
Hop, Skip, & Jump

Practical On-Stack Replacement for a Cross-Platform Language-Neutral VM

Kunshan Wang
Stephen M. Blackburn
Antony L. Hosking

Australian National University
kunshan.wang,steve.blackburn,antony.hosking

@anu.edu.au

Michael Norrish
Trustworthy Systems Group

Data61, CSIRO
Australia

michael.norrish
@data61.csiro.au

Abstract

On-stack replacement (OSR) is a performance-critical tech-
nology for many languages, especially dynamic languages.
Conventional wisdom, apparent in JavaScript engines such
as V8 and SpiderMonkey, is that OSR must be implemented
in a low-level (i.e., in assembly) and language-specific way.
This paper presents an OSR abstraction based on Swap-

stack, materialized as the API for a low-level virtual ma-
chine, and shows how the abstraction of resumption pro-
tocols facilitates an elegant implementation of this API on
real hardware. Using an experimental JavaScript implemen-
tation, we demonstrate that this API enables the language
implementation to perform OSR without the need to deal
with machine-level details. We also show that the API itself
is implementable on concrete hardware. This work helps
crystallize OSR abstractions and, by providing a reusable
implementation, brings OSR within reach for more language
implementers.

CCS Concepts • Software and its engineering→ Run-

time environments; Just-in-time compilers;

Keywords on-stack replacement, Swapstack, feedback-dir-
ected optimization, language implementation

ACM Reference Format:

Kunshan Wang, Stephen M. Blackburn, Antony L. Hosking, and Mi-
chael Norrish. 2018. Hop, Skip, & Jump: Practical On-Stack Re-
placement for a Cross-Platform Language-Neutral VM. In VEE ’18:
14th ACM SIGPLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments, March 24–25, 2018, Williamsburg, VA, USA.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3186411.
3186412

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
VEE ’18, March 24–25, 2018, Williamsburg, VA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5579-7/18/03.
https://doi.org/10.1145/3186411.3186412

1 Introduction

On-stack replacement (OSR) is an important mechanism for
high-performance language virtual machines (VMs). OSR is
the ‘open heart surgery’ of just-in-time (JIT) compilation,
allowing a compiled function to be replaced with a new ver-
sion while it still has activations on thread stacks. This allows
changes to code to become effective immediately, avoiding
the need to wait for all related activations to complete before
code can be replaced. Such a mechanism enables runtime
optimization [2, 11], de-optimization for debugging [12], and
recompilation of speculatively optimized code [9, 18].

The first contribution of this paper is the design of a prac-
tical, novel, platform-independent OSR API, allowing imple-
mentors to readily use OSR as a building block in language
implementation. Key to the API is the insight that the Swap-
stack primitive [5] can be used to isolate the executing
thread from the stack it is manipulating, eliminating the
need to use tailored assembly code during OSR [12]. The API
operates on a platform-independent, abstract view of stacks,
so that the language implementation views the stack data in
the abstract type system of the VM instead of byte-level stack
layouts. The API is sufficiently abstract that it might be used
in the implementation of any language wanting to use OSR.
We demonstrate that the API can simplify the implementa-
tion of high-level languages using JS-Mu, an experimental
JavaScript client for the Mu micro VM [22].
The second contribution of this paper is the realization

of our OSR API on real hardware using an abstraction that
allows for an elegant implementation. Derived from calling
conventions, we introduce the concept of resumption proto-
cols, which describe the machine-level rules to pass values
to suspended frames and continue their execution. The cor-
rect implementation of the OSR API is therefore reduced to
matching the returning resumption protocol with the expected
resumption protocol between adjacent frames. We demon-
strate that this API is implementable on concrete hardware
using examples on the x64 and the AArch64 architectures.

With low-level details of OSR abstracted away, more lan-
guage implementers will be able to keep their focus on high-
level optimizations, leading to more high-performance lan-
guage implementations.

https://doi.org/10.1145/3186411.3186412
https://doi.org/10.1145/3186411.3186412
https://doi.org/10.1145/3186411.3186412

VEE ’18, March 24–25, 2018, Williamsburg, VA, USA K. Wang, S.M. Blackburn, A.L. Hosking, and M. Norrish

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the background of Mu, OSR and Swap-
stack. Section 3 presents the details of the OSR API of the
Mu VM. Section 4 demonstrates the API using an experi-
mental JavaScript engine. Section 5 presents the abstractions
that facilitate implementation of the API, and demonstrates
that this API is implementable using examples on concrete
architectures. Section 6 discusses related work about OSR.
Section 7 offers conclusions and implications for future lan-
guage implementations.

2 Background

The OSR abstractions and API presented in this paper were
developed to support the Mu micro VM project, which we
briefly introduce below. We also provide an overview of
on-stack replacement implementations.

2.1 The Mu Micro Virtual Machine

The Mu micro virtual machine [21, 22] is inspired by the
formal verification of the seL4 microkernel [13]. A micro vir-
tual machine is a minimal, language-agnostic substrate that
focuses only on the three major concerns that contribute to
the difficulties of language implementation, namely dynamic
‘just-in-time’ (JIT) compilation, concurrency, and automatic
memorymanagement (‘garbage collection’ (GC)) [8, 22]. This
design aims to provide a reliable low-level virtual machine
to facilitate language implementation.
Like a microkernel which offloads the implementation

of traditional operating system functions to user-land pro-
grams, a micro VM offloads the implementation of concrete
languages to a separate layer—a client—that sits above the
micro VM. The client is responsible for loading source code
or bytecode, performing most optimizations1 , and translat-
ing the program into the Mu intermediate representation
(IR), which Mu JIT-compiles and executes. On the other hand,
the Mu micro VM helps the client perform run-time opti-
mization with trap instructions and the OSR API which we
will introduce in this paper.

2.2 Threads and Stacks

In this work we distinguish between threads and stacks,
because the difference is particularly important for on-stack
replacement.
A thread is a flow of control that can progress concur-

rently with other threads. Modern operating systems provide
threads (native threads) as kernel-level scheduling units that
share resources with others in the same process,2 and can be

1Many of the optimizations which have the greatest impact on the perfor-
mance of languages are language-specific. One example is specialization, as
observed by Castanos et al. [3]. This is why Mu lets the client handle most
optimizations. Low-level optimizations, such as register allocation, are still
performed by Mu.
2Some operating system kernels, such as Linux or seL4, only provide the
abstraction of ‘tasks’ rather than actual ‘threads’ and ‘processes’. Tasks

executed concurrently on parallel hardware. Programming
languages, on the other hand, may implement language-level
threads as native threads, strictly user-level ‘green’ threads
mapped to a single kernel thread, or via anM × N mapping
that multiplexes user-level over kernel-level threads.
The execution context of a thread includes the call stack

as well as other thread-local state, such as a thread-local
allocation buffer for GC. The call stack, or simply the stack,
records the activations of dynamically nested function calls.
Each activation record or frame on a stack records the values
of local variables and the saved program counter of a function
activation.

In conventional languages such as Java, each thread is only
ever associated with one stack. More generally, however, a
thread can switch among different stacks, such as when
switching between coroutines, or handling UNIX signals.3

2.3 On-stack Replacement

Normally, frames are pushed when calling a function, and
popped when returning. However, high-performance lan-
guage implementations need to manipulate the stack in
unconventional ways as part of their optimization and de-
optimization processes.

Run-time optimization is usually feedback-directed—it de-
tects frequently executed functions and loops using run-time
profiling, and uses profile information to guide the optimiza-
tion of those hot functions. For example, when a counter
at a loop back-edge triggers re-compilation, the optimizer
recompiles the function into a new, optimized, version of the
function. The thread must then resume execution of the new
code at the logically equivalent point, with a correspond-
ing (possibly new) frame configured accordingly. Moreover,
there may be other activations of the function with active
frames spread across multiple stacks and active at different
locations. Replacement of code for active functions in this
way is known as on-stack replacement (OSR).

On-stack replacement was initially developed for the Self
virtualmachine for de-optimization [12] and optimization [11].
It is now a crucial part of many high-performance VMs.

Traditionally, ‘on-stack replacement’ has been used to re-
fer to the entire process of getting execution states from
stack frames, mapping the old execution context to the equiv-
alent context of the newly compiled function, removing old
frames, and creating new frames. In this paper, we use ‘on-
stack replacement’ more narrowly to refer to the removal and
replacement of stack frames, distinguishing it from the re-
lated but distinct task of getting execution states from frames
which we refer to as ‘stack introspection’. We consider stack
introspection as an orthogonal mechanism to OSR, because it
can be used for purposes other than run-time re-compilation,

can implement threads, processes or other kinds of isolated containers,
depending on what resources are shared among the tasks.
3The sigaltstack POSIX function can specify an alternative stack where
the signal handler runs, instead of the regular user stack.

