
Power and Performance of Native and Java
Benchmarks on 130nm to 32nm Process Technologies

Hadi Esmaeilzadeh
The University of Texas at Austin

hadi@cs.utexas.edu

Stephen M. Blackburn Xi Yang
Australian National University

{Steve.Blackburn,Xi.Yang}@anu.edu.au

Kathryn S. McKinley
The University of Texas at Austin

mckinley@cs.utexas.edu

Abstract
Over the past decade, chip fabrication technology shrank from
130nm to 32nm. This reduction was generally considered to pro-
vide performance improvements together with chip power reduc-
tions. This paper examines how well process technology and mi-
croarchitecture delivered on this assumption. This paper evalu-
ates power and performance of native and Java workloads across
a selection of IA32 processors from five technology generations
(130nm, 90nm, 65nm, 45nm, and 32nm). We use a Hall effect sen-
sor to accurately measure chip power. This paper reports a range
findings in three areas. 1) Methodology: TDP is unsurprisingly a
poor predictor of application power consumption for a particular
processor, but worse, TDP is a poor predictor of relative power
consumption between processors. 2) Power-performance trends:
Processors appear to have already hit the power wall at 45nm. 3)
Native versus Java workloads and their relationship to processor
technology: Single threaded Java workloads exploit multiple cores.
These results indicate that Java workloads offer different opportu-
nities and challenges compared to native workloads. Our findings
challenge prevalent methodologies and offer new insight into how
microarchitectures have traded power and performance as process
technology shrank.

1. Introduction
This paper explores measured power and performance at a time
when hardware and software are undergoing fundamental changes.
Over the past seven years, process technology has followed Moore’s
law and shrunk from 130nm to 32nm, but today, rather than faster
cores, more cores are delivering much of the performance dividend.
Meanwhile demand for mobility, reliability, and ubiquity have re-
sulted in an explosion of new applications written in managed pro-
gramming languages, which are dynamically compiled, use safe
pointer disciplines, and use garbage collection (automatic memory
management). We evaluate processor power and performance in
the midst of these fundamental changes.

Our contributions fall in three areas: methodology for power-
performance analysis, measurement and analysis of power-perf-
ormance trends over the past seven years, and native versus Java
workloads over these seven years of process technologies, thus
intersecting language and hardware technology changes.

The prevalent methodology for power-performance analysis has
been based on the performance of C benchmarks and the use of
power estimates such as TDP (thermal design power). In this work,
we use a Hall effect sensor to accurately measure chip power con-
sumption. As our representative of mananged languages, we use
Java, which is currently the most popular managed language. Our
results show that not only are proxies such as TDP and maximum
power very poor estimates of actual power consumption on a given
processor, but worse, that they are not predictive of relative power

consumption among processors. We find that Java and C bench-
marks perform differently in a number of important regards. In par-
ticular, we hypothesize that the use of a virtual machine is key to
some of these differences. Given the commercial reality of man-
aged languages and the importance of power analysis, our findings
suggest that power analysis must consider managed languages and
use measured power rather than estimates such as TDP. We also
note that the non-determinism introduced by dynamic optimization
and garbage collection in managed languages require different per-
formance evaluation methodologies [7].

We perform power-performance analysis across a range of IA32
processors representing five technology generations from 130nm in
2003 to 32nm in 2010. To the best of our knowledge, this study is
the first systematic exploration of power and performance across
technology generations using measured power. As expected, our
results show that performance improvements from generation to
generation have decreased. In the transitions to 45nm and 32nm,
processors appear to have already hit the power wall. Many per-
formance improvements have come at a significant cost to power.
In particular, performance improvements for multi-threaded Java
workloads have come at a notable cost to power consumption on
both generations of the most recent Nahelem microarchitecture
family.

We use more than fifty native (C, C++ and Fortran) and Java
benchmarks drawn from the SPEC CPU 2006, DaCapo, SPEC
jvm98 suites, and SPEC jbb2005. We classify these benchmarks
into four groups: native integer benchmarks (NINT) (C and C++),
native floating point benchmarks (NFP) (C, C++ and Fortran), Java
single-threaded benchmarks (JST), and Java multi-threaded bench-
marks (JMT). Our results indicate that the past seven years of tech-
nology change have played out differently among the four groups.
In particular, NFP has benefited most from technology changes,
while NINT, JST and JMT have fared less well. Surprisingly, JST
benchmarks exploit more than one core. We hypothesize that this
result is due to parallelism within the managed runtime on which
these applications run. Unfortunately, many JMT benchmarks scale
very poorly.

Our results show that Java benchmarks, and more broadly pro-
grams using managed languages, are worthy of special attention
because they behave differently from native benchmarks and they
present new opportunities due to the parallelism inherent in the
runtime. This finding and the commercial dominance of managed
languages from JavaScript to F# and Java suggests that the use of
managed languages should be integral to power-performance eval-
uation methodology. Our results also show that power needs to be
measured directly since commonly used estimates such as TDP are
both inaccurate and misrepresent relative power between proces-
sors. Thus we suggest changes to the prevalent methodology and
offer new insight into how process technology and microarchitec-
tural advances have played out in software power and performance

over the past seven years. Understanding the profound changes
occurring in both hardware and software, and their interactions,
clearly warrants further study.

2. Related Work
TDP (Thermal Design Power) is widely used in the literature as an
estimate of chip power consumption. Horowitz et al. study power-
performance across different process technologies using TDP to es-
timate power and SPECmark to estimate performance [11]. They
study different aspects of CMOS scaling technology and its impact
on power and performance. Hempstead et al. introduce an early
stage modeling framework, Navigo, for multi-core architecture ex-
ploration across future process technologies from 65nm down to
11nm [10]. Navigo supports voltage and frequency scaling based
on ITRS [1] and predictive technology models (PTM) [2]. As the
starting point, Navigo uses reported TDP values and SPECmarks as
the estimate of power and performance respectively and then pre-
dicts the power and performance of processors in the future tech-
nology nodes. Chakraborty uses TDP as the power envelope for
studying the chip multiprocessor power consumption trends in the
future technology nodes [8]. Our results show that TDP is not a
good estimate for actual power consumption, suggesting that stud-
ies such as these [8, 10, 11] need to be reconsidered in light of
measured power rather than TDP.

