. Scanning a side bitmap will easily reveal
blocks which are entirely free, allowing them to be freed
up entirely, avoiding the construction of a free list. Building
freelists typically involves a full walk through each block,
which is a memory-bound operation. Sweeping the entire
heap at each collection is known as eager sweeping.
Boehm [5] noted significant advantages to lazy sweeping.

A lazy sweeper sweeps blocks only when they are required
by the allocator. This has two significant advantages. First, it
saves sweeping work for many blocks which are unchanged
from collection to collection. Second, free list construction
occurs immediately prior to use of the cells, which has mea-
surable temporal locality benefits. Blocks which are entirely
free can be identified by examining a side bitmap at the end
of a collection. Lazy sweeping is therefore normally used
with a side bitmap.
In the process of teasing apart the various design choices

for mark-sweep collectors, we wanted to explore lazy sweep-
ing with header mark bits. As we show in Section 6.3 this
combined approach is quite effective, although to our knowl-
edge has not been explored before. In order to free unused
blocks eagerly while lazily sweeping partially used blocks,
we developed hybrid marking, which uses mark bits in ob-
ject headers and a single byte of side metadata for each
block. Each block’s side metadata is set whenever an object
within the block is marked. Any block with an unmarked
metadata byte is completely free, and may be eagerly re-
claimed at collection time. This way we are able to combine
header metadata with lazy sweeping.
Recall that one of the two advantages of lazy sweeping is

that unmarked objects only lazily make their way onto free
lists. When a side bitmap is used, this delay is of no con-
sequence beyond the obvious saving of work. Recall how-
ever, that header mark state changes sense at each collection.
Therefore an object with header mark state will not be rec-
ognized as unmarked if it is swept an even number of collec-
tions since it was last marked. This situation can never lead
to a live object being collected since every live object is vis-

ited at every collection, but it can lead to “floating garbage.”
Of course this situation does not arise with a side bitmap
since the sense of the mark bit does not alternate.
We compared two basic solutions to the problem of float-

ing garbage when lazy sweeping. One approach is to sim-
ply sweep the unswept portion of the heap at the beginning
of each collection cycle. This approach will still see the lo-
cality advantages of lazy sweeping, but loses the advantage
of avoiding redundant sweeping. Our second approach uses
multiple bits to record mark state within each object header
and stores the mark state as the collection number modulo
the largest number that can be stored in the header bit field.
With a bit field size of 8, we reduce the worst case amount of
floating data by 1/256. We could not measure any floating
data in practice. Note that the data will only float in the case
that it is finally swept by the mutator exactly N×256 collec-
tions since it was last marked without that block being swept
in any of the previous 255 collections. Section 6.3 evaluates
these approaches.

Work queue Section 3.1 described the basic tracing loop
(Figure 2), and pointed out that the collector’s work queue
could be maintained in either LIFO or FIFO disciplines,
leading to depth-first or bread-first traversals of the heap
respectively. In a copying collector the traversal order affects
the relative position of objects after collection, and therefore
impacts application locality [8, 15]. In such collectors, depth
first orders are generally accepted as more efficient [8, 15].
Although there is little performance impact in a non-copying
collector, we use a LIFO discipline since it is widely used.

5. Methodology
We now describe the methodology used throughout the rest
of the paper, including the virtual machine we use, and the
hardware platforms and benchmark suites we evaluate.