Practical On-Stack Replacement VEE ’18, March 24–25, 2018, Williamsburg, VA, USA

such as recording a stack trace for exception handling, and
performing a security check by examining the call stack. Al-
though this paper focuses on OSR, we will also introduce
stack introspection mechanisms in Mu for completeness.

2.4 The Swapstack Operation

Swapstack is a context-switching operation that saves the
execution state of the current thread’s top-most activation
on its active stack, switches the thread to use a different desti-
nation stack, and restores the thread’s execution state to that
of the the destination stack. The whole operation happens
within user space without entering the OS kernel. Swap-
stack effectively provides the abstraction of symmetric co-
routines. The term Swapstack was first used by Dolan et al.
[5] to specifically refer to their efficient language-neutral
compiler-assistedmechanism in LLVM for context-switching
and message passing between lightweight threads of con-
trol (‘green threads’). However, as we describe below, the
ideas underlying Swapstack have been implemented before,
including in the Self virtual machine [11, 12].
In this paper, we use the term Swapstack4 in a broader

sense—it is an abstract operation that rebinds the current
thread to a different stack, regardless of its implementation.5

Swapstack is an integral part of Mu. It not only supports
coroutines and green threads, but is also a foundation for
many VM mechanisms, such as thread creation, trap han-
dling, and OSR.
Swapstack and OSR are apparently orthogonal ideas.

However, the Swapstack primitive can overcome some of
the difficulties in implementing OSR. We now take a look at
those difficulties, and see how Swapstack can address the
problems.

2.5 OSR Without Swapstack

As is apparent from the widely used V8 [9] and Spider-
Monkey [18] JavaScript engines, implementing OSR with-
out Swapstack is difficult because of the need for imple-
menters to write assembly-coded utility routines. This de-
pendency on hand-written assembly code during OSR can
be observed from both implementations’ code for handling
de-optimization, which occurs when an optimized function
is invalidated and must be reverted to a baseline version.
Consider V8. During de-optimization, V8 first generates

the contents of new stack frames in temporary buffers in the

4Following the convention of Dolan et al. [5], we use Swapstack (Small
Caps) to denote the abstract operation, and use SWAPSTACK (ALL CAPS) for
the concrete instruction in the Mu instruction set.
5Therefore, in our terminology, the Boost.Context library [14], the (depre-
cated) swapcontext POSIX function, as well as the LLVM primitive created
by Dolan et al. [5], are all implementations of Swapstack, although the
work of Dolan et al. [5] usually out-performs others because it only saves
as many registers as necessary. Mu also provides an implementation of
Swapstack.

heap. Next, an assembly routine6 uses a complicated two-
level loop to copy the frame contents from the buffers to
the actual stack. Since the stack pointer (SP) is constantly
changing, the programmer must avoid any SP-relative ad-
dressing and carefully manage the register use in assembly.
Even though V8 is mainly written in C++, this two-level
loop cannot be written in C++ because the C++ compiler
does not expect the stack pointer to be modified outside the
generated code. Similarly, SpiderMonkey also copies stack
contents from a side buffer using assembly code.7
Hand-writing assembly code of such complexity while

properly managing stack layout is tedious and error-prone,
and the code only works on one platform.
This problem could have been avoided if the virtual ma-

chines had access to a Swapstack mechanism. When a
thread is modifying a stack that it is not executing on, the
stack can be treated like binary data, and manipulated with-
out worrying about the stack pointer of the current thread.
Therefore, the OSR routines could have been implemented
in any high-level language as long as it could access the rele-
vant parts of memory. However both V8 and SpiderMonkey
have only one stack per thread. Without Swapstack, the
run-time system has to handle stack operations with care.
Having seen the problem with OSR without Swapstack,

we now introduce the Swapstack-based OSR API that hides
platform details from its user.

3 An API for Stack Operations

In this section, we describe our platform-independent API
for stack operations, capable of supporting on-stack replace-
ment. In Section 4 we will demonstrate usage of the the API
through its application in a minimal JavaScript implemen-
tation. Finally, in Section 5, we show how the API can be
implemented.

3.1 Overview

To perform OSR, the stack must first be unbound from the
thread by performing a Swapstack operation, such as exe-
cuting the TRAP Mu IR instruction.
To make the following discussion concrete, we use prim-

itives from the Mu API. We list the relevant functions in
Figure 1. The client uses the frame cursor API to iterate
through stack frames, and uses the stack introspection API to
get the execution context which guides the optimization or
de-optimization. After the client generates a new function,
it uses the OSR API to replace stack frames. The client then
lets the program continue from the new frame with another

6See src/x64/deoptimizer-x64.cc line 136 in git revision
01590d660d6c8602b616a82816c4aea2a251be63 of V8. The source code is
attached in Appendix A.1 for the convenience of the reader.
7See the MacroAssembler::generateBailoutTail function in the
file js/src/jit/MacroAssembler.cpp in the current Mercurial revi-
sion 65b0ac174753 at the time of writing. See https://hg.mozilla.org/
mozilla-central/file/65b0ac174753/js/src/jit/MacroAssembler.cpp#l1429.

https://hg.mozilla.org/mozilla-central/file/65b0ac174753/js/src/jit/MacroAssembler.cpp#l1429
https://hg.mozilla.org/mozilla-central/file/65b0ac174753/js/src/jit/MacroAssembler.cpp#l1429

VEE ’18, March 24–25, 2018, Williamsburg, VA, USA K. Wang, S.M. Blackburn, A.L. Hosking, and M. Norrish

Kind API Function and Description

Frame Cursor

FrameCursor* new_cursor(Stack* stack)
Create a new frame cursor pointing to the top frame of the given stack.
void next_frame(FrameCursor* cursor)
Move the frame cursor to the next frame, moving down the stack from called to caller.
void close_cursor(FrameCursor* cursor)
Destroy the cursor.

Introspection

int cur_func(FrameCursor* cursor)
Return the function ID of the current frame.
int cur_func_ver(FrameCursor* cursor)
Return the function version8 ID of the current frame.
int cur_inst(FrameCursor* cursor)
Return the instruction ID of the current frame.
void dump_keepalives(FrameCursor* cursor, MuValue values[])
Dump the values of all keep-alive variables of the current instruction of the current frame.

OSR

void pop_frames_to(FrameCursor* cursor)
Remove all frames above the current frame of the given frame cursor.
void push_frame(FrameCursor* cursor, void (*func)())
Create a new frame on the top of the stack pointed by the frame cursor.

Figure 1. Summary of Mu API functions related to stack introspection and OSR.

Swapstack operation, allowing it to return from the trap
handler.
The usage can be summarized as ‘hop, skip and jump’—

hopping away from the stack, skipping several frames to
create new frames, then jumping back to the stack.

Before introducing the instructions and theAPI, we present
an abstract view of the stack that forms the foundation of
the API.

3.2 Abstract View of Stack Frames

In this paper we adopt the convention of stacks growing up.
The ‘top’ frame is the most recently pushed frame, and is
near the top of the page in diagrams.

A stack consists of one or more frames. A frame contains
the states of a function activation. A frame is active if it is the
top frame of a stack bound to a thread. Otherwise, the frame
is inactive because the code using it is not being executed.
Specifically, if one function calls another function, the frame
of the caller is stopped, expecting a value from the callee as
a return value.

An inactive frame can receive a value of an expected type,
and become active again. Specifically, when a function re-
turns, its caller’s frame receives the return value from the
callee, and continues execution. Therefore, every inactive
frame is expecting a value, and will eventually return a value
to its caller. Symbolically, we write

frm : (E) → (R)

to denote that the frame frm is expecting a value of type E
in order to resume, and itself returns a value of type R. We

8In Mu, the client can redefine a function, giving it a new function body
(i.e., version) to be executed in subsequent invocations.

can generalize this to multiple return values, writing:

frm : (E1,E2, . . .) → (R1,R2, . . .)

We call this the expect/return type notation.
For example, in Figure 2, foo calls bar, bar calls baz, and

baz calls moo. The expected type and the return type of the
frames of foo, bar and baz appear in Figure 2(b) in expect/
return type notation. As we can see, the expected type of a
frame is determined by the call site (and the callee), and the
function signature of a frame determines its return type.
A stack is return-type consistent if the return type(s) of

every frame matches the expected type(s) of the frame below.
It is obvious that if all stack frames are created by function
calls, the stack is always return-type consistent.9 However,
the OSR API can create stack frames of arbitrary expected
and return types. Therefore, the client must take care to
ensure that the stack is return-type consistent at all times.
With our abstract stack view in mind, we now introduce

the operations in the API.