Li et al. explore the design space of chip multiprocessors under
various area and thermal constraints [13]. They combine decoupled
trace-driven cache simulation and cycle-accurate execution-driven
simulation with detailed single-core simulation to achieve high ac-
curacy in power and performance estimation for chip multiproces-
sors. While Li et al.’s work uses simulation and is prospective, ours
uses direct measures and is retrospective, measuring the power and
performance characteristics of existing processors.

Isci and Martonosi introduce a technique for a coordinated mea-
surement approach that combines real total power measurement
using a clamp ammeter with performance-counter-based, per unit
power estimation [12]. They measure total power for an Intel Pen-
tium 4 on the SPEC CPU2000 benchmark suite.

Bircher and John [5] perform a detailed study of power and
performance on AMD quad core Opteron and Phenom processors.
They measure power directly using a series resistor, sampling the
voltage across the resistor at 1KHz. Our work is complimentary.
While they take a very close look at two specific processors, we
examine power-performance trends across multiple generations of
microarchitecture and process technology.

Fan et al. [9] study the challenge of accurately estimating whole
system power in the setting of large scale data centers. They find
that when running the most power-consuming workloads, the stud-
ied systems drew less than 60% of the nominal ‘nameplate’ peak
power consumption for the system. Similar to our study, they find
that actual power is very different to nominal power. However, our
concern is chip rather than whole system power, and our objective
is in studying power-performance trends across processor gener-
ations while theirs is in estimating the power needs of large data
centers.

In this paper, first we confirm that thermal design power (TDP)
is not a reliable estimate of the processor power consumption. Our
power measurements show that TDP, TDP per core, and maximum
power are all very poor models of actual measured power consump-
tion. We study power-performance trends for both single-threaded
SPEC CPU2006 native benchmarks, and single and multi-threaded
Java benchmarks, including SPEC JVM98, SPEC JBB2005, and Da-
Capo across five process technologies from 130nm to 32nm. As far
as we are aware, this paper is the first to quantitatively study power
and performance trends across hardware generations using single
and multi-threaded, native and managed workloads.

3. Methodology
This section describes the hardware, power measurement method-
ologies, benchmarks, compiler, Virtual Machines, and performance
measurement methodologies using which we report the results.

3.1 Hardware Platforms
To evaluate the power and performance trends across various pro-
cess technology nodes, we use nine IA32 chips, manufactured
using five different process technologies (130nm, 90nm, 65nm,
45nm, and 32nm). Table 1 lists the processors, the number of cores
on each processor, their clock speed, last level cache size, TDP,
maximum power, sSpec number, release date and release price.
TDP is the thermal design power, i.e., the amount of power the chip
can dissipate without exceeding the maximum junction tempera-
ture, and in fact it does not correspond to the power consumed dur-
ing the execution of the typical realistic workloads. Manufacturers
usually report the same TDP for a family of microarchitectures (see
Core 2 Duo Conroe (65nm) and Core 2 Duo Wolfdale (45nm) in Table 1).
However, as shown in Table 1, the maximum amount of power that
a chip can draw is higher than the reported TDP. This paper com-
pares TDP and TDP per core to measured power and explores using
maximum power, which is equally inaccurate. We report the sSpec
number which Intel uses to uniquely identify a chip. We report the
release date and nominal release price to provide context regarding
Intel’s placement of each processor in the market. The two Atom
machines and the Core 2 Quad Kentsfield (65nm) are outliers at the
bottom and top of the market respectively.

3.2 Power Measurements
To measure the power consumption, we use Pololu’s ACS714 cur-
rent sensor board, following the same methodology as Pallipadi and
Starikovskiy [14]. The board is a carrier for Allegro’s±5A ACS714
Hall effect-based linear current sensor. The sensor accepts a bidi-
rectional current input with a magnitude up to 5A. The output is
an analog voltage (185mV/A) centered at 2.5V with a typical error
of less than 1.5%. The sensor is placed on the 12V power line that
merely drives the processor chip.

We use Sparkfun’s Atmel AVR Stick, which is a simple data-
logging device, to send the measured values from the current sensor
to the USB port. We use a data-sampling rate of 5Hz, except for the
Core i5, which requires a 1Hz data-sampling rate. We execute each
benchmark, log all its measured power values, and then compute
the average power consumption. For the Java benchmarks, which
perform dynamic optimization, we measure the fifth iteration (re-
flecting steady state), and we take ten such measurements for each
benchmark, reporting the arithmetic mean of the ten measurements.

3.3 Benchmarks
We use 52 benchmarks drawn from five suites. The benchmarks are
listed in Table 2. We group the benchmarks as follows: C and C++
integer benchmarks, NINT, drawn from SPEC CINT2006; C, C++
and Fortran floating point benchmarks, NFP, drawn from SPEC
CFP2006; Java single-threaded benchmarks, JST, drawn from SPEC
JVM98, DaCapo-2006-10-MR2, and DaCapo-9.12; and Java multi-
threaded benchmarks, JMT, drawn from DaCapo-9.12 and PJBB2005.
Table 2 shows the benchmarks, their groupings, the suites the
benchmarks were drawn from, the running time for each bench-
mark on the Atom 230 Diamondville (45nm) which we normalize our
results to, and a short description. The sections below describe the
measurement methodology in detail.