Hardware Platforms We use four different hardware plat-
forms in our analysis, which are described in detail in Ta-
ble 1. The systems were running Linux 2.6.x kernels with
Debian unstable. All CPUs were operated in 32-bit mode,
although the 3 64-bit capable processors (all except the Pen-
tium M) were running 64-bit kernels. Each of the CPUs we
use supports hardware performance counters, which we ac-
cess using the perfctr [11] library. We count the following
metrics:

RI Retired instructions
L1 Level 1 D-cache miss rate
L2 Level 2 cache miss rate
DTLB Data TLB miss rate

Jikes RVM and MMTk We use Jikes RVM andMMTk for
all of our experiments. Jikes RVM [1] is an open source high
performance Java virtual machine (VM) written almost en-
tirely in a slightly extended Java. Jikes RVM does not have



Platform Clock frequency Main memory L1 cache L2 cache
AMD Athlon 64 3500+ 2.2GHz 400MHz DDR2 64KB 64B 2-way 512KB 64B 16-way
Pentium-4 Prescott 3.0GHz 533MHz DDR2 16KB 64B 8-way 1MB 64B 16-way
Pentium-M Dothan 2.0GHz 533MHz DDR2 32KB 64B 4-way 2MB 128B 8-way
PowerPC 970 G5 1.6GHz 333MHz DDR 32KB 128B 2-way 512KB 128B 8-way

Table 1. Hardware Platforms

a bytecode interpreter. Instead, a fast template-driven com-
piler produces machine code when the VM first encounters
each Java method. The adaptive compilation system then
judiciously optimizes the most frequently executed meth-
ods [2]. Using a timer-based approach, it schedules periodic
interrupts. At each interrupt, the adaptive system records the
currently executing method. Using a threshold, it then se-
lects frequently executing methods to optimize. Finally, the
optimizing compiler thread re-compiles these methods at in-
creasing levels of optimizations. All of our experiments were
run using Jikes RVM’s replay compilation feature, which
provides deterministic hot method compilation using adap-
tive compilation profiles gathered on previous runs. We used
‘FastAdaptive’ builds, which remove assertion checks and
fully optimize all code for the virtual machine (and hence the
garbage collector). Experiments were performed 5 times in
standalone mode, and the fastest of 5 runs chosen. MMTk is
Jikes RVM’s memory management sub-system. It is a com-
posablememorymanagement toolkit that implements a wide
variety of collectors that reuse shared components [3]. We
use MMTk’s mark-sweep collector (MarkSweep).
Credibility of MMTk As An Experimental Platform The
previous work on software prefetching in garbage collectors
was performed using the Boehm-Demers-Weiser (BDW)
collector, and most recently in the context of gcj, the GNU
Java compiler, which uses the BDW collector. We have com-
pared the performance of the tuned version of MMTk used
in this paper with gcj using the standard Jikes RVM GC per-
formance benchmark, FixedLive. The results of this com-
parison are given in Table 2, with the numbers representing
a tracing rate in MB/s. This shows that MMTk outperforms
gcj by between 11% and 37% on the x86 platforms, but lags
gcj on the PPC by 33%. The tracing performance of gcj on
the PPC is considerably faster than on the x86 architectures,
despite the fact that on most benchmarks the PPC 970 is
slower than the other machines we used. We believe that the
prefetching in the BDW collector is much more effective on
the PPC, and that this allows it to outperform MMTk with
no prefetching.
In this comparison we use the same baseline MMTk

MarkSweep configuration that is used throughout the rest
of the paper—the node-enqueuing collector with a mark bit
in the object header (see Section 7 for details). We use gcj
version 4.0.2, and compile using the ‘-O2’ flag. The BDW
collector is a conservative (ambiguous roots) collector, thus
some of the performance difference may be due to it being
unable to take advantage of the fast object scanning tech-
niques used by MMTk. Our goal here, however, is simply

Platform Jikes RVM GCJ 4.0
AMD Athlon64 300+ 266 194
Pentium-4 Prescott 265 214
Pentium-M Dothan 210 189
PowerPC 970 G5 218 291

Table 2. GC Throughput in MB/s

to assert that MMTk is a well tuned platform and a credible
basis for experimentation, relative to prior work.

Benchmarks We use the DaCapo and SPECjvm98 bench-
mark suites, and pseudojbb. The DaCapo suite [4] is a re-
cently developed suite of non-trivial real-world open source
Java applications. We use version beta051009. pseudojbb
is a variant of SPEC JBB2000 [12, 13] that executes a fixed
number of transactions to perform comparisons under a fixed
garbage collection load.