3.3 Frame Cursor Abstraction

A frame cursor is an iterator of stack frames. A frame cursor
always points to one frame at any time, and can move from
top to bottom frame by frame. The API for both introspection
and OSR depends on frame cursors.

9In dynamic languages a function can return a value of any type—they do
not enforce return-type consistency. However, Mu IR is statically typed.
When implementing dynamic languages like Python, the Mu-level return
type should be the most general type, such as PyObject, and all Python
frames should have (PyObject) → (PyObject), which is always return-
type consistent with respect to the Mu type system.

Practical On-Stack Replacement VEE ’18, March 24–25, 2018, Williamsburg, VA, USA

1 long moo();

2

3 long baz() {

4 long x = moo(); // stop here

5 return x;

6 }

7

8 double bar() {

9 long x = baz(); // stop here

10 double y = (double)(x + 1);

11 return y;

12 }

13

14 int foo() {

15 double y = bar(); // stop here

16 int z = printf("%lf\n", y);

17 return z;

18 }

(a) Example Code

baz : (long) → (long)

bar : (long) → (double)

foo : (double) → (int)

(b) Expected and Return Types

Figure 2. Example of nested calls. The expected types are
determined by the call sites, and the return types are deter-
mined by the functions’ return types. The return type of each
frame must match the expected type of its caller’s frame.

3.4 The Swapstack Operation

A stack bound to a thread always has its top frame active
and other frames inactive, because the thread executes on
its top frame. Swapstack [5] unbinds a thread from its stack,
and rebinds it to another stack. Swapstack deactivates the
top frame of its old stack, and reactivates the top frame of
the destination stack, optionally passing one or more values.
After the top frame of the origin stack becomes inactive,
the frame waits for another Swapstack operation to bind
a thread (any thread, not necessarily the original thread) to
it and reactivate its top frame, optionally receiving one or
more values.
It is easy to observe that an inactive frame stopping on

a Swapstack site is similar to an inactive frame stopping
at a call site. Both of them are expecting values, and can
be reactivated by receiving values. The only difference is
whether the values are received by returning or Swapstack.
Therefore, the expect/return type notation frm : (E) → (R)
is still applicable for Swapstack, where E is the type of the
value expected from the incoming Swapstack operation.

In the Mu instruction set, the TRAP and the WATCHPOINT
instructions perform a Swapstack operation.10

The TRAP instruction rebinds a Mu thread to a client stack,
where a client-provided trap handler is activated. TRAP lets
the client handle events which Mu cannot handle internally,
such as loading programs on demand, and optimizing hot
functions detected at run time. WATCHPOINT is a special kind
of TRAP that can be turned on and off asynchronously. It
is usually used to guard speculative code, such as a de-
virtualization optimization which can be invalidated by class
loading.11
The Swapstack operation deactivates all frames of an

unbound stack, making it ready for introspection and ma-
nipulation. All API functions related to stacks require the
stack to be in the unbound (inactive) state. We now proceed
to the introspection mechanisms before moving on to OSR.

3.5 Stack Introspection

As introduced in Section 2.3, the client needs to extract the ex-
ecution state, including the program counter and the values
of local variables, to guide optimisation and de-optimisation.
As shown in Figure 1, the cur_func, cur_func_ver and

cur_inst report the current code position of a frame.
In Mu IR, all call sites (the CALL instruction) and Swap-

stack sites (the SWAPSTACK, TRAP and WATCHPOINT instruc-
tions) may have a keep-alive clause that specifies which vari-
ables are eligible for introspection. Consider the following
snippet:

1 [%trap1] TRAP <> KEEPALIVE (%v1 %v2 %v3)

When the TRAP instruction %trap1 executes, local vari-
ables %v1, %v2 and %v3 are kept alive in the frame, and their
values can be introspected using the dump_keepalives API
function. Other local variables are not guaranteed to be live,
which leaves Mu much room for machine-level optimization.

We let the client decide what variables are introspectable.
The client, which compiled the high-level language into Mu
IR, has full knowledge about what variables are relevant for
the desired kind of run-time re-compilation, such as opti-
mization or de-optimization. In the extreme, the client can
retain all local variables, thereby preserving full information
about the execution.
We now introduce the way the API allows modification

of the stack.

10There is also a separate SWAPSTACK instruction (written in ALL CAPS like
all Mu instructions), which rebinds a thread from one Mu stack to another
Mu stack, and is useful for implementing coroutines. We do not discuss it
further because it is not directly related to OSR.
11An aggressive optimizer can replace virtual calls with non-virtual calls
(i.e., de-virtualization), provided that the virtual function is never overridden
in any class. This optimization is speculative because new classes loaded
at run time can override the method, making the assumption of ‘never
overridden’ invalid. If this happens, functions that include the speculatively
de-virtualized calls must be recompiled.

VEE ’18, March 24–25, 2018, Williamsburg, VA, USA K. Wang, S.M. Blackburn, A.L. Hosking, and M. Norrish

3.6 Removing Frames

The pop_frames_to API function removes all frames above
the current frame. This will expose the current frame, an
inactive frame below the top frame, to the stack top. Re-
member that the Swapstack operation passes values to the
destination stack’s top frame. When a thread rebinds to this
stack using Swapstack, it will reactivate the current frame
which is stopping at a call site instead of a Swapstack site.
The values passed via Swapstack will be received by the
frame as if the values were the return values from the call
site’s original callee.

Popping frames will lose information about the removed
frames. The client should use dump_keepalives to save the
execution states before popping frames if needed.
The pop_frames_to API can only remove frames above

the specified frame. If the client desires to replace a frame
when the frame is re-entered, usually due to de-optimization,
the client should insert the WATCHPOINT instruction into the
guarded function.

3.7 Creating New Frames Using Return-oriented

Programming

The push_frame function pushes a frame for a given func-
tion onto the top of a stack. The frame stops at the entry
point of the function.
Our approach to creating new frames is based on return-

oriented programming (ROP).12 Wedefine a ROP frame to be a
stack frame that is stopped at the entry point of a function: its
return address is the entry point of the function. In contrast,
the return address of a normal frame is the next instruction
after a call site or Swapstack site. By definition, frames
created by the push_frame API function are ROP frames.

When a ROP frame resumes, it receives the values returned
by the frame above it, or passed during a Swapstack opera-
tion, as the arguments of its function which now executes
from the entry point.
Consider the code snippet in Figure 3. If the client has

pushed three ROP frames on a stack for the three functions
respectively, in the order of print, times_two and then
plus_one, then plus_onewill be on the top of the stack and
print at the bottom. When a subsequent Swapstack reacti-
vates the stack, passing the value 42 to the top frame, then the
top frame executes as if it was a call to plus_one(42). It re-
turns 43, transferring control to an activation of times_two
with the argument y receiving the value 43. This returns

12ROP originates from the field of computer security to describe a particular
attack technique [19]. The attack uses malicious data to cause a buffer
overflow on the stack, overwriting existing stack frames to create new stack
frames. The return address of each frame is set to the entry point of the next
function to execute. Therefore, after each function returns, the processor
will execute the next function specified by its return address. This lets the
attacker drive control flow using return instructions to transfer control to
the next function, hence the name. This chain of frames is called the ROP
chain.

1 int plus_one(int x) {

2 return x + 1;

3 }

4

5 int times_two(int y) {

6 return y * 2;

7 }

8

9 void print(int z) {

10 printf("%d\n", z);

11 exit (0);

12 }

(a) C-like Pseudocode

plus_one

times_two

print

Swapstack

top
42

43

86

(b) Stack Structure

Figure 3. ROP example. These three functions do not call
each other. But if the run-time pushes three ROP frames
for print, times_two and plus_one, respectively, the three
functions will execute one after another from the top of the
stack to the bottom (in the order of plus_one, times_two
and then print). Each function passes its return value as the
argument of the next function, making it a pipeline or, in
cyber-security terms, a ROP chain.

86, transferring control to the activation of print with the
formal parameter z bound to this value. This prints 86 to
standard output and exits.

Just like frames created by function calls, ROP frames also
expect values and eventually return values. We can describe
the stack in the previous example in the expect/return type
notation as:

plus_one : (int) → (int)

times_two : (int) → (int)

print : (int) → ()

Unlike frames stopped at call sites and Swapstack sites,
the parameter types of the stopped function determine the
expected types of ROP frames, as opposed to the call site.
Users of the API can push frames for any functions, and as
many frames as they desire, as long as the stack remains
return-type consistent as defined in Section 3.2.