3.3.1 Native Integer and FP Benchmarks (NINT, NFP)
The NINT and NFP groups map directly to the SPEC CINT2006 and
SPEC CFP2006 suites respectively [15]. All of these benchmarks

Max Release
Process # of Clock LLC TDP Power sSpec Release Price

Processor µArch Microprocessor nm Cores GHz MB W W Number Date USD

Pentium 4 NetBurst Northwood 130 1 2.40 0.5 66.2 — SL6WF May ’03 —
Pentium M 760 P6M Dothan 90 1 2.00 2.0 27.0 38.20 SL7SQ Jan ’05 $423
Core 2 Duo E6600 Core Conroe 65 2 2.40 4.0 65.0 105.15 SL9S8 Jul ’06 $316
Core 2 Quad Q6600 Core Kentsfield 65 4 2.40 8.0 105.0 155.25 SL9UM Jan ’07 $851
Atom 230 Atom Diamondville 45 1 1.66 0.5 4.0 6.73 SLB6Z Jun ’08 $29
Atom D510 Atom Pineview 45 2 1.66 1.0 13.0 — SLBLA Dec ’09 $63
Core 2 Duo E7600 Core Wolfdale 45 2 3.06 3.0 65.0 98.89 SLGTD May ’09 $133
Core i7 920 Nehalem Bloomfield 45 4 2.66 8.0 130.0 230.14 SLBCH Nov ’08 $284
Core i5 670 Nehalem Clarkdale 32 2 3.40 4.0 73.0 128.71 SLBLT Jan ’10 $284

Table 1. Experimental Processor Technologies

are single-threaded and all are native (C, C++, or Fortran) [3]. The
NINT benchmarks are intended to represent compute-intensive inte-
ger applications that contain sophisticated control flow logic. The
NFP benchmarks represent compute-intensive floating-point appli-
cations. We complied all of these benchmarks with version 11.1
of the 32-bit Intel compiler suite using the -o3 optimization flag.
We compiled each benchmark once, using the default Intel com-
piler configuration, without setting any microarchitecture-specific
optimizations, and used the resulting binary on all platforms. We
exclude 410.bwaves and 481.wrf because they failed to execute when
compiled with the Intel compiler. We report the mean of three exe-
cutions of each benchmark by invoking each benchmark three times
in succession.

3.3.2 Java Single-Threaded Benchmarks (JST)
The JST benchmark group includes all single threaded benchmarks
from SPEC JVM98, and two releases of DaCapo. SPEC JVM98 is
intended to be representative of client-side Java programs. Java
programs execute on a JVM (Java Virtual Machine) with a Just-
In-Time (JIT) compiler and garbage collector. Although the SPEC
JVM98 benchmarks are over ten years old and Blackburn et al. have
shown they are simple and have a very small instruction cache
and data footprint [6], many researchers still use them. The Da-
Capo Java benchmarks are a suite of a forward-looking, widely
used, nontrivial, and diverse set of client-side applications [6, 16].
The DaCapo suite selects its benchmarks from major open source
projects under active development. Researchers have not yet re-
ported extensively on the latest release, but it was designed to ex-
pose richer behavior and concurrency on large working sets. We ex-
tract the following single-threaded benchmarks from the 2006 Da-
Capo benchmark release (DaCapo-2006-10-MR2) and from the most
current release (DaCapo-9.12): antlr and bloat from DaCapo-2006-10-
MR2; and fop and luindex from DaCapo-9.12.

3.3.3 Java Multi-Threaded Benchmarks (JMT)
The JMT benchmark group includes all multi-threaded benchmarks
from SPEC JVM98, PJBB2005, and DaCapo-9.12 (DaCapo-2006-10-
MR2 does not include any multi-threaded benchmarks that are not
in DaCapo-9.12). PJBB2005, is a variant of SPEC JBB2005 [15],
that holds the workload, instead of time, constant. We configure
PJBB2005 with 8 warehouses and 10,000 transactions per ware-
house. We exclude tradesoap from DaCapo because we found it dif-
ficult to run successfully on our slowest machines (it makes heavy
use of sockets, which time out on slow machines).

3.4 Java Virtual Machines
We use two Java Virtual Machines, Sun (Oracle) HotSpot ver-
sion 1.7 and Intel JRockit version 1.6, to execute the Java bench-

marks. We follow the recommended methodologies for measuring
Java [4, 7]. We measure and report the third iteration of each bench-
mark, which is approximates steady state performance. This exe-
cution may still have compiler activity, but has sufficient time to
create optimized frequent executed code. We perform this process
ten times and report the geometric mean. We require at least ten
iterations because the adaptive JIT compilation and garbage col-
lection induce non-determinism. We interleave every execution of
each benchmark with the other benchmarks to reduce the proba-
bility that one interfering event, such as an operating system de-
mon, will disrupt all the executions of the same benchmark. In con-
trast to the native workloads, which are compiled a head of time,
for the Java benchmarks the compilers may dynamically produce
microarchitecture-specific code.

3.5 Operating System and Performance Methodology
We perform all the experiments with Ubuntu 9.10 Karmic with the
2.6.31 Linux kernel. We normalize the execution times for Java
benchmarks with HotSpot and all the native benchmarks to the ex-
ecution time on Atom 230 Diamondville (45nm) with HotSpot. The
Atom 230 Diamondville (45nm) is the lowest performing processor in
the set of evaluation platforms. Table 2 lists the average execution
time of each benchmark on the Atom 230 Diamondville (45nm). We
calculate the performance of each benchmark group using the geo-
metric mean.

4. Experimental Results
4.1 Power Dissipation Estimation for Native Benchmarks
We start by exploring the power-performance characteristics of the
NINT and NFP benchmarks across our range of microarchitectures,
using three different measures of power: nominal chip power, nom-
inal chip power per core, and measured power. For nominal chip
power, we use the manufacturer’s published TDP (thermal design
power). For measured power we use the Hall effect sensor de-
scribed above. We have not been able to measure power on the
Atom or Pentium M processors due to their unique power delivery
mechanisms.

Figure 1 depicts average power and performance for NINT (SPEC
CINT2006, left column) and NFP (SPEC CFP2006, right column)
with respect to each of the three power metrics: TDP, TDP divided
by the number of cores, and measured power. Results are plotted on
a log-log scale and performance is normalized to the performance
of the single core, low-power, Atom 230 Diamondville (45nm) pro-
cessor, as show in Table 2. Each plotted point reflects the average
power and performance for the entire benchmark group on a given
processor.