6. Analysis of Tracing Costs
We now use the replay tracing framework described in Sec-
tion 3.1 to evaluate the dominant costs of the mark-sweep
tracing loop shown in Figure 2. We perform our measure-
ments using Jikes RVM andMMTk with DaCapo and SPEC
benchmarks, and the AMD and Pentium-M architectures, as
described in Section 5.

Framework Overhead We begin by measuring the over-
head of the replay tracing harness. We compare the cost
of the simple harness cost scenario shown in Figure 3(a)
against the cost of a full collection of the heap.We found that
in terms of wall clock time, the cost of the harness was less
than 2% that of a full heap collection. Hardware performance
counters revealed negligible L1, L2 andDTLBmisses, while
the harness accounted for 6% of the instructions executed.

6.1 Experiments
To analyze the cost of the mark-sweep tracing loop, we use
the methodology described in Section 3, evaluating a series
of incrementally more complex replay scenarios to build up
a picture of total costs. The replay scenarios we use are as
follows:

enq-deq Enqueue/dequeue operations in the ratio 10:9, as
reflected by the queue cost scenario in Figure 3(b). This
identifies the cost of the queuing mechanism on which
the standard tracing loop is based. All of the subsequent
scenarios do not use a queue, as they are driven by the
replay buffer, which captures and replays an exact object
visit order (see Section 3).



touch Load the first word of every object pointed to by
the trace buffer, as reflected by the touch scenario in
Figure 3(c). This identifies the cost of touching every
live object in the heap. In the standard tracing loop, the
first step after obtaining a new reference to work on is to
fetch the GCmap for the object (line 7 of Figure 2). In
Jikes RVM (and many other Java virtual machines) this
involves fetching a per-class data structure pointed to by
a word in the object’s header. By loading the first word of
each object, we access memory in a pattern very similar
to that of the first action in fetching a GC map. Note
that this scenario does not place any dependencies on the
load, so the costs of the loads may be understated by wall
clock time. However, this scenario will help understand
the locality properties of a full heap trace.

scan Scan every object in the trace buffer, loading the value
of its pointer fields, as shown in Figure 3(d). This builds
on the touch operation by using the GCmap to enumerate
the pointer fields in the object and load the value of each
pointer.

trace Trace ‘through’ every object in the trace buffer, deref-
erencing each of its non-null pointer fields, as shown in
Figure 3(e). This builds on the scan operation by access-
ing the word pointed to by each pointer field in the ob-
ject, i.e. touching each object referenced by the current
object. In an implementation where mark bits are kept in
the header of an object, this operation will access mem-
ory in an analogous pattern.

mark Perform testAndMark() on every non-null child of
every object in the replay buffer. If mark state is imple-
mented in the header (see Section 4), this scenario only
differs from the trace scenario by using a testAndMark()
on each object’s header, rather than a load(). If mark
state is implemented in a bitmap on the side, this scenario
will not touch the child object, and therefore is similar
to the scan scenario, differing only in that it touches the
side bitmap associated with the child. In either case, this
scenario differs only from the full tracing loop in that un-
marked pointers are not enqueued for later tracing.

Another cost that we evaluate is performing the mark
operation directly on every object in the replay buffer. While
this does not directly correspond to any single operation in
the trace loop, it provides an interesting point of comparison
between different implementations of marking.

