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Abstract
Understanding and comparing Java Virtual Machine (JVM) perfor-
mance at a microarchitectural level can identify JVM performance
anomalies and potential opportunities for optimization. The two
primary tools for microarchitectural performance analysis are hard-
ware performance counters and cycle accurate simulators. Unfortu-
nately, the nondeterminism, complexity, and size of modern JVMs
make these tools difficult to apply and therefore the microarchi-
tectural performance of JVMs remains under-studied. We propose
and use new methodologies for measuring unmodified production
JVMs using both performance counters and a cycle accurate sim-
ulator. Our experimental design controls nondeterminism within
a single measurement by using multiple iterations after a steady
state is reached. We also use call-backs provided by the production
JVMs to isolate application performance from the garbage collec-
tor, and where supported, the JIT. Finally, we use conventional sta-
tistical approaches to understand the effect of the remaining sources
of measurement noise such as nondeterministic JIT optimization
plans.

This paper describes these methodologies and then reports on
work in progress using these methodologies to compare IBM J9,
BEA JRockit, and Sun HotSpot JVM performance with hardware
performance counters and simulation. We examine one benchmark
in detail to give a flavor of the depth and type of analyses possible
with this methodology.

1. Introduction
Despite the growing use of Java, performance methodologies for
understanding its performance have not kept pace. Java perfor-
mance is difficult to measure and understand because it includes
dynamic class loading, just-in-time (JIT) compilation, adaptive op-
timization, dynamic performance monitoring, and garbage collec-
tion. These features introduce runtime overheads that are not di-
rectly attributable to the application code. These runtime overheads
are nondeterministic and furthermore, nondeterministic optimiza-
tion plans lead to nondeterministic application performance. These
issues make it difficult to reproduce results in simulation and to ob-
tain meaningful results from performance counters. However, these
measurements are key to understanding the performance of modern
Java applications on modern hardware and their implications for
optimizations and microarchitecture design.

A number of researchers have proposed methodologies for deal-
ing with some of these issues. Most of these methodologies dictate
an experimental design that more fully exposes important design
features and/or controls nondeterminism. For example, experimen-
tal design methodologies include recommendations on which it-
eration of a benchmark to measure [7], forcing the adaptive op-
timizer to behave deterministically with replay compilation sup-
port [9], and measuring multiple heap sizes proportional to the live
size of the application to expose the space-time tradeoffs inherent in
garbage collection [5, 2]. Although experimental design can elim-
inate some sources of nondeterminism, Georges et al.[8] propose
statistically rigorous analysis to allow differences to be teased out
when significant sources of nondeterminism remain.

In this paper, we focus on experimental designs for using per-
formance counters and simulation to measure and compare JVMs.
We use three approaches: i) statistical analysis [8], ii) separation of
JVM overheads such as the JIT and GC from the application [7, 2],
and iii) a new experimental design for the special case of reducing
nondeterminism for performance counter measurements on stock
JVMs. In separating the GC and JIT, we build on prior work for
comparing JVMs [7] and measuring garbage collectors [2]. Eeck-
hout et al. show that measurements of the first iteration of a Java
application inside a JVM tend to be dominated by the JVM over-
heads instead of by application behavior [7]. They therefore rec-
ommend invoking the JVM, running the application multiple times
within a single invocation, and then measuring a later iteration, or
a steady state. Although many others had already been reporting
steady state measurements, e.g., Arnold et al. [1], Eeckhout et al.
were the first to show that first iteration measurements did not rep-
resent the application itself. Unfortunately, this methodology does
not solve all our problems because JVMs do not reach thesame
steady state when invoked multiple times on the same benchmark.