Run
Time

Group Source Benchmark (sec) Description

N
IN

T

SPEC CINT2006

400.perlbench 2.0 Perl programming language
401.bzip2 2.9 bzip2 Compression
403.gcc 1.5 C optimizing compiler
429.mcf 2.0 Combinatorial optimization/singledepot vehicle scheduling
445.gobmk 1.9 Artificial intelligence (Go game playing)
456.hmmer 1.7 Search a gene sequence database
458.sjeng 2.3 Artificial Intelligence (game tree searchand pattern recognition)
462.libquantum 1.2 Physics / Quantum Computing
464.h264ref 3.0 H.264/AVC video compression
471.omnetpp 1.7 Ethernet network simulation based o then OMNeT++ simulator
473.astar 2.0 Portable 2D path-finding library that is used in game’s AI
483.xalancbmk 1.7 XSLT processor for transforming XML documents

N
FP SPEC CFP2006

416.gamess 9.0 Quantum chemical computations
433.milc 1.2 Physics/quantum chromodynamics (QCD)
434.zeusmp 3.9 Physics/Magnetohydrodynamics based on ZEUS-MP
435.gromacs 2.0 Molecular dynamics simulation
436.cactusADM 4.6 Cactus and BenchADM physics/general relativity kernels
437.leslie3d 3.6 Large-Eddy Simulations with Linear-Eddy Model in 3D computa-

tional fluid dynamics
444.namd 2.7 Parallel program for the simulation of large biomolecular systems
447.dealII 1.7 Partial differential equations with the adaptive finite element method
450.soplex 1.9 Simplex linear program (LP) solver
453.povray 1.3 A ray-tracer
454.calculix 2.6 Finite element code for linear and nonlinear 3D structural applications
459.GemsFDTD 3.3 Solves the Maxwell equations in 3D in the time domain
465.tonto 3.1 Quantum crystallography
470.lbm 2.3 Lattice Boltzmann Method (LBM) to simulate incompressible fluids
482.sphinx3 4.3 Speech recognition

JS
T

SPEC JVM98

201 compress 9.9 Compress/uncompress large files based on Lempel-Ziv method
202 jess 3.1 Java expert system shell
209 db 9.6 Small data management program
213 javac 6.5 The JDK 1.0.2 Java compiler compiling 225000 lines of code
222 mpegaudio 6.7 MPEG-3 audio stream decoder
228 jack 5.0 Parser generator with lexical analysis (early version of JavaCC)

DaCapo-2006-10-MR2
antlr 8.2 A parser generator and translator generator
bloat 14.7 A Bytecode-level optimization and analysis tool for Java

DaCapo-9.12
fop 4.8 An output-independent print formatter
luindex 4.3 A text indexing tool

JM
T

SPEC JVM98 227 mtrt 1.6 Dual-threaded raytracer

DaCapo-9.12

avrora 20.2 Simulates the AVR microcontroller
batik 8.5 A Scalable Vector Graphics (SVG) toolkit
eclipse 101.6 An integrated development environment
h2 26.9 An SQL relational database engine written in Java
jython 27.8 A python interpreter written in Java
lusearch 15.9 A text search tool
pmd 14.7 A source code analyzer for Java
sunflow 37.2 A photo-realistic rendering system
tomcat 17.6 Tomcat servlet container
tradebeans 34.6 Tradebeans Daytrader benchmark
xalan 15.1 An XSLT processor for transforming XML documents

PJBB2005
pjbb2005 14.8 A fixed workload version of SPEC JBB2005, which is a server appli-

cation consisting of a wholesale company with warehouses that serve
different districts

Table 2. Benchmark group composition, run times on the baseline architecture, Atom 230 Diamondville (45nm), and short description.

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm)

15

30

45

60

75
90

105
120
135
150

Lo
g
-s

ca
le

 C
h
ip

 P
o
w

e
r

(w
a
tt

s)

 Pentium 4 (130nm)

 Pentium M (90nm)

Core 2 Quad (65nm)

Core 2 Duo (65nm)

 Atom 230 (45nm)

 Core i7 (45nm)

 Atom D510 (45nm)

 Core 2 Duo (45nm)

 Core i5 (32nm)

Native Integer (NINT)

130nm

90nm

65nm

45nm

32nm

(a) TDP vs Performance

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm)

15

30

45

60

75
90

105
120
135
150

Lo
g
-s

ca
le

 C
h
ip

 P
o
w

e
r

(w
a
tt

s)

 Pentium 4 (130nm)

 Pentium M (90nm)

Core 2 Quad (65nm)

Core 2 Duo (65nm)

 Atom 230 (45nm)

 Core i7 (45nm)

 Atom D510 (45nm)

 Core 2 Duo (45nm)

 Core i5 (32nm)

Native FP (NFP)

130nm

90nm

65nm

45nm

32nm

(b) TDP vs Performance

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm)

10

20

30

40

50
60
70
80
90

Lo
g
-s

ca
le

 C
h
ip

 P
o
w

e
r/

C
o
re

s
(w

a
tt

s) Pentium 4 (130nm)

Pentium M (90nm)
 Core 2 Quad (65nm)

Core 2 Duo (65nm)

 Atom 230 (45nm)

 Core i7 (45nm)

 Atom D510 (45nm)

Core 2 Duo (45nm)

 Core i5 (32nm)

Native Integer (NINT)

130nm

90nm

65nm

45nm

32nm

(c) TDP / Core vs Performance

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm)

10

20

30

40

50
60
70
80
90

Lo
g
-s

ca
le

 C
h
ip

 P
o
w

e
r/

C
o
re

s
(w

a
tt

s) Pentium 4 (130nm)

Pentium M (90nm)
 Core 2 Quad (65nm)

Core 2 Duo (65nm)

 Atom 230 (45nm)

 Core i7 (45nm)

 Atom D510 (45nm)

Core 2 Duo (45nm)

 Core i5 (32nm)

Native FP (NFP)