6.2 Tracing Costs: Results
We now present a detailed analysis of the tracing costs for
two orthogonal variations on the standard marking mecha-
nism: a) mark state is either in the object header or in a
side bitmap; and b) mark state is set with a simple store
(unsync) or with architecture-specific atomic update instruc-
tions (sync). Table 3 shows elapsed times for each of the
scenarios with each of the four header and synchronization

(a) Pentium-M
Header Side

Sync Unsync Sync Unsync
Traverse 0.02 0.03 0.02 0.03
Enq-deq 0.10 0.10 0.10 0.10
Touch 0.15 0.15 0.15 0.15
Scan 0.40 0.40 0.39 0.40
Trace 0.59 0.59 0.58 0.59
Mark 1.00 0.84 0.98 0.83

(b) AMD Athlon64
Header Side

Sync Unsync Sync Unsync
Traverse 0.02 0.02 0.02 0.02
Enq-deq 0.11 0.11 0.11 0.11
Touch 0.14 0.14 0.14 0.14
Scan 0.46 0.46 0.46 0.45
Trace 0.63 0.63 0.64 0.63
Mark 1.00 0.89 1.00 0.88

Table 3. Comparative Cost of Various Scenarios for Four
Design Points, Normalized to Header/Synchronized.

(a) Pentium-M
Header Side

Sync Unsync Sync Unsync
Time 0.47 0.35 0.37 0.25

L1 Misses 0.50 0.50 0.36 0.36
L2 Misses 0.53 0.58 0.29 0.32

RI 0.27 0.25 0.29 0.27

(b) AMD Athlon64
Header Side

Sync Unsync Sync Unsync
Time 0.46 0.27 0.38 0.22

L1 Misses 0.52 0.53 0.40 0.40
L2 Misses 0.54 0.54 0.41 0.41

RI 0.27 0.25 0.28 0.26

Table 4. Cost of The Mark Mechanism Alone for Four
Design Points, Each Normalized to Cost of Entire Mark
Scenario.

variants, on the Pentium-M and AMD platforms, with all
data normalized to the header/sync time on the respective
platform. Recall that the mark scenario only differs from
the full tracing loop in that it does not enqueue the marked
child (compare Figure 2 lines 7 to 11 and Figure 3(f) lines
3 to 7). The mark scenario thus provides a reasonable base-
line. Table 5 includes and expands upon this data by pro-
viding retired instructions (RI), L1 cache misses, and L2
cache misses. In Table 5 the data is normalized against the
mark scenario for each respective implementation variant
(i.e. each column is normalized to the bottom row).
A number of observations can be drawn from Tables 3

and 5:

1. Synchronization accounts for approximately 17% of the
cost of tracing the heap on a Pentium-M, and 11% on the
AMD Athlon. This is evident when comparing normal-
ized mark times for sync and unsync columns in Table 3.
Unsurprisingly, this shows that designing data structures



to avoid synchronization is a worthwhile goal, given cur-
rent hardware implementations.

2. The cost of the mark operation between header and side
mark state implementations shows no significant differ-
ence when measured in the context of the tracing loop.
Compare header and side columns in Table 3: there is no
measurable difference on either platform when the op-
eration is synchronized, and side is 1% slower on the
Pentium-M and 1% faster on the AMD when unsynchro-
nized. This result is discussed below.

3. The overhead of queue management (enq/deq) is at most
13% of the running time of the tracing loop (Table 5).

4. Touch data in Table 5 shows that the initial visit of an ob-
ject header accounts for 14–18% of time, but 45–60% of
cache misses. This is perhaps accounted for by a lack of
any dependency on the load, and combination of com-
piler instruction scheduling and out-of-order execution
overlapping the initial fetch of an object with the mark
operation on the previous object. This result helps to il-
luminate the limited success that other approaches have
had with prefetch strategies that target this aspect of the
tracing loop—even halving these misses would not yield
a significant performance gain.

5. Comparing scan and touch L2 numbers in Table 5 shows
that cache miss rates are non-monotonic; scenarios that
perform more work sometimes have lower cache miss
rates than simpler scenarios. Note that time and RI num-
bers remain monotonic. We suspect that this is accounted
for by hardware prefetching—in particular the scan sce-
nario performs a great many register/ALU operations in
between memory fetches, allowing time for prefetched
cache lines to arrive.