This inter-invocation nondeterminism is problematic because
only a limited number of performance counters can be measured
at once, yet analyses such as comparing cache behavior between
JVMs with performance counters or configurations in simulation,
often require correlated measurements of more than one execu-
tion, e.g., the number of loads, stores, and misses needs to be
the same to compare cache performance counter measurements or
cache simulation configurations. We therefore introduce the follow-
ing methodology to eliminate the JIT as a source of nondetermin-
ism. Our experimental design runs the same benchmark N times



(we use 10 in our experiments) to produce a realistic mix of opti-
mized and unoptimized code, we turn off the JIT after iteration N,
and run the benchmark one more time to drain any work in the com-
pilation queues. We then measure K iterations (N+2 to N+K+1),
where K is the required number of performance counter measure-
ments or simulation configurations we need. We also perform a full
heap garbage collection between each iteration to attain more deter-
minism from the garbage collector. All of these measurements are
now guaranteed to use the exact same application code, although
some intra-invocation nondeterminism from profiling and garbage
collection may still occur.

We show that this methodology reduces nondeterminism suffi-
ciently to make it possible to statistically compare the reasons for
performance differences between 1.5 and 1.6 versions of the IBM
J9, BEA JRockit, and Sun HotSpot JVMs using performance coun-
ters and simulation. We measure the SPECjvm98,SPECjbb2000,
and DaCapo benchmarks [3, 12, 11]. In this work-in-progress re-
port, we show the total performance results for all the benchmarks,
and show the power of our methodology and analysis via some
small case studies. We plan a future conference publication with a
more detailed analysis of all the benchmarks on all the JVMs.

2. Methodology
Modern JVMs and modern architectures are complex and their
interaction is even more complex. Thus, meaningfully measuring
modern JVM performance at a microarchitectural level is a signifi-
cant challenge in itself. In this section we describe our methodology
for providing as much clarity and soundness in our measurements,
including details of what we believe are some methodological in-
novations. We also describe the details of the JVMs we evaluate
and the platforms on which we evaluate them.

2.1 Isolating Application Code

The execution of a JVM on a given applications consists of at least
two distinct components: a) the compiled and/or interpreted user
code, including its use of the Java class libraries, and b) the JVM
itself. The JVM itself has multiple distinct components, including
the JIT, the GC, profiling mechanisms, thread scheduling, and other
aspects of the Java runtime. As Eeckhout et al. noted, these dis-
tinctions must be teased apart for correct performance analysis, but
separately measuring these components is challenging [7]. For ex-
ample, a compiler writer concerned with the quality of the code
produced by the JIT needs to isolate the execution of application
code from the JIT and GC. The JIT and GC are typically written in
C or C++, and thus executing code generated by an entirely differ-
ent compiler. Conversely, a JIT writer may be concerned with the
performance of the execution of the JIT itself, and would therefore
want to isolate and measure the JIT itself in a controlled experi-
ment. Alternatively, a garbage collector developer needs to sepa-
rately measure the performance of the collector and the applica-
tion [2]. In addition to fraction of total time spent in the collector,
these experiments must carefully consider the collector’s influence
on the application code quality. For example, the allocation pol-
icy influences the data locality of the application and the collector
choice imposes different read and/or write barriers which influence
application code quality [4].

In each case, it is highly desirable to tease apart the JVM perfor-
mance into its different components. In prior work, we added direct
support to a JVM to measure and control the JIT and GC [2], see
Section 2.2 below. In comparing several production JVMs where
we do not have source access, we are limited to using JVMTI [13]
call-backs to identify garbage collection and application phases.
We have also used the methodology espoused by Eeckhout et
al.: timing steady state iterations where JIT activity is minimized,
rather than early iterations where JIT activity may dominate.

Even with JVMTI call-backs, differences in JVM thread mod-
els and mapping of functions to threads complicate our measure-
ments. Thus we developed a methodology based on the following
observations. 1) Each JVM may have a different number of JVM
helper threads including GC and JIT. For example, The HotSpot
JVMs use more finalizer and signal dispatcher threads than other
JVMs. 2) JVMTI call-backs may be asynchronous. Thus, we must
carefully design our call-back methods to be race-free and non-
blocking, otherwise they would cause significant perturbations. 3)
The measurements must not make assumptions about the under-
lying thread model. For example, J9 has user-level threads mapped
onto pthreads. Hence, GC and mutator threads may run on the same
pthread. Since the our performance counter toolkit, PAPI [6], and
the associated Linux kernel patch work at the Linux task (pthread)
granularity, we must take care to observe performance counters
when functionality changes within the same thread context.