130nm

90nm

65nm

45nm

32nm

(d) TDP / Core vs Performance

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm)

10

20

30

40

50

60

70

Lo
g
-s

ca
le

 M
e
a
su

re
d
 A

v
g
 P

o
w

e
r

(w
a
tt

s)

 Pentium 4 (130nm)

Core 2 Duo (65nm)

 Core i7 (45nm)

Core 2 Duo (45nm)
 Core i5 (32nm)

Native Integer (NINT)

130nm

65nm

45nm

32nm

(e) Measured Power vs Performance

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm)

10

20

30

40

50

60

70

Lo
g
-s

ca
le

 M
e
a
su

re
d
 A

v
g
 P

o
w

e
r

(w
a
tt

s)

 Pentium 4 (130nm)

Core 2 Duo (65nm)

 Core i7 (45nm)

Core 2 Duo (45nm)
 Core i5 (32nm)

Native FP (NFP)

130nm

65nm

45nm

32nm

(f) Measured Power vs Performance

Figure 1. Power versus performance across different process technologies and microarchitectures for SPEC CINT2006 and SPEC CFP2006
using TDP and measurement. (a), (b) TDP: total chip power. (c), (d) TDP/cores: chip power/number of cores. (e), (f) Measured average
power.

In Figure 1(a) and (b), TDP is used in the power-performance
plot. However, since the NINT and NFP benchmarks are single-
threaded, the extra cores are not being utilized during the exe-
cution. For example, the Core 2 Quad Kentsfield (65nm) and the
Core 2 Duo Conroe (65nm) quad and dual core variants of the same
microarchitecture deliver the same performance, however, this ap-
proach estimates that the Core 2 Quad Kentsfield (65nm) may con-
sume 62% more power. Similarly, Figure 1(a)-(b) suggests the
Core i7 Bloomfield (45nm) may consume 41% more power while de-
livering less performance on both benchmark suites than its dual-
core cousin, the Core i5 Clarkdale (32nm) processor .

The NINT and NFP benchmarks are all single-threaded, so it is
tempting to divide total chip power by the number of cores when
assessing the power-performance characteristics of a given bench-
mark, since only one core is utilized. Thus Figure 1(c) and (d) show
the total chip power (TDP) divided by the number of cores versus
speedup over the Atom 230 Diamondville (45nm) processor for differ-
ent architectures. Dividing the TDP by the number of cores is the
first-order approximation of the single core power dissipation in a
chip multiprocessor architecture. However, it ignores the fact that
the ‘uncore’ (shared) on-chip components (such as last level cache)
account for a significant fraction of the chip power and are uncon-
tended when the other cores are inactive and thus may be fully
utilized by the single core. The assumption also ignores the real-
ity that background tasks may utilize the otherwise unused cores.
Nonetheless, this approach to power analysis is arguably more use-
ful than whole chip power for single thread benchmarks, so it is
used. If we use this model of power, the results from Figure 1(c)-
(d) invert the findings above, suggesting that Core i5 Clarkdale (32nm)
may consume more power than Core i7 Bloomfield (45nm) and that
similarly, Core 2 Duo Conroe (65nm) may consume more power than
Core 2 Quad Kentsfield (65nm).

Figures 1(e) and (f) show the real measured power. This data
paints a very different power-performance picture with respect to
each processor and with respect to trends across processor gener-
ations. For example, the Core i5 Clarkdale (32nm) consumes around
20W on average, about half that predicted by TDP/core and around
one quarter that predicted by TDP. Worse, the relative performance
of the Core i5 Clarkdale (32nm) when compared to Core i7 Bloomfield
(45nm) and Pentium 4 Northwood (130nm) is entirely different from
that predicted by Figures 1(a)–(d). Also, Figures 1(e) and (f) reveal
that Core 2 Duo Wolfdale (45nm) has substantially lower power con-
sumption than Core 2 Duo Conroe (65nm) whereas they share a TDP
of 65W.

Our study confirms that TDP (chip total power) and TDP per
core consumption are very poor metrics for use in studies of power
dissipation trends across different process technology nodes.

Figures 1(e) and (f) reveal some interesting changes in actual
power and performance across generations. For NINT (NFP), the
Core 2 Duo Conroe (65nm) consumes 37% (34%) less power than
the Pentium 4 Northwood (130nm), while improving performance by
a factor of 2.35 (2.11). Both architectures are operating at 2.40GHz.
Furthermore, the Core 2 Duo Wolfdale (45nm), a 45nm variant of the
Core 2 Duo Conroe (65nm) with a smaller LLC operating at 3.06GHz,
consumes 40% (39%) less power compared to Core 2 Duo Conroe
(65nm), while improving performance 30% (21%). Similarly, when
the Core i7 Bloomfield (45nm) is die shrunk from 45nm to 32nm,
which yields the Core i5 Clarkdale (32nm), performance improves as
the clock increases from 2.66GHz to 3.40GHz, while total power
consumption drops significantly. The reduction in power from the
Core i7 Bloomfield (45nm) to the Core i5 Clarkdale (32nm) is not due to
the technology shrink alone, but includes different power manage-
ment strategies and significantly smaller uncore power demands.
For example, instead of the Core i7 Bloomfield (45nm)’s four cores
and 8MB LLC, the Core i5 Clarkdale (32nm) has two cores and 4MB

LLC. The very large last level cache is unlikely to help NINT or NFP
benchmarks since they generally place modest demands on mem-
ory, especially compared to the Java benchmarks, which we explore
next.

Finally, looking more broadly at the performance trends across
all architectures, NFP speeds up more than NINT relative to the
Atom 230 Diamondville (45nm). This result is likely due to the greater
instruction level parallelism available in the floating point bench-
marks, which the out-of-order processors exploit to perform faster
and deliver higher speedup compared, for example, to the Atom
230 Diamondville (45nm) in-order processor.

4.2 Contrasting Native and Java Single-Threaded
Benchmarks

This section explores how the choice of a managed language affects
the power-performance trade off. It starts by comparing single-
threaded Java benchmarks (JST) to NINT and NFP, since they are
strictly single threaded, and then examines multi-threaded Java
benchmarks (JMT).