6.3 Evaluating Mark State Implementations
One of the reasons why mark state is often stored in side
bitmaps rather than in object headers is the locality advan-
tage of greatly increased density of the mark state (Section 4
and [5]). It seems intuitively likely that a denser data struc-
ture will lead to lower cache misses than a scheme where
mark bits are held in object headers and distributed over the
whole heap. However, comparing the numbers in Table 3
shows that there is no significant performance difference.
The overhead of synchronization dominates, and when syn-
chronization is not used, the difference is only 1%, with one
result in either direction on the two architectures examined.
To validate this result, we also measured the performance

of a scenario that simply performs the testAndMark() oper-
ation on each object in the replay buffer. These results are
shown in Table 4 and are normalized to the entire mark
scenario. As expected, this shows significant differences
between the header and the side bitmap implementation,
and as expected, both L1 and L2 cache miss rates decrease
markedly with a side bitmap.

This result seems to confirm the intuition that a side
bitmap provides a real locality advantage, but it contradicts
the results in Table 3. We suspect that the discrepancy can
be accounted for by the cache-displacing properties of the
remainder of the tracing loop. The basis for the locality ar-
gument is that when marking an object, the required cache
line will already be in cache with some probability which
increases greatly as the metadata is densely packed into
cache lines (spatial locality is greatly amplified by the dense
bitmap). This argument depends on subsequent marks to the
same line being relatively near to each other temporally,
which is somewhat true when the mark is considered in iso-
lation. However, when the mark is examined in the context
of the entire tracing loop, subsequent marks to the same
cache line will on average be much further apart in terms
of memory accesses due to the significant memory activity
of the remainder of the tracing loop (particularly due to the
scan). This analysis suggests that any locality advantage due
to dense metadata is almost entirely lost due Amdahl’s law
and the predominance of memory activity in the scan portion
of the trace loop, explaining the results in Table 3.

7. Software Prefetching
We demonstrate in the previous section that poor locality is
the principal bottleneck to the performance of the tracing
loop. Because of the significant miss penalties imposed by
modern architectures, it is clear that improving the cache
behavior of the trace will be fruitful in terms of improving
overall trace performance.

Motivation for Prefetching Broadly, there are two main
techniques that can be used to improve memory behavior of
software. The first is to minimizememory footprint by maxi-
mizing data density and thereby increase the probability that
requests for data are served from the fastest levels of cache.
This typically involves trying to combine spatial and tempo-
ral locality of data operations. An example of this is the use
of side bitmaps for mark state, as discussed in the previous
section. The second technique is to detect ahead of time that
an item of data will be required and use a software prefetch
instruction to prefetch the data into the processor’s cache.
The potential benefits of this approach are limited by the
ability to predict accurately what memory will be required in
the near future.Modern hardware typically includes very ag-
gressive hardware prefetching engines. However, while well
suited to regular data access patterns, these are not amenable
to the irregular patterns of pointer chasing, such as those that
dominate a garbage collection trace.

Prefetching For GC Tracing Previous work [5, 6] has
focused on the potential for prefetching objects from the
marking stack with a tracing loop similar to the one in
Figure 2. Ignoringmemory accesses directly associated with
the queuing mechanism (which we show in Section 6 to
be insignificant), the two sources of memory access are a)



(a) Pentium-M
Header Side

Sync Unsync Sync Unsync
Time RI L1 L2 Time RI L1 L2 Time RI L1 L2 Time RI L1 L2

Traverse 0.02 0.06 0.00 0.00 0.03 0.06 0.00 0.00 0.02 0.06 0.00 0.00 0.03 0.06 0.00 0.00
Enq-deq 0.11 0.30 0.06 0.01 0.13 0.31 0.06 0.01 0.10 0.29 0.06 0.01 0.13 0.31 0.06 0.01
Touch 0.15 0.10 0.45 0.59 0.18 0.10 0.45 0.58 0.15 0.10 0.45 0.61 0.17 0.10 0.45 0.60
Scan 0.39 0.54 0.53 0.43 0.47 0.55 0.53 0.43 0.39 0.53 0.53 0.44 0.47 0.56 0.53 0.44
Trace 0.59 0.63 0.98 1.04 0.71 0.65 0.97 1.02 0.59 0.61 0.98 1.06 0.70 0.65 0.98 1.04
Mark 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(b) AMD Athlon64
Header Side