We handle the above observations and isolate application code
behavior relatively easily using JVMTI [13] and a suitable exper-
imental design. In the case where a thread is application only, we
simply start performance counters at thread creation and accumu-
late them when each thread is stopped. In the case where the GC or
other JVM task starts on the same pthread that a user application
was running, we store and account for intermediate counter values.
To access the counter without blocking and asynchronously, we use
perfect hashtable. Since the hash key is based on pthread id, it can
be non-blocking and race free. JVMTI does not specify an interface
for observing JIT behavior. We therefore turn off the JIT at the start
of the last warm-up iteration. This step gives the JIT sufficient time
to drain its work queues before the measurement iterations start.

The picture is further complicated when the JIT and/or GC op-
erate asynchronously and/or concurrently with respect to the ap-
plication. Although the above methodology isolates garbage col-
lection and JIT activity that arise in separate threads, a concurrent
garbage collector imposes a more direct burden on the mutator via
read and/or write barriers. To minimize this effect, we choose non-
concurrent GCs and take measurements on uniprocessors.

The above combination of call-backs, command-line flags and
suitable selection of GC and uniprocessor architectures allowed us
to accurately measure application performance on the stock JVMs.
We feel that better support from the JVMs would greatly assist the
task of performance analysis, particular on multi-core processors.
In particular, we would appreciate a) better exposed call-backs for
the JIT (only J9 does this), b) controlled and/or exposed concurrent
or asynchronous JVM activities.

2.2 Controlling Nondeterminism

Modern JVMs use adaptivehotspotoptimization systems to focus
the optimization efforts of the JIT on the most frequently executed
code. Since these systems use noisy profiling mechanisms such as
sampling to drive their heuristics, they introduce significant non-
determinism into the execution of a JVM. Furthermore, they gen-
erate nondeterministic optimization plans, and thus nondeterminis-
tic application performance. Such nondeterminism introduces two
distinct problems. First, when comparing systems, one must un-
derstand whether observed differences are artifacts due to noise in
different optimization plans system, or statistically significant dif-
ferences in the JVMs under study [8]. Second, in cases where it is
necessary to take multiple measurements of a system to perform
the evaluation, we must know the basis of the measurements, i.e.,
is the system the same or, if not, how dissimilar they are. Hardware
performance counters are especially sensitive to this second issue,
because of limitations in their implementation. Typically only a
limited number of counters can be measured at once, and thus it
is necessary to take multiple distinct measurements to perform per-
formance analysis of a system. For example, comparing the cache



JVM Version Options
J9 1.5 1.5.0 SR6b -server -Xgcpolicy:optthruput -Xcompactexplicitgc
J9 1.6 1.6.0 GA -server -Xgcpolicy:optthruput -Xcompactexplicitgc
JRockit 1.5 1.5.012-b04 -server -Xgc:parallel
JRockit 1.6 1.6.002-b05 -server -Xgc:parallel
HotSpot 1.5 1.5.014-b03 -server -XX:UseParallelOldGC
HotSpot 1.6 1.6.004-b12 -server -XX:UseParallelOldGC

Table 1. Production JVMs configurations. We chose options that have the highest code quality, including stop-the-world parallel GC that
minimizes application overhead.

behavior of two JVMs requires the number of loads, stores, and
misses. For a particular JVM, we need to take multiple measure-
ments. Of course, if the system under measure changes between
each measurement, meaningful analysis becomes difficult or im-
possible.

We attack the first problem by running a large number of trials
where each is a distinct invocation of a JVM. We then perform
statistical analysis to compute 95% confidence intervals across each
set of trials in all our experiments. These confidence intervals allow
us to determine whether observed performance differences among
JVMs are statistically significant or not.