Practical On-Stack Replacement VEE ’18, March 24–25, 2018, Williamsburg, VA, USA

The pushed new frame is always a ROP frame which starts
at the function entry point. However, in the typical run-
time re-compilation scenario, the new frame must resume
at the program counter equivalent to where the old frame
stopped. Fink and Qian [7] solved this problem by inserting
assignments and a jump instruction at the beginning of the
new function, as follows:
1 %var1 = %oldVar1

2 %var2 = %oldVar2

3 ...

4 %varN = %oldVarN

5 JUMP %cont

6 ...

7 %cont:

8 ...

D’Elia and Demetrescu [4] call these instructions ‘compen-
sation code’. The assignments set local variables of the new
frame to their values in the old frame, and the jump instruc-
tion jumps to the equivalent PC. Recall that the cur_inst
and the dump_keepalives API gives the client the old PC
and variable values. Therefore, while the Mu API requires
the new frame to start at the entry point, the client still has
all the information and capability to transition the old frame
state to the equivalent new state.

4 Demonstration of the OSR API

To demonstrate the utility of the OSR API as an aid to lan-
guage implementers, we built JS-Mu,13 a prototype JavaScript
client. It implements a small subset of JS, including operators
such as the JS addition operator ‘+’, which applies to both
numbers and strings. Such dynamism gives the specializer a
chance to showcase speculative optimization that requires
OSR. We implemented JS-Mu in Scala. Examples in this sec-
tion are modified to match the current version of the Mu API
because Mu has evolved since JS-Mu was developed.
Like SpiderMonkey and V8, the JS-Mu execution engine

consists of a baseline compiler and an optimizing compiler.
There is no JS interpreter. The baseline compiler plays the
role of the lowest-tier execution engine, while the optimizing
compiler will optimize hot functions and loops.

4.1 Baseline Compilation and Trap Placement

The JS-Mu baseline compiler does not attempt to infer the
concrete types of JS variables. All JS variables are represented
as tagged references [10]. All operations, such as addition,
subtraction, etc., accept all types of values, and raise type
errors at run time.

We use counters to detect hot loops at loop headers.
1 %header (...):

2 ...

3 %c0 = LOAD <@i64 > @COUNTER

13Source code: https://gitlab.anu.edu.au/mu/obsolete-js-mu

4 %c1 = ADD <@i64 > %c0 @CONST_1

5 STORE <@i64 > @COUNTER %c1

6 %hot = SGE <@i64 > %c1 @THRESHOLD

7 BRANCH2 %hot %body (...) %trapbb (...)

8

9 %trapbb (...):

10 [%trap1] TRAP <> KEEPALIVE (%v1 %v2 ...)

We use Mu IR code to increment the counter, and execute
the TRAP instruction when the counter reaches a threshold.
The KEEPALIVE clause annotates local variables for intro-
spection. The client maintains a simple HashMap to record
the AST node and compiler metadata relevant to each TRAP.
1 class TrapInfo(val blFunc: BaselineFunction ,

2 val node: Node , // AST node

3 val headBB: MuBB , val trapBB: MuBB)

4 val trapInfoMap =

5 new HashMap[String , TrapInfo]()

4.2 Optimization and On-stack Replacement

The TRAP instruction transfers control to the trap handler.
1 def handleTrap(ctx: Context , st: MuStackRefValue ,

2 ...): TrapHandlerResult {

3 val cursor = ctx.newCursor(st)

4 val inst = ctx.curInst(cursor)

5 val localVars = ctx.dumpKeepalives(cursor)

6 val trapInfo = trapInfoMap(nameOf(inst))

7 ...

The trap handler uses cur_inst to identify the executed
TRAP, and uses dump_keepalives to recover the current val-
ues of local variables. Using the Mu-level instruction ID and
the HashMap described above, the optimizer finds the high
level implementation of the hot loop.

The main optimization performed is specialization, which
is crucial to dynamic languages [3]. Using the type informa-
tion encoded in tagged references, the optimizer infers the
types of JS variables, lowering the types to more concrete
types and eliminating run-time type checking operations
where possible. After specialization, the client generates Mu
IR code, and loads the code into the micro VM. As we de-
scribed in the end of Section 3.7, the optimized function takes
the old local variables as parameters, and uses assignments
and a jump to transfer to the equivalent code point14 [4, 7].

After JIT compilation, the client uses pop_frames_to and
push_frame to replace the stack frame.
1 ...

2 val newFunc = compileFunction (...)

3 ctx.nextFrame(cursor)

4 ctx.popFramesTo(cursor)

5 ctx.pushFrame(cursor , newFunc)

6 ctx.closeCursor(cursor)

14See Appendix A.2 for a concrete snippet.

https://gitlab.anu.edu.au/mu/obsolete-js-mu

VEE ’18, March 24–25, 2018, Williamsburg, VA, USA K. Wang, S.M. Blackburn, A.L. Hosking, and M. Norrish

7 Rebind(st, PassValues(localVars))

When the client returns from the trap handler, it uses
Swapstack to rebind the current thread to the old stack,
passing the old values of local variables. The JS application
resumes execution, executing the optimized version, con-
tinuing with the equivalent state to that at the time the
optimization was triggered.

4.3 Results

Appendix A.2 gives a concrete example of a simple JS func-
tion, JIT-compiled during OSR triggered at a hot loop. The
OSR API provided sufficient type information that the opti-
mized Mu IR code for the tight loop is almost equivalent to
the LLVM IR code that Clang might have generated from an
equivalent C program with static types.

JS-Mu is built on a proof-of-concept reference implemen-
tation [20] of Mu which is unsuitable for performance evalu-
ation. However, the implementation is sufficient to demon-
strate the completeness and correctness of the API. Note that
the OSR mechanism itself is not performance critical, since
it executes just once for each recompilation, which will be
dominated (by many orders of magnitude) by the subsequent
execution of the optimized code in any typical OSR setting.

5 Implementing the OSR API

We have introduced the platform-independent OSR API.
However, the API does not remove the fundamental complex-
ity of OSR. Rather, it hides it beneath a layer of abstraction.
In this section we turn to the question of whether such

an API is realizable in a realistic setting. Our approach is
to introduce the abstractions of resumption protocols and
resumption points. We use the x6415 and the AArch6416 archi-
tectures as our concrete setting, but the ideas are not specific
to those architectures.

To demonstrate how resumption protocols can guide the
implementation of the OSR API in a more realistic scenario,
we developed another proof-of-concept project libyugong17
that implements the Swapstack operation and the OSR API
for native programs (in C, C++, LLVM, etc.) which follow
the platform ABI on GNU/Linux.

5.1 Frame Cursors and Introspection

For completeness, before we start discussing OSR, we briefly
introduce how frame cursors and stack introspection can be
implemented. Although they are integral parts of the API,
they are well-developed technologies, and this paper does
not attempt to make improvements over existing approaches.

15Also known as AMD64, x86-64 or Intel64, an extension to the IA32 in-
struction set architecture.
16AArch64 is the 64-bit execution mode of the ARMv8 architecture. The
instruction set is called A64.
17Source code: https://gitlab.anu.edu.au/kunshanwang/libyugong

The frame cursor is an abstraction over stack unwinding,
the process of restoring register states of frames below the
top frame of a stack. Key to the implementation is how to
restore callee-saved registers of the caller given the program
counter. C++ compilers, such as GCC, generate stack un-
winding metadata in the DWARF [6] format on GNU/Linux
for exception handling.

Stack introspection uses stack maps, a data structure that
maps machine-level execution states (including stack frame
contents and callee-saved register values) to high-level lan-
guage states (values of local variables). Stack maps are re-
quired for exact garbage collection, therefore many virtual
machines, such as JikesRVM [1], already implement stack
maps. LLVM also provides the ‘statepoint’ intrinsic which
generates stack maps to decode frames for LLVM-level vari-
able values.

The rest of this section assumes these techniques are read-
ily available, and focuses on OSR on top of those techniques.

5.2 Resumption Point

We define a resumption point as the point in the function
body where an inactive frame stopped. In Mu, a resumption
point can be a call site, a swap-stack site, or the entry point
of a function (ROP frame).
The resumption point is an internal execution state not

visible to its neighboring frames, while the expected type and
returned type are the ‘interface’ through which the frame
communicates with the frames above and below. However,
the resumption point determines the frame’s resumption
protocol which we now define.