Sync Unsync Sync Unsync
Time RI L1 L2 Time RI L1 L2 Time RI L1 L2 Time RI L1 L2

Traverse 0.02 0.06 0.00 0.00 0.02 0.06 0.00 0.00 0.02 0.06 0.00 0.00 0.02 0.06 0.00 0.00
Enq-deq 0.11 0.30 0.06 0.01 0.12 0.31 0.06 0.01 0.11 0.29 0.06 0.01 0.12 0.31 0.06 0.01
Touch 0.14 0.10 0.51 0.54 0.15 0.10 0.51 0.54 0.14 0.10 0.48 0.55 0.16 0.10 0.50 0.55
Scan 0.46 0.54 0.58 0.56 0.51 0.55 0.58 0.56 0.46 0.53 0.60 0.56 0.52 0.56 0.58 0.56
Trace 0.63 0.63 0.99 1.01 0.71 0.65 0.99 1.01 0.63 0.61 0.99 1.02 0.72 0.65 0.99 1.02
Mark 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5. Costs for Four Designs, Showing Time, Retired Instructions, L1 & L2 Misses, Normalized to Each Mark Scenario.

marking each object (line 11), and b) scanning each marked
object (lines 7, 8 and 9). The first requires the object’s mark
metadata, which may be in the object’s header, or held on
the side. The second requires accessing the object’s GCmap
(normally in the object’s header or accessed via indirection
from the object’s header), and scanning each of the pointers
within the object.

7.1 Edge Enqueuing
The standard tracing loop depicted in Figure 2 has been op-
timized to reduce the number of objects that need to be en-
queued and dequeued from the marking stack. Other alter-
native tracing loops have been discussed [9] but discarded
due to the additional stack operations they entail. However,
as the analysis in the previous section has shown, queuing
operations are not the bottleneck to improving performance.
We observe that it is possible to remove one of the memory
access points in the loop by enqueuing all non-null objects
during the trace rather than inspecting these objects and fil-
tering out marked objects. Figure 6 gives pseudo-code for
this approach,which we call edge enqueuing, as the referents

1 for p in root-set
2 mark(p)
3 queue.add(p)
4

5 while !queue.isEmpty()
6 obj = queue.remove()
7 if obj.testAndMark() // hoist from 12
8 gcmap = obj.getGcMap()
9 for p in gcmap.pointers()
10 child = p.load()
11 if child != null
12 queue.add(child) // weaker guard

Figure 6. The Edge-Enqueuing Tracing Loop

of all non-null edges in the graph are placed on the stack. We
refer to the traditional technique as node enqueuing (since
each node in the graph is enqueued only once). Comparing
Figures 2 and 6, the only difference between the two loops
is that the mark operation (line 11 of Figure 2) is hoisted to
line 7 in Figure 6.
By hoisting the mark operation, edge enqueuing weak-

ens the guard on line 12 of Figures 2 and 6, so that chil-
dren are eagerly enqueued, and the conditional mark oper-
ation is only performed later, immediately before the child
is scanned. This increases the number of queue operations
from the number of nodes in the live object graph to the
number of edges in the live object graph, but does not af-
fect the number of objects which are marked or scanned. As
we have already shown, queuing operations form a negligi-
ble part of the cost of tracing. The benefit of edge enqueu-
ing is that the mark (line 7 of Figure 6), scan (lines 8–10)
and trace (lines 11 and 12) for a given object now occur
contemporaneously, providing a far more predictable access
pattern, which is more amenable to prefetching. The addi-
tional stack requirements of edge enqueuing are also reason-
able. We found that the SPEC and DaCapo benchmarks used
in this paper have on average 40% more edges than nodes,
leading to about 40% more queue operations.
The contemporaneous mark, scan and trace mean that