We attack the second problem by running multiple iterations of
each benchmarkwithin a single JVM invocation. These measure-
ments comeafter the JIT has reached steady state. We first per-
form 10 unmeasured iterations of each benchmark, and turn the JIT
off after the 10th iteration. We run the 11th iteration unmeasured
to drain any JIT work queues. Then, we measure K iterations. On
each iteration, we gather different performance counters of interest.
Since the JIT has reached steady state and is turned off, the varia-
tion between the subsequent iterations should be low. Our results
show that it is indeed low: the standard deviation in total number of
cycles on each measured iteration is 2.07%, as described in detail
in Section 3.

Previously, we used a different methodology when measuring
Jikes RVM, an open source Java-in-Java JVM, with which we have
extensive experience. To solve this problem with JVM support, our
research group invented and implementedreplay compilation[9].
Replay compilation collects profile data and a compilation plan
from one or more training runs, and then replays this same opti-
mization plan in subsequent, independent timing invocations. This
methodology thus can deterministically JIT compile a program, but
requires modifications to the JVM. It isolates the JIT activity, since
replay aggressively compiles to the plan’s final optimization level
aggressively instead of based on hotspot recompilation triggers. It
also removes most profiling overheads associated with the adap-
tive optimization system, which is turned off. This methodology
is preferable to the one proposed here because it requires fewer
benchmark executions and provides determinism from the JIT com-
piler on multiple benchmark invocations. However, as far as we
are aware, production JVMs do not support replay compilation. We
would appreciate such support for both better performance debug-
ging [10] and better experimental methodology more generally [9].

2.3 Evaluation Environment

This section presents our evaluation details, including the JVM
versions, hardware platforms, OS support, benchmarks, and heap
sizes. We compare production JVMs, publicly available for eval-
uation. We use IBM J9, BEA JRockit, and Sun HotSpot. We use
both the latest 1.6 versions and 1.5 versions of each to which we
have access. Table 1 shows the version numbers and command-line
options.

Hardware and Operating System.We conducted our perfor-
mance counter experiments on a single 2GHz Pentium-M processor

Benchmark Size (MB)
compress 20

jess 16
raytrace 16

db 40
javac 40

mpegaudio 16
mtrt 40
jack 16
antlr 16
bloat 16

eclipse 80
fop 40

hsqldb 400
jython 16

lusearch 16
luindex 16

pmd 80
xalan 40

pjbb2000 400

Table 2. Heap sizes for each benchmark. We selected heap sizes
that are the maximum of 16MB (minimum size required by
JRockit) or 4 times minimum heap size.

which has 32KB 8-way separate instruction and data L1 cache, and
2MB of 4-way L2 cache. It supports 2 hardware counters, and 18
counters if multiplexed. We found multiplexing the performance
counters led to variations that were too high to obtain statically
significant results. To increase statistical precision, we therefore
measured 2 hardware counter metrics on each iteration. We per-
formed the experiment on 32bit Linux 2.6.20 kernel with Mikael
Pettersson’s perfctr patch, and used PAPI 3.5.0 library to interface
to the hardware performance counters.

Benchmarks. We run the 8 SPEC JVM 98 benchmarks, 11 of
12 DaCapo benchmarks, and pseudojbb a fixed workload variant
of SPECjbb2000 which uses eight warehouses and executes 12500
transactions on each [3, 12, 11]. We omiteclipse from DaCapo
because it causes J9 to crash due to the use of an out-of-date class
library which contains an error that is fixed in the most recent
version of Apache Harmony’s class libraries.

Heap Sizes. We configure the heap size as a function of four times
of minimum heap size requirement. We determine the minimum
heap size experimentally on these JVM, picking the smallest size
among the three JVMs. However, JRockit does not permit heap
sizes smaller than 16MB, so we used 16MB if the 4 times of
minimum heap size is smaller than 16MB. Fixing the heap size
controls for variations within the same JVM between executions of
the same benchmark due to heap size adaptations of the garbage
collector based on load. Across JVMs, fixing the heap size makes
comparing the collectors easier since they all have the same amount
of memory to work. Variations are thus due to choice of algorithm



and its space efficiency, rather than the JVM making the heap to
handle the allocation load.