5.3 Resumption Protocol

The concept of resumption protocol is related to calling con-
ventions. A calling convention describes the rules of function
calling at the machine level, including the responsibility to
set up and tear down the frames, the registers and stack loca-
tions used to pass parameters and return values, and the set
of registers preserved across function calls (i.e., the callee-
saved registers). The calling convention is the agreement
between the caller and the callee.
However, we are more interested in the resumption of

frames than the set-up of frames. We define the resumption
protocol as the machine-level rules governing the passing of
values to an inactive frame to resume its execution.

The concrete rules are determined by the resumption
points. We now describe the resumption protocols of each
resumption point.

5.3.1 Resumption at Call Sites

When a frame is stoped at a call site, the resumption protocol
is the ‘returning’ part of the calling convention.

For example, consider a function that is suspended, having
called a function that returns a 32-bit integer. On x64 on
GNU/Linux, the resumption protocol is:

https://gitlab.anu.edu.au/kunshanwang/libyugong

Practical On-Stack Replacement VEE ’18, March 24–25, 2018, Williamsburg, VA, USA

‘Move the return value into register EAX, and
then pop and jump to the return address at the
top of the stack.’

The resumption protocol on AArch64 is:
‘Move the return value into register w0, and then
restore the program counter from the link regis-
ter x30.’

We use ‘CCC_Ret(int)’ (C Calling Convention: Return-
ing) as the symbolic notation for the resumption protocol.
We can also generalize it to ‘CCC_Ret(T)’ for the protocol
of returning type T using the C calling convention. We omit
the platform name in the symbol, because the C calling con-
vention refers to the definition in the ABI of the platform.

At a call site, the function receives the return value from
the callee according to the callee’s calling convention; when
the function itself returns, it will pass the return value to
its caller according to the function’s own calling conven-
tion. Therefore, every frame has both an expected resumption
protocol which is the resumption protocol to re-activate the
frame itself, and a returned resumption protocol which is used
to re-active its caller. We use the following notation:

frm : rp1 (E1,E2, . . .) → rp2 (R1,R2, . . .)

to denote that the frame frm itself is resumed using the
resumption protocol rp1 (E1,E2, . . .), and will re-activate its
caller using the resumption protocol rp2 (R1,R2, . . .) when
it returns. We call this notation the expect/return protocol
notation because it involves not only the types but also the
resumption protocols.
Consider the example in Figure 2. The expected and re-

turned protocols of baz, bar and foo are straightforward:

baz : CCC_Ret (lonд) → CCC_Ret (lonд)
bar : CCC_Ret (lonд) → CCC_Ret (double)
foo : CCC_Ret (double) → CCC_Ret (int)

because both baz, bar and foo are stopped on call sites.
We now proceed to describe the resumption protocol for

Swapstack sites.

5.3.2 Resumption at Swapstack Sites

Recall that the Swapstack operation unbinds the thread from
one stack and rebinds it to another stack. Similar to function
calls, Swapstack involves preserving the context and trans-
ferring control. Currently, there are no widely-applicable
standards about the implementation of Swapstack. How-
ever, when implementing Swapstack, there must not be
any ‘swappee-saved’18 registers because it is unpredictable
where the swappee stack will swap back to the swapper, or

18Similar to ‘callee’ which means the function called by a call site, we use
the word ‘swappee’ for the destination stack in a Swapstack operation.
The original stack of a Swapstack operation is called the ‘swapper’.

&ss_cont

saved R15

saved R14

saved R13

saved R12

saved RBX

saved RBP

swapper retaddr

(swapper frame)

RSP

(a) x64

&ss_cont

saved d8

saved ...

saved d15

saved x19

saved ...

saved x29

saved x30 (PC)

(swapper frame)

SP

(b) AArch64

Figure 4. Stack-top Structure of Unbound Stacks in
libyugong. The callee-saved register values and the resump-
tion point PC are all saved at the top of the stack. When
rebinding a thread to an unbound stack, it continues from
the address of the ss_cont routine which restores the callee-
saved registers from the stack top, and returns to the swapper
frame.

whether it will swap back from that stack at all.19 Therefore,
the Swapstack operation must treat all machine registers as
swapper-saved registers.
We use the symbolic notation SS (T1,T2, . . .) for the re-

sumption protocol of a Swapstack site that receives a value
of type T1,T2, . . . when the stack is rebound.

This protocol can be implemented inmanyways. In libyugong,
we implemented Swapstack similar to boost-context [14].
The Swapstack implementation (See Appendix A.3) saves
the execution state on the top of the unbound stack as in
Figure 4. Therefore, resuming the swapper frame is done by
restoring the callee-saved registers from the stack top struc-
ture, and jumping to the resumption point of the swapper.

5.3.3 Resumption at Entry Points

Remember that a ROP frame is stopped at the entry point
of a function, expecting to receive values as its parameters.
Therefore, the resumption point for ROP frames is the same
as the ‘calling’ part of a calling convention.
For example, consider a function that takes one 32-bit

integer as its parameter. On x64 on GNU/Linux, the calling
convention specifies that:

19Intuitively, if we implement a green thread system using each stack as
a light-weight task and randomly schedule the stacks to a pool of threads,
then when a task yields using the Swapstack operation, it is unpredictable
which task will be executed next, and which task the thread is swapping
from. In general, Swapstack is much less predictable than call and return.

VEE ’18, March 24–25, 2018, Williamsburg, VA, USA K. Wang, S.M. Blackburn, A.L. Hosking, and M. Norrish

&plus_one

×_two

&print

RSP

Figure 5. Stack structure of a naïve (and thus, incorrect)
ROP frame implementation on x64 for the example in Fig-
ure 3. Each frame simply consists of the address of the entry
point of the function. This approach will execute plus_one,
times_two and print in order, but will not be able to pass
return values between frames because the return values and
the parameters are passed via different registers (EAX and
EDI, respectively).

‘The first 32-bit integer parameter is passed via
the EDI register, and the return address is on the
top of the stack.’

The calling convention on AArch64 is:

‘The first 32-bit integer parameter is passed via
the w0 register, and the return address is held in
the link register x30.’

Therefore, as long as the arguments and the return ad-
dress are put in the right place, and the stack pointer is set
properly, the function will start executing until it returns.
We use the symbol CCC_Entry for the resumption protocols
of ROP frames that follow the C calling convention, and
CCC_Entry(int) denotes ROP frames that have int as their
sole parameter.

We have introduced all three resumption points and their
resumption protocols. A stack is return-protocol consistent if
the returned protocol of every frame matches the expected
protocol of the frame below.

However, it remains a question how to construct concrete
ROP frames on the stack. Figure 5 shows a naïve ROP frame
implementation on x64 for the example given in Figure 3.
Each frame simply consists of the address of the entry point
of the function, and the RSP register points directly at the lo-
cation that holds the return address of the topmost function,
plus_one. When the thread ‘returns’ by popping the return
address from the stack, it will start execution from the entry
point of plus_one. When plus_one returns, it will ‘return’
to times_two which will in turn start from its entry point.
Eventually print will be executed, too.
But this naïve approach cannot pass the return value of

one function to another because of the difference of register
use between return values and parameters. Note that on x64,
CCC_Ret and CCC_Entry expect integer values to be passed
in different registers (RAX and RDI, respectively). Therefore,
when the function of the next ROP frame starts, it will not
find the parameter in the EDI register, and will not be able
to receive the return value from the frame above.

Since all functions are compiled to use the CCC_Ret pro-
tocol for normal returning, the returned protocols of these
functions are all CCC_RET. Using the protocol-sensitive nota-
tion, we have:

plus_one : CCC_Entry (int) → CCC_Ret (int)
times_two : CCC_Entry (int) → CCC_Ret (int)

print : CCC_Entry (int) → CCC_Ret ()

The stack is not return-protocol consistent. The returned
types match the expected types (int and int), but the re-
sumption protocols (CCC_Entry and CCC_Ret) do not. This
is the reason why this naïve approach will not work. To cor-
rectly implement ROP frames, we need adapters to convert
mismatching resumption protocols.

5.4 Adapter Frames

An adapter frame sits between two frames where the type of
the passed values match, but the resumption protocols do not.
The adapter frame satisfies:

adapter : rp1 (T1,T2, . . .) → rp2 (T1,T2, . . .)

for some T1,T2, . . ., that is it converts one resumption proto-
col to the other while preserving the value.
The following snippet implements an adapter frame on

x64 of CCC_Ret(int) → CCC_Entry(int), that is a frame
that transfers the return value to the register which holds
the parameter.

1 adapter_x64:

2 MOV EDI , EAX

3 RET

The MOV instruction moves the value to the correct register,
and the RET instruction resumes the next frame.