The left column of Figure 2 depicts speedup for each architec-
ture with respect to: (a) native benchmarks (SPEC CPU2006, with
both NINT and NFP together); (c) Java single-threaded benchmarks
(JST); and (e) Java multi-threaded benchmarks (JMT). We use box-
and-whisker plots to represent the range of speedups among the
benchmarks constituting each group. The bottom and top of each
box represent the lower and upper quartiles, respectively, and the
band near the middle of the box is the 50th percentile (the median).
The whiskers represent the lowest datum that is still within 1.5 in-
ter quartile range (IQR) of the lower quartile, and the highest datum
that is still within 1.5 IQR of the upper quartile. The ‘x’ indicates
the geometric mean for each group.

Figure 2(a) shows native SPEC CPU2006 performance. With the
notable exception of the Atom processors, which are designed for
low power consumption rather than high performance, speedups
fairly consistently rise as technology shrinks. The improvements
compared to Pentium 4 Northwood (130nm) are the result of mi-
croarchitectural innovations, inclusion of more last-level cache,
lower-latency memory access, and in the case of Core 2 Duo Wolf-
dale (45nm) and Core i5 Clarkdale (32nm), increased clock frequency.
The distribution of the speedup for Pentium M Dothan (90nm) shows
that even though on average it outperforms the Atom 230 Dia-
mondville (45nm) by 93%, in some of cases the Atom 230 Diamondville
(45nm) processor delivers better performance. The fact that Pen-
tium M Dothan (90nm) is also optimized for power consumption can
explain the slow-down in some cases. The Atom 230 Diamondville
(45nm) processor has lower latency memory access, which can re-
sult in higher performance. As expected, since the benchmarks are
single-threaded, additional cores do not improve performance.

Figure 2(c) illustrates a box plot for Java single-threaded bench-
marks (JST). Similar to the case of NINT and NFP, the results show
that except for the Atom processors, as the technology shrinks, the
processors achieve higher performance. However, Core i5 Clark-
dale (32nm) performs slightly worse than Core i7 Bloomfield (45nm).
Unlike with SPEC CPU2006, the dual core Atom D510 Pineview
(45nm) achieves 22% higher performance compared to the single-
core Atom 230 Diamondville (45nm). Both Atom processors operate
at 1.66GHz and the major differences are the number of cores
and increased cache capacity. This result is intriguing because the
benchmarks are single-threaded.

While a single-threaded benchmark itself may not directly ex-
ploit parallelism, the underlying JVM often may. This parallelism
can come from several sources. The JVM provides rich libraries for
the application, and these libraries may be parallelized. The JVM
also performs services such as profiling (for feedback directed op-
timization), compilation, and garbage collection, all of which may

P
e
n
tiu

m
 4

 (1
3

0
n
m

)

P
e
n
tiu

m
 M

 (9
0

n
m

)

C
o
re

 2
 D

u
o
 (6

5
n
m

)

C
o
re

 2
 Q

u
a
d
 (6

5
n
m

)

A
to

m
 2

3
0

 (4
5

n
m

)

A
to

m
 D

5
1

0
 (4

5
n
m

)

C
o
re

 2
 D

u
o
 (4

5
n
m

)

C
o
re

 i7
 (4

5
n
m

)

C
o
re

 i5
 (3

2
n
m

)

2

4

6

8

10
12
14

S
p
e
e
d
u
p
 /

 A
to

m
 2

3
0

 (
4

5
n
m

)

Native (NINT and NFP)

GeoMean

(a)

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm)

10

20

30

40

50

60

70

Lo
g
-s

ca
le

 M
e
a
su

re
d
 A

v
g
 P

o
w

e
r

(w
a
tt

s)

 Pentium 4 (130nm)

Core 2 Duo (65nm)

 Core i7 (45nm)

Core 2 Duo (45nm)
 Core i5 (32nm)

Native (NINT and NFP)

130nm

65nm

45nm

32nm

(b)

P
e
n
tiu

m
 4

 (1
3

0
n
m

)

P
e
n
tiu

m
 M

 (9
0

n
m

)

C
o
re

 2
 D

u
o
 (6

5
n
m

)

C
o
re

 2
 Q

u
a
d
 (6

5
n
m

)

A
to

m
 2

3
0

 (4
5

n
m

)

A
to

m
 D

5
1

0
 (4

5
n
m

)

C
o
re

 2
 D

u
o
 (4

5
n
m

)

C
o
re

 i7
 (4

5
n
m

)

C
o
re

 i5
 (3

2
n
m

)

2

4

6

8

10
12
14

S
p
e
e
d
u
p
 /

 A
to

m
 2

3
0

 (
4

5
n
m

)
-

H
o
tS

p
o
t

JST (HotSpot)

GeoMean

(c)

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm) - HotSpot

10

20

30

40

50

60

70

Lo
g
-s

ca
le

 M
e
a
su

re
d
 A

v
g
 P

o
w

e
r

(w
a
tt

s)
 Pentium 4 (130nm)

Core 2 Duo (65nm)

 Core i7 (45nm)

Core 2 Duo (45nm)

 Core i5 (32nm)

JST (HotSpot)

130nm

65nm

45nm

32nm

(d)

P
e
n
tiu

m
 4

 (1
3

0
n
m

)

P
e
n
tiu

m
 M

 (9
0

n
m

)

C
o
re

 2
 D

u
o
 (6

5
n
m

)

C
o
re

 2
 Q

u
a
d
 (6

5
n
m

)

A
to

m
 2

3
0

 (4
5

n
m

)

A
to

m
 D

5
1

0
 (4

5
n
m

)

C
o
re

 2
 D

u
o
 (4

5
n
m

)

C
o
re

 i7
 (4

5
n
m

)

C
o
re

 i5
 (3

2
n
m

)