3. Results
We now present a preliminary analysis of results from three perfor-
mance studies. The first study uses hardware performance counters
to provide in-depth insight into JVM performance. We first show
bottom line performance numbers for each benchmark. To show
the usefulness of this approach, we examine the performance of one
program, the DaCapojython benchmark, in detail (Section 3.1 and
Figures 2 through 6). Our second study uses a cycle accurate simu-
lator to reveal information not available with performance counters.
We show micro-instruction issue and retire rates, micro-instruction
mix, and store-to-load forwarding behavior. The third study uses
the simulator to perform a simple limit study which is not possible
with real hardware: we measure JVM performance with a ‘perfect’
cache to determine how much performance is lost due to poor cache
memory performance.

3.1 Performance Counters for Performance Debugging

We use 40 distinct performance counter metrics to analyze the
performance of the six JVMs on a Pentium-M platform. Figure 1
shows the normalized total execution time for each JVM on each
of the 19 benchmarks. These graphs report the normalized number
of executed cycles for the N+2th (11th) iteration of each bench-
mark, averaged over 10 invocations/trials. In each case, the result
is normalized to the JVM with the slowest average time. Error
bars indicate 95% confidence intervals, indicating the level of inter-
invocation noise.

In many cases, the JVMs perform comparably and when there
are small differences, these differences are within the error bars,
which indicates they are not significant. In the cases where there
are large differences between JVMs, e.g.,jython, pmd, javac,
jbb2000, andhsqldb, they are, for the most part, statistically sig-
nificant with 95% confidence because the error bars do not overlap.
JRockit has the most variation of the JVMs, seeantlr as an exam-
ple. This variation can account for the differences between it and
the other two JVMs. Additional measurements may be needed on
JRockit to provide higher confidence, or we may need additional
methodologies that controling the unresolved source of nondeter-
minism in JRockit. We leave to future work more in-depth analysis
of all the benchmarks, but perform an in-depth analysis ofjython as
a case study. We chosejython because the purpose of these tools is
performance debugging, andjython presents a particularly striking
performance problem where HotSpot performs much better than
J9.

Figures 2 through 6 show detailed performance counter data
for the jython benchmark. We present 40 metrics, starting with
total performance, shown in Figure 2(a). Unless otherwise noted,
all data are normalized to the JVM with the highest (worst) result.
Figure 2(b) shows time spent in the application (‘mutator’), and
Figure 2(c) presents the fraction of total time in GC solely as a
function of the JVM. We also show the number of retired and reis-
sued instructions and fraction of stalled cycles. For the remainder
of the results (Figures 3 through 6), we isolate the GC, so the results
are for themutator only. Figure 3 presents metrics relating to the
mutator data cache. Figure 4 shows metrics for the mutator instruc-
tion cache and I-TLB. Figure 5 shows mutator cache coherency and
hardware interrupt metrics. Finally, Figure 6 shows mutator branch
behavior forjython. Together, these data reveal a rich story behind
the poor performance ofjython on J9.

Garbage Collection. Figure 2(a) shows that the J9-1.6 perfor-
mance lags HotSpot-1.6 by around a factor of two. The first point
to note is that a large part of this problem appears to be due to

J9’s garbage collector. Figure 2(c) shows that while HotSpot spends
around 7% of the time in GC, J9-1.6 spends nearly 38% of the time
in GC onjython. Recall that the benchmarks are executed in fairly
generous heap sizes (at least 4× the minimum).

Instruction Count. However, GC is not the only problem for
J9 on jython. Figure 2(b) reveals that J9-1.6 also spends around
35% more time in the mutator than HotSpot-1.6. Figure 2(e) shows
us that about half of this (about 16%), is simply due to J9-1.6
retiring more instructions. Thus about half of the mutator slowdown
on jython is due to high level differences, such as different class
library implementations or high level optimizations, each of which
may lead to a difference in the number of retired instructions on a
fixed Java workload. Understanding these high level inefficiencies
better may be helped by studying the bytecode execution patterns
for each JVM or via more careful measurement of the libraries.
Our focus here, however is on low-level inefficiencies, which we
can explore via more detailed performance metrics.