Figure 6 shows a correct implementation for the example
in Figure 3. On x64, adapter frames are inserted between
adjacent ROP frames. Each adapter frame consists of only the
address of the adapter_x64 assembly routine shown above.
When plus_one returns, the return value is held in the EAX
register, and the control flow jumps to the adapter_x64,
where the MOV instruction moves the value from EAX to EDI.
At this point, the address of the times_two function is at the
top of the stack. Therefore, the RET instruction in the adapter
frame resumes the times_two function, and the return value
of plus_one has already been moved to the expected EDI
register which times_two receives as the argument. This
process will happen again when times_two returns, and
print will eventually receive and print out the correct value.
AArch64 faces a different challenge. The return address

of the CCC_Entry protocol is in the link register x30 instead
of on the stack, therefore we cannot put the address of the
return address on the stack and expect the ROP frame to
automatically return into it. We use the adapter to restore
the link register.

Practical On-Stack Replacement VEE ’18, March 24–25, 2018, Williamsburg, VA, USA

&plus_one

&adapter_x64

×_two

&adapter_x64

&print

RSP

(a) x64

&plus_one (PC)

&adapter_a64 (LR)

×_two (PC)

&adapter_a64 (LR)

&print (PC)

NULL (LR)

SP

(b) AArch64

Figure 6. Correct ROP frame implementation with adapter
frames on x64 and AArch64 for the example in Figure 3. On
x64, addresses of functions are interleaved with addresses of
the adapter frame. When one function returns, the adapter
will be executed before the next function starts, giving the
adapter a chance to move the return value to the argument
register. OnAArch64, every pair of addresses from the top are
restored into the x30 (LR) and the PC registers respectively,
allowing the ROP function

1 adapter_a64:

2 LDP x9, x30 , [sp], 16

3 BR x9

The above code pops the ROP function address into the
PC, and pops the return address of the ROP frame into x30
(LR). It used a scratch register x9 because we cannot directly
load into the PC. After plus_one returns, it returns into x30
which holds the address of adapter_a64, which restores the
next ROP frame. The last function, print, does not return,
therefore x30 holds NULL when entering print.
Using the expect/return protocol notation, we have:

plus_one : CCC_Entry (int) → CCC_Ret (int)
adapter : CCC_Ret (int) → CCC_Entry (int)

times_two : CCC_Entry (int) → CCC_Ret (int)
adapter : CCC_Ret (int) → CCC_Entry (int)

print : CCC_Entry (int) → CCC_Ret ()

The returned protocol of each frame matches the expected
protocol of the frame below, therefore the stack state is now
return-protocol consistent.

Different types need different adapter frames. For example,
on x64 on GNU/Linux, both the first floating point parameter
and the floating point return value are held in the XMM0
register. Apparently no register movement is necessary. But
the ABI also has a 16-byte stack alignment rule at the entry
point of every function.Thus a frame for a trivial adapter
routine such as:

1 RET

can be used to ‘pad’ the size of the one-word (8 bytes on
x64) ROP frame to a multiple of 16 bytes in order to meet
the alignment requirement.
One adapter routine needs to be written for each pair

of resumption protocols for each type. JIT compilers can
generate adapters on demand.
Adapter frames help us abstract out the differences be-

tween resumption protocols, which are essentially architec-
tural details. Clients only need to reason about return-type
consistency instead of return-protocol consistency, as we
described in Section 3.2.
A language implementation can designate a particular

resumption protocol as the ‘default’ protocol between high-
level language frames, and insert adapter frames when the
resumption protocols do not match. The default protocol
should usually be the protocol for call sites, because the vast
majority of stack frames are created by function calls, not
OSR. The top stack frame, if stopped, usually stops on a
Swapstack site, although OSR can push ROP frames at the
top of a stack in rare cases. Therefore, it is advisable to let
the top stack frame have the expected resumption protocol
of Swapstack, while all other frames have the expected
resumption protocol for normal return.

When a frame cursor iterates through a stack, it can iden-
tify the presence of adapter frames by their code addresses,
and skip those frames so that they remain invisible to the
client.
Summarizing, the correct implementation of the OSR API
relies on maintaining consistent stack frame states. At the
machine level, the consistency manifests as the matching
of resumption protocols between adjacent frames. Different
resumption points give frames different resumption proto-
cols, but the difference can be hidden from the API user
by using adapter frames which convert between protocols
while preserving the value. This means that the OSR API can
be simple for the client to use while still being realistically
implementable on concrete machines.

6 Related Work

Self VM The Self VM [11, 12] implemented its own Swap-
stack mechanism which predates the work of Dolan et al.
[5]. A thread switches to a dedicated VM stack for handling
de-optimization, and could therefore manipulate the victim
stack using high-level C++ code. The Self VM uses return ad-
dress patching 20—replacing the return address of a frame so
that frame replacement can happen when the patched frame
returns. Unlike Mu, the Self VM is not a multi-language

20‘Return address patching’ is unrelated to ‘return-oriented programming’
despite the similar names. ROP is a paradigm where the return values of a
function are passed as parameters to the next frame; while return address
patching is a technique that overwrites the return address so that some
code can be executed after the victim function returns, but before the next
frame is activated.

VEE ’18, March 24–25, 2018, Williamsburg, VA, USA K. Wang, S.M. Blackburn, A.L. Hosking, and M. Norrish

VM, thus it only uses Swapstack and OSR as an internal
mechanism.

JikesRVM JikesRVM [1] is a JIT-compiling JVM with OSR
support. JikesRVM recompiles methods and generates the
contents of new frames in separate OSR threads. However,
JikesRVM uses return address patching to let the victim
thread execute a piece of code to replace its own frames upon
returning from yieldpoints. The code is generated at run time
by stitching together platform-specific assembly snippets,21
because the victim thread is replacing stack frames on the
current stack, and thus must carefully handle the stack lay-
out.

JVM The JVM does not have a public API for its internal
OSR facilities. The JVM Tool Interface (JVM TI) provides
some stack-related API functions for debugging, including
introspecting local variables and popping frames. However,
unlike the Mu API, JVM TI does not support constructing
new frames on existing stacks, therefore does not have all
tools needed by OSR.

Truffle andGraal [23] provide a high-level partial evaluation-
based language implementation framework and a compiler
framework on the JVM. Truffle also has an abstraction of
stack frames to support interpreting and de-optimization.
This is a higher-level abstraction than Mu. Mu only provides
aminimal API for the Mu client to build higher-level abstrac-
tion. Truffle can be viewed as a potential client that could
be implemented uponMu. If properly designed, Mu should
allow the Truffle API to be implemented in terms of Mu’s
API.

LLVM The LLVM [16] compiler framework provides stack
maps22 for stack introspection, but no high-level OSR API.
D’Elia and Demetrescu [4] developed OSRKit, a library

built on LLVM for ‘dynamically transferring execution be-
tween different versions of a function at run time’, which
they define as ‘OSR’. It is an improvement over its predeces-
sor in McJIT by Lameed and Hendren [15]. In OSRKit, the old
version of a function tail-calls a stub which recompiles the
function and then tail-calls the new version. Both OSRKit and
Mu achieved the goal of transferring execution under the con-
straint that the high-level optimizer and de-optimizer must
not depend on machine-level details. Built on LLVM which
does not provide any abstraction over stack manipulation,
OSRKit chose to depend only on function calls, and not to ‘ad-
just the stack so that execution can continue in f ′ (the new
version) with the current frame’ [4], because that ‘requires
manipulating the program state at machine-code level and
is highly ABI- and compiler-dependent.’ [4]. Unlike LLVM
frontends, Mu clients can rely on the platform-independent

21See the org.jikesrvm.osr.ia32.CodeInstaller.install method:
https://github.com/JikesRVM/JikesRVM/blob/master/rvm/src/org/
jikesrvm/osr/ia32/CodeInstaller.java#L50
22See http://llvm.org/docs/StackMaps.html

OSR API of Mu to replace stack frames while still retaining
platform independence. As a more powerful substrate, the
Mu API is more flexible than pure call-based approach. For
example, the API can easily replace multiple frames at a time,
which is useful for handling inlining [11, 12].