2

4

6

8

10
12
14

S
p
e
e
d
u
p
 /

 A
to

m
 2

3
0

 (
4

5
n
m

)
-

H
o
tS

p
o
t

JMT (HotSpot)

GeoMean

(e)

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm) - HotSpot

10

20

30

40

50

60

70

Lo
g
-s

ca
le

 M
e
a
su

re
d
 A

v
g
 P

o
w

e
r

(w
a
tt

s)

 Pentium 4 (130nm)

Core 2 Duo (65nm)

 Core i7 (45nm)

Core 2 Duo (45nm)

 Core i5 (32nm)

JMT (HotSpot)

130nm

65nm

45nm

32nm

(f)

Figure 2. Speedup box plots across different process technologies and microarchitectures for (a) SPEC CPU2006, (b) JST, and (c) JMT.
Measured power versus performance for (b) SPEC CPU2006, (d) JST, and (f) JMT.

be parallel or performed concurrently with the application in sepa-
rate threads. Thus the JVM may leverage the additional cores even
when the application itself is explicitly single threaded. This result
highlights an important difference between managed and unman-
aged languages.

Figure 2(b) presents the measured average power dissipa-
tion versus performance of various microarchitectures for SPEC
CPU2006. As depicted, from 130nm (Pentium 4 Northwood (130nm))
to 65nm (Core 2 Duo Conroe (65nm)) process technology (two tech-
nology generations), performance improved by a factor of 2.21,
while power consumption decreased by 34%. Core 2 Duo Wolfdale
(45nm) uses the same Core microarchitecture as Core 2 Duo Conroe
(65nm), shrunk from 65nm to 45nm, with a 3MB LLC rather than
4MB, and operating at 3.06GHz rather than 2.4GHz, which yields a
20% performance improvement and a 66% power reduction. On the
other hand, Core i7 Bloomfield (45nm) achieves a 52% performance
improvement over the Core 2 Duo Conroe (65nm), but by increasing
power dissipation by 29%. These results show that in the transition
from 65nm to 45nm the process shrink lead to good power/per-
formance improvements, but in the case of the Core i7 Bloomfield
(45nm), the balance of that dividend went to performance, rather
than power savings. From 45nm to 32nm, Core i5 Clarkdale (32nm)
improves performance by 35% compared to Core 2 Duo Wolfdale
(45nm), while increasing power negligibly.

Compared to the Core i7 Bloomfield (45nm), the Core i5 Clark-
dale (32nm) processor improves performance by 8% while halv-
ing power consumption. The Core i7 Bloomfield (45nm) and the
Core i5 Clarkdale (32nm) share the Nehalem microarchitecture, but
the Core i7 Bloomfield (45nm) has 4 cores, 8 hardware threads, 8MB
L3 and is operating at 2.6GHz, while the Core i5 Clarkdale (32nm) has
2 cores, 4 hardware threads, 4MB L3 and is operating at 3.4GHz.
The primary performance difference between these two processors
is the clock speed. However, it is hard to make direct comparisons
between the two since the Core i7 Bloomfield (45nm) has twice as
many cores, twice the L3, and twice the memory bandwidth com-
pared to the Core i5 Clarkdale (32nm). It is therefore unsurprising
that the Core i5 Clarkdale (32nm) is more power/performance effi-
cient than the Core i7 Bloomfield (45nm).

Comparing Figures 2(b), (d), the trends for the Pentium 4 North-
wood (130nm), Core 2 Duo Conroe (65nm), and Core i7 Bloomfield
(45nm) are very similar across the benchmark groups. It is no-
table that while the Core i5 Clarkdale (32nm) improved over the
Core i7 Bloomfield (45nm) on SPEC CPU2006, it degraded on JST.
We speculate that this is because the larger, more complex work-
loads present in JST, more specifically DaCapo, are more sensitive
to cache size than to clock speed, which are the two principle vari-
ables differentiating the Core i7 Bloomfield (45nm) and Core i5 Clark-
dale (32nm) in this single-threaded setting.

4.3 Java Multi-Threaded Benchmarks
Figure 2(e) shows speedup for JMT with box plots. The perfor-
mance trends for JMT are almost the same as for JST; however,
as expected, the performance improvements are higher when more
cores are available. The Atom D510 Pineview (45nm) delivers 35%
more performance compared to the Atom 230 Diamondville (45nm),
while the microarchitectures are essentially the same in both cases.
The Core i7 Bloomfield (45nm) and the Core i5 Clarkdale (32nm) deliver
almost the same average performance, even though the Core i5 Clark-
dale (32nm) is operating at a higher frequency. The Core i7 Bloomfield
(45nm) provides four cores and supports eight hardware threads
while the Core i5 Clarkdale (32nm) has two core and supports four
hardware threads.

Comparing Figures 2(d) and 2(f), the most noticeable difference
is the increased average power consumption of the Core i7 Bloom-
field (45nm), which increases from around 40W to 60W. This result

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm) - HotSpot

10

20

30

40

50

60

70

Lo
g
-s

ca
le

 M
e
a
su

re
d
 A

v
g
 P

o
w

e
r

(w
a
tt

s)

 Pentium 4 (130nm)

Core 2 Duo (65nm)

 Core i7 (45nm)

Core 2 Duo (45nm)

 Core i5 (32nm)

JMT (HotSpot)

130nm

65nm

45nm

32nm

(a)

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm) - HotSpot

10

20

30

40

50

60

70

Lo
g
-s

ca
le

 M
e
a
su

re
d
 A

v
g
 P

o
w

e
r

(w
a
tt

s)

 Pentium 4 (130nm)

Core 2 Duo (65nm)

 Core i7 (45nm)

Core 2 Duo (45nm)

 Core i5 (32nm)

JMT (JRockit)

130nm

65nm

45nm

32nm

(b)

Figure 3. Measured power versus performance for JMT with the
HotSpot and JRockit Java virtual machines.

is consistent with the fact that multi-threaded benchmarks making
greater use of the cores on chip multiprocessors. Perhaps more
interesting is that the other chip multiprocessors do not exhibit
greater power consumption even when more of their cores are exer-
cised. This may reflect the greater complexity of the multithreaded
benchmarks and their tendency to be memory bound, which may
leave the extra cores relatively underutilized.