Data Cache. Figure 3 examines the data cache performance for
each JVM onjython. We see in Figure 3(c) that J9 performs about
40% more memory accesses than HotSpot. Even accounting for
the 16% higher total instruction count, it is clear that J9 is access-
ing memory more often. There are numerous possibilities for this
increase, including more register spills. Although J9 misses the L1
data cache about 10% lessfrequentlythan HotSpot (Figure 3(b)),
its total L1 misses are still nearly 20% worse (Figure 3(a)). It is
interesting to note (Figure 3(e) and (f)) that J9 suffers fewer misses
on loads than the other JVMs, but much more misses on stores.
Figures 3(g) and (h) show that J9 misses the data L2 nearly five
times as often as HotSpot and about ten times as often as JRockit.
This data suggests that in addition to increased data accesses, J9
suffers some locality problems onjython, when compared to the
other JVMs.

Instruction Cache. Figure 4 examines the instruction cache per-
formance for each JVM onjython. The error bars indicate that
these metrics are particularly sensitive to inter-invocation nonde-
terminism. This is unsurprising since the primary source of non-
determinism is in the optimization plan which will directly impact
instruction access patterns. Nonetheless, it is interesting to note that
J9 hits the L1 more often than the other JVMs, but misses the L2
significantly more often. The variation in I-TLB is so great that the
error bars extend well beyond the edges of the graph, suggesting
that the I-TLB is particularly sensitive to inter-invocation nonde-
terminism.

Cache Coherency. Figure 5 shows that J9 issues far more re-
quests for clean cache lines and for cache line intervention. How-
ever, it is not clear that these are the source of any of the slowdown
on the uniprocessor Pentium-M we are measuring in this study.

Branch Behavior. Finally, Figure 6 shows the branch behavior of
each of the JVMs onjython. Here we see that HotSpot issues more
than 30% fewer branch instructions than J9. Even though about half
of those could be due to HotSpot’s 16% lower instruction count,
this difference still indicates significantly more branches in the J9
code (Figure 6(b)). Both J9 and HotSpot take branches at about the
same rate (Figure 6(e)), and have roughly the same total number
of branch mispredictions (Figure 6(f)). However, J9 has a lower
number of branches per cycle and a lower misprediction ratio due
to its higher cycle count and branch count.

Together the above analysis reveals numerous sources of J9’s
relatively poor performance onjython and areas to explore to
improve performance, painting a rich picture of JVM performance.
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Figure 1. Total Running Time (Normalized to Slowest)
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Figure 2. Basejython Performance

3.2 Simulation Results

This section takes a deeper look at the performance ofjython
through the use of a cycle accurate simulator. We use PTLsim, an
open source, cycle-level full system x86-64 simulator, which has
been validated on the AMD K8 [14]. PTLsim provides native speed
fast forwarding when executing on the same architecture as the
one being simulated. This functionality is critical for our method-
ology because PTLsim can perform all the warm-up iterations at
native speed, and only pay the full price of cycle-level full sys-
tem simulation for the measured iterations. In these experiments,
we configure PTLsim to model a single core AMD Athlon 3500+
processor (although PTLsim is capable of multi-core simulation).
Unfortunately, we found that PTLsim could not reliably simulate
JRockit, although it had no problems with J9 and HotSpot. Be-
cause of the time-intensive nature of cycle accurate simulation and
JRockit problems, we present results for the 1.6 JVMs: J9-1.6 and
HotSpot-1.6 in Table 1.