7 Conclusion

On-stack replacement is an important mechanism for dy-
namic optimization. We presented an API for OSR that oper-
ates on a simple abstract view of stacks, uses the Swapstack
primitive to isolate the active thread from the victim stack,
and provides operations to iterate through, introspect and
replace stack frames. We also presented the abstraction of ‘re-
sumption protocols’ which describe the machine-level rules
for resuming stopped frames, and guides the implementation
of the OSR API itself on real hardware. We demonstrated
the use of this API using an experimental JavaScript en-
gine. We showed that this API is implementable on concrete
hardware using example implementations of return-oriented
programming on x86 and AArch64.
This API brings OSR within reach for more language im-

plementers. Using a micro VM that supports such an API,
language implementers can use OSR as a ready-made tool,
and focus on the high-level optimizations that are mostly
language-specific but vital to the performance of high-level
languages [3]. Our hope is that these improved tools for
language development will lead to more high-performance
language implementations. Meanwhile, because the Mu mi-
cro VM is designed for formal verification, this abstraction
over OSR can potentially lead to a formally verified VM with
built-in OSR support.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CCF-1408896.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.
This research was supported (partially or fully) by the

Australian Government through the Australian Research
Council’s Discovery Projects funding scheme (project DP140-
103878). The views expressed herein are those of the authors
and are not necessarily those of the Australian Government
or Australian Research Council.
Kunshan Wang was supported by the China Scholarship

Council.

https://github.com/JikesRVM/JikesRVM/blob/master/rvm/src/org/jikesrvm/osr/ia32/CodeInstaller.java#L50
https://github.com/JikesRVM/JikesRVM/blob/master/rvm/src/org/jikesrvm/osr/ia32/CodeInstaller.java#L50
http://llvm.org/docs/StackMaps.html

Practical On-Stack Replacement VEE ’18, March 24–25, 2018, Williamsburg, VA, USA

References

[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J.
Barton, S. Hummel Flynn, J. C. Sheperd, and M. Mergen. Implementing
Jalapeño in Java. In ACM SIGPLAN International Conference on Object
Oriented Programming, Systems, Languages, and Applications, pages
314–324, Denver, Colorado, Nov. 1999. doi: 10.1145/320384.320418.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive
optimization in the Jalapeño JVM. In ACM SIGPLAN International
Conference on Object Oriented Programming, Systems, Languages, and
Applications, pages 47–65, Minneapolis, Minnesota, Oct. 2000. doi: 10.
1145/353171.353175.

[3] J. Castanos, D. Edelsohn, K. Ishizaki, P. Nagpurkar, T. Nakatani, T. Oga-
sawara, and P. Wu. On the benefits and pitfalls of extending a statically
typed language JIT compiler for dynamic scripting languages. In ACM
SIGPLAN International Conference on Object Oriented Programming,
Systems, Languages, and Applications, pages 195–212, Tucson, Arizona,
Oct. 2012. doi: 10.1145/2384616.2384631.

[4] D. C. D’Elia and C. Demetrescu. Flexible on-stack replacement in
LLVM. In IEEE/ACM International Symposium on Code Generation and
Optimization, pages 250–260, Barcelona, Spain, Mar. 2016. doi: 10.1145/
2854038.2854061.

[5] S. Dolan, S. Muralidharan, and D. Gregg. Compiler support for light-
weight context switching. ACM Transactions on Architecture and Code
Optimization, 9(4):36:1–25, Jan. 2013. doi: 10.1145/2400682.2400695.

[6] DWARF Standards Committee. Dwarf debugging information format,
version 4, June 2010. URL http://www.dwarfstd.org/.

[7] S. J. Fink and F. Qian. Design, implementation and evaluation of
adaptive recompilation with on-stack replacement. In IEEE/ACM
International Symposium on Code Generation and Optimization, pages
241–252, San Francisco, California, Mar. 2003. doi: 10.1109/CGO.2003.
1191549.

[8] N. Geoffray, G. Thomas, J. Lawall, G. Muller, and B. Folliot. VMKit:
A substrate for managed runtime environments. In ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, pages 51–62, Pittsburgh, Pennsylvania, Mar. 2010. doi: 10.1145/
1735997.1736006.

[9] Google. V8 JavaScript Engine, 2017. URL https://developers.google.
com/v8/.

[10] D. Gudeman. Representing type information in dynamically typed lan-
guages. Technical Report TR 93-27, Department of Computer Science,
The University of Arizona, Tucson, Arizona, Oct. 1993.

[11] U. Hölzle and D. Ungar. A third-generation self implementation: Rec-
onciling responsiveness with performance. In ACM SIGPLAN Inter-
national Conference on Object Oriented Programming, Systems, Lan-
guages, and Applications, pages 229–243, Portland, Oregon, Oct. 1994.
doi: 10.1145/191080.191116.

[12] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with
dynamic deoptimization. In ACM SIGPLAN International Conference
on Programming Language Design and Implementation, pages 32–43,
San Francisco, California, June 1992. doi: 10.1145/143095.143114.

[13] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,

and S. Winwood. seL4: Formal verification of an OS kernel. In ACM
SIGOPS Symposium on Operating Systems Principles, pages 207–220,
Big Sky, Montana, Oct. 2009. doi: 10.1145/1629575.1629596.

[14] O. Kowalke. Boost.Context, 2017. URL http://www.boost.org/doc/libs/
1_63_0/libs/context/doc/html/index.html.

[15] N. A. Lameed and L. J. Hendren. A modular approach to on-stack
replacement in LLVM. In ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, pages 143–154, Houston,
Texas, Mar. 2013. doi: 10.1145/2451512.2451541.

[16] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In IEEE/ACM International Sym-
posium on Code Generation and Optimization, pages 75–88, San Jose,
California, Mar. 2004. doi: 10.1109/CGO.2004.1281665.

[17] Y. Lin. Zebu: the high-performance implementation of Mu, 2018. URL
https://gitlab.anu.edu.au/mu/mu-impl-fast.

[18] Mozilla. SpiderMonkey, 2017. URL https://developer.mozilla.org/
en-US/docs/Mozilla/Projects/SpiderMonkey.

[19] M. Prandini and M. Ramilli. Return-oriented programming. IEEE
Security & Privacy, 10(6):84–87, Nov. 2012. doi: 10.1109/MSP.2012.152.

[20] K. Wang. Holstein: the reference implementation of Mu, 2018. URL
https://gitlab.anu.edu.au/mu/mu-impl-ref2.

[21] K. Wang. The specification of the Mu micro virtual machine, 2018.
URL https://gitlab.anu.edu.au/mu/mu-spec.

[22] K. Wang, Y. Lin, S. M. Blackburn, M. Norrish, and A. L. Hosking.
Draining the swamp: Micro virtual machines as solid foundation for
language development. In Inaugural Summit on Advances in Pro-
gramming Languages, pages 321–336, Asilomar, California, May 2015.
doi: 10.4230/LIPIcs.SNAPL.2015.321.

[23] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. One VM to rule them all. In
ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pages 187–204, Indi-
anapolis, Indiana, Oct. 2013. doi: 10.1145/2509578.2509581.

A Appendix

A.1 Deoptimization in V8

Figure 7 shows how V8 performs OSR for de-optimization
using hand-written platform-specific assembly code.

A.2 JS-Mu Compilation Result

Figure 8 shows the result of optimizing a simple JavaScript
program.

A.3 Swapstack implementation in libyugong

Figure 9 shows the implementation of the Swapstack oper-
ation in libyugong on x64 on GNU/Linux.

http://dx.doi.org/10.1145/320384.320418
http://dx.doi.org/10.1145/353171.353175
http://dx.doi.org/10.1145/353171.353175
http://dx.doi.org/10.1145/2384616.2384631
http://dx.doi.org/10.1145/2854038.2854061
http://dx.doi.org/10.1145/2854038.2854061
http://dx.doi.org/10.1145/2400682.2400695
http://www.dwarfstd.org/
http://dx.doi.org/10.1109/CGO.2003.1191549
http://dx.doi.org/10.1109/CGO.2003.1191549
http://dx.doi.org/10.1145/1735997.1736006
http://dx.doi.org/10.1145/1735997.1736006
https://developers.google.com/v8/
https://developers.google.com/v8/
http://dx.doi.org/10.1145/191080.191116
http://dx.doi.org/10.1145/143095.143114
http://dx.doi.org/10.1145/1629575.1629596
http://www.boost.org/doc/libs/1_63_0/libs/context/doc/html/index.html
http://www.boost.org/doc/libs/1_63_0/libs/context/doc/html/index.html
http://dx.doi.org/10.1145/2451512.2451541
http://dx.doi.org/10.1109/CGO.2004.1281665
https://gitlab.anu.edu.au/mu/mu-impl-fast
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
http://dx.doi.org/10.1109/MSP.2012.152
https://gitlab.anu.edu.au/mu/mu-impl-ref2
https://gitlab.anu.edu.au/mu/mu-spec
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.321
http://dx.doi.org/10.1145/2509578.2509581

VEE ’18, March 24–25, 2018, Williamsburg, VA, USA K. Wang, S.M. Blackburn, A.L. Hosking, and M. Norrish

1 #define __ masm()->

2

3 void Deoptimizer :: TableEntryGenerator :: Generate () {

4 GeneratePrologue ();

5 const int kNumberOfRegisters = Register :: kNumRegisters;

6 // MORE CODE HERE ...