edge enqueuing has better temporal locality than node en-
queuing. This addresses the first of our identified techniques
for improving locality, and also provides a better environ-
ment for prefetching, since all accesses to each object oc-
cur together when that object is removed from the queue
(in line 7). We implemented the FIFO-buffered mark queue
(Figure 1, Cher et al. [6]) in our infrastructure to explore
the effect of node and edge enquing on prefetcing. We con-
trol the prefetch distance by changing the size of the FIFO
buffer.



0 2 4 6 8 10 12 14 16
Prefetch Distance

0.7

0.8

0.9

1

1.1

Re
la

tiv
e 

G
C 

Ti
m

e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(a) PPC 970

0 2 4 6 8 10 12 14 16
Prefetch Distance

0.7

0.8

0.9

1

1.1

Re
la

tiv
e 

G
C 

Ti
m

e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(b) Athlon 64

0 2 4 6 8 10 12 14 16
Prefetch Distance

0.7

0.8

0.9

1

1.1

Re
la

tiv
e 

G
C 

Ti
m

e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(c) Pentium-M

0 2 4 6 8 10 12 14 16
Prefetch Distance

0.7

0.8

0.9

1

1.1

Re
la

tiv
e 

G
C 

Ti
m

e

EdgeHdr
NodeHdr
EdgeSide
NodeSide

(d) Pentium 4

Figure 4. Normalized GC Time vs. Prefetch Distance, as Geometric Mean of DaCapo, SPECjvm98 and Psuedojbb. Four
Combinations of Edge and Node Enqueuing and Side and Header Metadata Are Shown.
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Figure 5. Normalized Total Time vs. Prefetch Distance, as Geometric Mean of DaCapo, SPECjvm98 and Psuedojbb. Four
Combinations of Edge and Node Enqueuing and Side and Header Metadata Are Shown. Measured In a Generous Heap (3 ×
Minimum).



7.2 Prefetching Results
We now evaluate the effectiveness of software prefetching
in the tracing loop under both edge and node enqueuing
models. Given their effect on locality, we compare with
both header and side bitmap implementations of mark state,
yielding four configurations.
Figures 4 and 5 show garbage collection and total time

respectively, as we vary the prefetch distance from 0 to
16 for each of the four configurations (EdgeHdr, NodeHdr,
EdgeSide, NodeSide), measured on four modern architec-
tures. Each graph shows the geometric mean of performance
for the full set of 17 benchmarks drawn from DaCapo and
SPEC. Results are normalized to the time for NodeSide
with no prefetch.NodeSide is the configuration which most
closely follows prior work [5, 6]. We gathered results for dif-
ferent heap sizes, but found that the effect of prefetch was in-
dependent of heap size. We report here the results for a fairly
generous heap; three times the minimum heap size for each
benchmark. We performed identical experiments on 2× and
4× heaps, and found the GC-time results were almost in-
distinguishable, although the overall impact of this GC-time
optimization on total time obviously increases as time spent
in GC goes up in smaller heaps. For completeness, Figure 7
shows total time as a function of heap size. In order to main-
tain a consistent number of collections across the different
configurations and fairly assess the effect of prefetch, we did
not allow the header meta-data configurations to make use of
the minor space saving due to avoiding the side bitmap.
The results in Figure 4 show a clear win for EdgeHdr