The amount and variety of information available from simu-
lation is enormous. Here we explore two metrics which are not
available with performance counters: a) the mix of executed micro-
operations, and b) the amount of store-to-load forwarding that
occurs within the load-store queues. Figure 7 shows the micro-
operation mix for the two JVMs runningjython. Each bar reflects
the dynamic count of a particular micro-operation class as a per-
centage of all micro-operations. Since x86 processors decode x86
instructions into micro-operations before issue, the micro-operation
mix is a key element of performance. However, micro-operations
are not exposed in the ISA and are therefore not visible through
the performance counters. The data reveals a number of interest-
ing patterns. One pattern is that J9 issues significantly more loads
and stores than HotSpot, which is consistent with the performance
counter data in Figure 3. It is also clear that HotSpot makes much
more use of theaddshift micro-operation, whereas J9 tends to
useaddsub more. HotSpot also performs significantly more logi-
cal operations.

Figure 8 shows that J9 sees many more of its loads serviced
by store forwarding than does HotSpot which may partly be a by-
product of J9’s greater store frequency, or it may indicate a pattern
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Figure 8. Store Forwarding forjython

of tightly coupled stores and loads due to for example, register
spills.

This data shows that the combination of performance counter
results and cycle accurate simulation provide complementary and
in depth performance analysis given an appropriate methodology
that correlates their results.

3.3 Limit Studies with Simulation

Finally, we show an example of use of the simulator to examine
the effects of radical hardware change. In this case, we explore
the effect of a ‘perfect’ cache—one that never misses. These data
were gathered before we developed our multi-invocation methodol-
ogy for controlling nondeterminism (Section 2.2), so required us to
run two distinct experiments, one with the regular AMD K8 3500+
cache, and one with the perfect cache. In the future, we will col-
lect this data with the two cache configurations being explored in
consecutive iterations of the same invocation to attain results that
are more comparable. A related variation on this methodology is to
take a machine state snapshot at the end of the warm-up iterations,
and then start each of a set of measurement simulations with the
same ‘warmed up’ snapshot. We have not yet used this methodol-
ogy, but for some simulators, it will be an easier choice.

The data in Figure 9 shows the impact on IPC (instructions per
cycle) of a perfect cache, and thus indirectly indicates the IPC over-
head due to real cache latencies. Here we just show results for J9-
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Figure 3. Mutator Data Cache Performance Forjython

1.6. In these graphs, IPC is measured three ways: 1) x86 instruc-
tions per cycle, 2) issued micro-operations per cycle, and 3) re-
tired micro-operations per cycle. Since the hardware decodes x86
instructions into simpler micro-operations and the out-of-order pro-
cessor we model re-issues on failed speculation, the retired micro-
operations per cycle is the most meaningful of these metrics. Fig-
ure 9 presents IPC for three SPECjvm98 benchmarks,compress,
jess anddb. The small differences between perfect and real caches
for compress andjess indicates that neither of these benchmarks’
IPC suffers significantly with a regular cache. On the other hand,
the IPC fordb more than doubles with a perfect cache, and suffers
particularly poor IPC on our real cache. This result is consistent
with conventional wisdom thatdb is very sensitive to locality [2, 9].

4. Conclusion
The nondeterminism, complexity and size of modern JVMs makes
it hard to apply standard tools for microarchitectural performance
evaluation, such as cycle accurate simulation and hardware per-

formance counters. In this work-in-progress report, we identify
new methodologies for evaluating stock production JVMs while
minimizing sources of nondeterminism and isolating the behav-
ior of the JVM runtime from the application. Our work builds on
prior approaches that isolate the JVM runtime and perform statis-
tically rigorous JVM performance evaluation. In particular, we in-
troduce a multi-invocation, multi-iteration methodology which pro-
vides measurements of multiple executions of a benchmark that are
not perturbed by JIT compilation and that have the same starting
state. We show how these methodologies can be used to gather a
large number of metrics from hardware performance counters and
to evaluate different hardware scenarios in simulation. We show
that these new tools allow us to gain new insights into JVM per-
formance issues on a single benchmark, and are therefore likely to
to be useful more broadly in comparing JVM performance and in
understand and evaluating future hardware innovations.
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