7 ...

8 // Replace the current frame with the output frames.

9 Label outer_push_loop , inner_push_loop ,

10 outer_loop_header , inner_loop_header;

11 // Outer loop state: rax = current FrameDescription **, rdx = one past the

12 // last FrameDescription **.

13 __ movl(rdx , Operand(rax , Deoptimizer :: output_count_offset ()));

14 __ movp(rax , Operand(rax , Deoptimizer :: output_offset ()));

15 __ leap(rdx , Operand(rax , rdx , times_pointer_size , 0));

16 __ jmp(& outer_loop_header);

17 __ bind(& outer_push_loop);

18 // Inner loop state: rbx = current FrameDescription*, rcx = loop index.

19 __ movp(rbx , Operand(rax , 0));

20 __ movp(rcx , Operand(rbx , FrameDescription :: frame_size_offset ()));

21 __ jmp(& inner_loop_header);

22 __ bind(& inner_push_loop);

23 __ subp(rcx , Immediate(sizeof(intptr_t)));

24 __ Push(Operand(rbx , rcx , times_1 , FrameDescription :: frame_content_offset ()));

25 __ bind(& inner_loop_header);

26 __ testp(rcx , rcx);

27 __ j(not_zero , &inner_push_loop);

28 __ addp(rax , Immediate(kPointerSize));

29 __ bind(& outer_loop_header);

30 __ cmpp(rax , rdx);

31 __ j(below , &outer_push_loop);

32 // MORE CODE HERE ...

33 ...

34 __ InitializeRootRegister ();

35 __ ret (0);

36 }

Figure 7. Contemporary VMs rely heavily on assembly code for implementing OSR. This excerpt is from the
Deoptimizer::TableEntryGenerator::Generate function for x64 in the V8 head revision at the time of writing (https:
//github.com/v8/v8/blob/01590d660d6c8602b616a82816c4aea2a251be63/src/x64/deoptimizer-x64.cc#L136). V8 invokes this
routine when it has already generated the baseline frames in temporary buffers, and each FrameDescription object contains
the size and the content of a frame. This snippet is a two-level loop. The outer loop iterates through each FrameDescription,
and the inner loop reads the content of the frame word by word and pushes it onto the current stack. Line 24 uses the PUSH
instruction which modifies the stack pointer. Since the stack pointer is constantly changing, all other operands, including the
loop counters and the pointer to FrameDescription, must be held in registers and cannot be spilled. If V8 had had access to a
Swapstack primitive, this procedure could have avoided assembly entirely.

https://github.com/v8/v8/blob/01590d660d6c8602b616a82816c4aea2a251be63/src/x64/deoptimizer-x64.cc#L136
https://github.com/v8/v8/blob/01590d660d6c8602b616a82816c4aea2a251be63/src/x64/deoptimizer-x64.cc#L136

Practical On-Stack Replacement VEE ’18, March 24–25, 2018, Williamsburg, VA, USA

1 function sum(f, t) {

2 var s = 0;

3 for (var i = f; i <= t; i++)

4 s = s + i;

5 return s;

6 }

7 var result = sum(1, 10);

8 print(result);

(a) JavaScript

1 .funcdef @optfunc1_sum VERSION @optfunc1_sum.v1 <@optfunc1_sum.sig > {

2 %entry(<@tagref64 > %osrParam_f <@tagref64 > %osrParam_t

3 <@tagref64 > %osrParam_s <@tagref64 > %osrParam_i):

4 // Compensation code

5 %raw_f = COMMINST @uvm.tr64.to_fp (% osrParam_f)

6 %raw_t = COMMINST @uvm.tr64.to_fp (% osrParam_t)

7 %raw_s = COMMINST @uvm.tr64.to_fp (% osrParam_s)

8 %raw_i = COMMINST @uvm.tr64.to_fp (% osrParam_i)

9 BRANCH %forHead (%raw_f %raw_t %raw_s %raw_i)

10

11 %forHead(<@double > %f <@double > %t <@double > %s <@double > %i):

12 %i_le_t = FOGE <@double > %t %i

13 BRANCH2 %i_le_t %forBody (%f %t %s %i) %forEnd (%f %t %s %i)

14

15 %forBody(<@double > %f <@double > %t <@double > %s <@double > %i):

16 %s2 = FADD <@double > %s %i

17 %i2 = FADD <@double > %i @CONST_1

18 BRANCH %forHead (%f %t %s2 %i2)

19

20 %forEnd(<@double > %s)

21 %tagged_s = COMMINST @uvm.tr64.from_fp (%s)

22 RET <@tagref64 > %tagged_s

23 }

(b) Mu IR

Figure 8. Result of JS-Mu compiling a JS program. Sub-figure (a) is a simple JS program that sums over a range. Sub-figure (b)
is the optimized Mu IR code generated when optimization is triggered at the loop header. The IR code is adjusted to match
the latest Mu IR specification [21]. Auto-generated variable names are simplified for readability. The %entry block contains
compensation code, which initializes the values of local variables from parameters, and jumps to the loop header that triggered
optimization. The compensation code also removes the tags of the values to make them plain double type. Therefore, within
the loop of %forHead and %forBody, all variables have been specialized to the double type, and no conversion to or from the
tagged reference type (@tagref64) is present. This is equivalent to the LLVM IR code which Clang could have generated from
an equivalent C program with static types.

VEE ’18, March 24–25, 2018, Williamsburg, VA, USA K. Wang, S.M. Blackburn, A.L. Hosking, and M. Norrish

1 yg_stack_swap:

2 push rbp

3 push rbx

4 push r12

5 push r13

6 push r14

7 push r15

8

9 mov rax , rdx

10

11 lea rcx , [_yg_ss_cont+rip]

12 push rcx

13

14 mov [rdi], rsp

15 mov rsp , [rsi]

16 ret

17

18 _yg_ss_cont:

19 pop r15

20 pop r14

21 pop r13

22 pop r12

23 pop rbx

24 pop rbp

25 ret

Figure 9. Swapstack implementation in libyugong. This figure shows the assembly code for x64 on GNU/Linux. The
yg_stack_swap function is called by the swapper, and must be called using the C calling convention with the signature
“uintptr_t yg_stack_swap(void** swapper, void** swappee, uintptr_t value)”. This function passes and receives
value of the uintptr_t type. The first two parameters (RDI and RSI) are the locations where the stack pointer of the current
stack is saved and where the stack pointer of the swappee is loaded from. The third parameter is the uintptr_t value to
be passed to the other stack. When called using the C calling convention, the caller-saved registers must have already been
saved by the caller compiled by a compliant C compiler. Lines 2–7 then save all callee-saved registers; line 9 moves the third
argument (in RDX) to the return value register (RAX); lines 11–12 push the address of _yg_ss_cont; lines 14–15 save the current
stack pointer and load the stack pointer of the swappee stack; and line 16 finally returns to the swappee. In libyugong, the
top of all suspended stacks is laid out as in Figure 4a, and the stack pointer points to the address of the assembly snippet
_yg_ss_cont shown here if it receives a uintptr_t value. When the swapper executes the RET instruction in line 16, the
thread continues at line 19, restoring the callee-saved registers saved by the swappee stack and returns to the resumption
point of the top frame of the swappee. The resumption point is usually the next instruction after the call to yg_stack_swap.
But when OSR happens and stack frames are popped and pushed, libyugong will fix the stack top layout to match Figure 4a
so that any thread can swap to any unbound stack the same way.

	Abstract
	1 Introduction
	2 Background
	2.1 The Mu Micro Virtual Machine
	2.2 Threads and Stacks
	2.3 On-stack Replacement
	2.4 The Swapstack Operation
	2.5 OSR Without Swapstack

	3 An API for Stack Operations
	3.1 Overview
	3.2 Abstract View of Stack Frames
	3.3 Frame Cursor Abstraction
	3.4 The Swapstack Operation
	3.5 Stack Introspection
	3.6 Removing Frames
	3.7 Creating New Frames Using Return-oriented Programming

	4 Demonstration of the OSR API
	4.1 Baseline Compilation and Trap Placement
	4.2 Optimization and On-stack Replacement
	4.3 Results

	5 Implementing the OSR API
	5.1 Frame Cursors and Introspection
	5.2 Resumption Point
	5.3 Resumption Protocol
	5.4 Adapter Frames

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Deoptimization in V8
	A.2 JS-Mu Compilation Result
	A.3 Swapstack implementation in libyugong