(edge order enqueuing with mark state in the header), which
out performs all other configurations on all four architec-
tures. The impact of prefetching ranges frommodest to poor
for node order enqueuing. This poor result for node enqueu-
ing is consistent with prior work which saw only modest im-
provements with prefetching [6, 5]. The difference in effec-
tiveness of the prefetch operations across the architectures is
significant, with GC-time performance improvements rang-
ing from 30% on the PowerPC 970, to around 20% on the
Athlon 64, and with notable degradations seen for a num-
ber of configurations on the Pentium-M. We also see that
prefetch distances greater than eight provide little advan-
tage, with longer prefetch distances degrading performance
slightly on the Athlon 64.
In order to perform a direct comparison with Cher et

al. [6], we followed their approach andmeasured the speedup
in total time in a very space-constrained heap, 1.125× the
minimum heap (left-most data in graphs in Figure 7). In this
situation, we obtain total running time speedups of 18%,
15%, 11% and 16% on the PowerPC 970, Pentium-M, AMD
and Pentium 4 respectively. This compares very favorably
with Cher et al’s result of 6% speedup on the PowerPC 970
(achieved with arguablymore amenable benchmarks), and is
consistent with our results which show that edge enqueuing
is essential to effective software prefetch.

7.3 Robustness: Experiences With Other Code Bases
Since submitting this work for publication, we have ported
the work to a substantially different version of the Jikes
RVM code base. Our efforts to reproduce our original results
were frustrating, but ultimately illuminating. Our experience
may be relevant to anyone wishing to implement prefetching
in their own garbage collector.
First, poor code quality in the compiled code for the trac-

ing loop can dominate any prefetching advantage. Through
painstaking detective work we established that the absence
of a number of aggressive optimizations, the addition of an
extraneous virtual dispatch, and the addition of an extra reg-
ister spill each reduced the tracing loop performance suffi-
ciently that the prefetching advantagewas negligible or zero.
These were all (unintended) artifacts of changes in the un-
derlying Jikes RVM code base.
Second, the prefetch optimization only improves the trac-

ing loop. In a garbage collector where the tracing loop does
not dominate performance, the usefulness of this optimiza-
tion will be correspondingly diminished. The way Jikes
RVM collects its ’boot image’ was changed from tracing
(which utilizes the prefetch) to an explicit enumeration of
pointer fields (which does not). We found that in small
benchmarkswhere the Jikes RVM boot image formed a large
fraction of the workload, the effectiveness of the prefetch
optimization was significantly diminished.
Finally, we found that on some architectures the FIFO

structure placed in front of the mark stack [6] gave a perfor-
mance advantage even without the prefetch (this is evident
when performance improves at x = 1 in Figure 4, and we
saw it on an Intel Core 2 Duo). Our best explanation for this
surprising behavior is that the FIFO structure enabled more
aggressive hardware speculation through more predictable
access patterns, just as it facilitates software prefetch.

8. Conclusion
The most performance-critical element of most modern
garbage collection algorithms is the tracing loop which per-
forms a transitive closure over the live objects. The perfor-
mance of this loop well known to limited by the poor mem-
ory locality associated with the irregular walk of the heap
performed by the trace. In this paper we address the per-
formance of this tracing loop, first analytically, then with a
simple optimization which yields considerable performance
advantages over the state of the art.
This paper makes three main contributions: 1) we de-

velop a methodology and framework for accurately and de-
terministically analyzing the performance-critical garbage
collection tracing loop, 2) we offer a number of insights and
improvements over conventional design choices for mark-
sweep collectors, and 3) we find that by combining two sim-
ple ideas which each offer modest gains—edge enqueuing
and mark stack prefetching—we can greatly improve the
performance of the tracing loop on four architectures on a



large benchmark suite. While previous work was only able
to show a modest advantage from software prefetching, we
are able to show average improvements over 17 benchmarks
of 20-30% of collection time and 4-6% of total time when
running in moderate heaps.
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Figure 7. Relative Total Execution Time As a Function of
Heap Size, Comparing Node Order and Side Mark Against
Prefetching With Edge Order and Header Mark. Geometric
Mean of DaCapo, SPECjvm98 and Psuedojbb.