Figure 3 shows the power versus performance trends across dif-
ferent process technologies for the two JVMs on JMT. Figure 3
shows the choice of JVM affects the power-performance behavior
of the workloads. In these results, JRockit 1.6.0 JVM delivers lower
performance compared to HotSpot 1.7.0 while consuming about
the same power. The experiments show that across all the bench-
marks, JRockit is slower than HotSpot while consuming slightly
less or the same amount of power. For example on Core i7 Bloomfield
(45nm), HotSpot outperforms JRockit by 19% while dissipating 2%
less power. Similarly on Core i5 Clarkdale (32nm), HotSpot delivers
20% higher performance and consumes 1% less power. The com-
parison shows that the choice of runtime has a significant effect on
the performance of JMT applications, and needs to be considered

(1 x 1) (2 x 1) (4 x 1) (4 x 2)

(Core x Thread)

0

2

4

6

8

10

12

S
p
e
e
d
u
p
 o

v
e
r

A
to

m
 2

3
0

 (
4

5
n
m

)
-

H
o
tS

p
o
t Core i7 (45nm) - HotSpot

Figure 4. Scalability of all Java benchmarks (JST and JMT) on the
Core i7 Bloomfield (45nm), with HotSpot.

as part of the methodology for power-performance evaluation for
managed languages.

These figures indicate a surprising lack of scalability on average
for the multi-threaded Java benchmarks. It is beyond the scope of
this paper to explore the root causes for this result, but we did con-
duct a basic analysis to understand performance scalability with
respect to the number of cores more using the Core i7 Bloomfield
(45nm), which has four cores and eight hardware contexts.This ex-
periment restricts the available hardware contexts via an operating
system API and evaluates the resulting performance changes. Fig-
ure 4 uses box plots to reflect the speedup of the Java benchmarks
as a function of available hardware contexts. We use all the Java
benchmarks, i.e., both the JST and JMT. The hardware resources
increase from left to right, starting with a single hardware context
and ending with all eight hardware contexts. An interesting finding
is that only one Java benchmark, h2, did not speed up as more hard-
ware became available. The h2 benchmark is a transaction-oriented
database, which may be limited by lock contention. Many single
threaded benchmarks sped up appreciably when a second hard-
ware context became available. The performance of I/O-intensive,
single-threaded antlr doubled when a second core was available.
Conversely, few of the multi-threaded benchmarks scaled with the
number of hardware contexts. Only sunflow, tomcat, lusearch and
eclipse showed near-linear speedup. We found these results surpris-
ing.

4.4 Have Processors Already Hit the Power-Performance
Wall?

Figure 5 shows power versus performance scatter plots for all 52
benchmarks on each of the machines where we could measure
power directly. Figures 5 (a) and (b) show exactly the same data
points, but render them differently to illustrate different findings.
Figure 5(a) uses red arrows to indicate the trends across technology
nodes. The line bifurcates at 65nm to the divergent Core 2 Duo Wolf-
dale (45nm) (bottom-most) and Core i7 Bloomfield (45nm) (upper-
right) processors. The arrows show two paths taken at the mea-
sured 45nm processors. Compared to the Core 2 Duo Conroe (65nm)
(center), the Core 2 Duo Wolfdale (45nm) provides 22% higher perfor-
mance with 66% less power. On the other hand, the Core i7 Bloom-
field (45nm) provides 55% higher performance while consuming
38% more power. From 130nm to 65nm (two generations), we see
performance improve by 134%, while from 65nm to 32nm (two

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm)

20

30

40

50

60

70

80

Lo
g
-s

ca
le

 M
e
a
su

re
d
 A

v
g
 P

o
w

e
r

(w
a
tt

s)

Power vs Performance

Pentium 4 (130nm)
Core 2 Duo (65nm)
Core 2 Duo (45nm)
Core i7 (45nm)
Core i5 (32nm)
Geomean

(a)

2 4 6 8 10 12

Log-scale Speedup over Atom 230 (45nm)

20

30

40

50

60

70

80

Lo
g
-s

ca
le

 M
e
a
su

re
d
 A

v
g
 P

o
w

e
r

(w
a
tt

s)

Power vs Performance

Pentium 4 (130nm)
Core 2 Duo (65nm)
Core 2 Duo (45nm)
Core i7 (45nm)
Core i5 (32nm)
ST Geomean
MT Geomean

(b)

Figure 5. Measured power versus performance scatter plot for
different process technologies. Each point denotes one of the 52
benchmarks. (a) The arrows connect the geometric mean of average
power for all 52 benchmarks. The bifurcation from 65nm to 45nm
shows the two measured 45nm processors (Core 2 Duo Wolfdale
(45nm) and Core i7 Bloomfield (45nm)). (b) Delineates the single-
threaded (ST) benchmarks with hollow marks, the multi-threaded
(MT) benchmarks with solid marks, and their individual geometric
means with a large triangle (ST) and circle (MT), respectively.

generations), we see only 66% performance improvement, just half
of what is achieved from 130nm to 65nm.

Figure 5(b) illustrates the affect the technology changes have on
multi-threaded (solid symbols) and single-threaded (hollow sym-
bols) benchmarks respectively, using all 52 benchmarks. It is no-
table that the newer Core i5 Clarkdale (32nm) and Core i7 Bloomfield
(45nm) (Nehalem) processors present a similar pattern, with sub-
stantial variation in their actual power consumption. The multi-
threaded benchmarks sometimes consume twice as much power as
their single-threaded counterparts. In contrast, the power consump-
tion of the Core (Core 2 Duo Conroe (65nm) and Core 2 Duo Wolfdale
(45nm)) processors are much less sensitive to whether the bench-
mark is single or multi-threaded. The Pentium 4 Northwood (130nm)
has only one hardware context, so it is unsurprising that it is largely

unaffected by the number of threads. The Nehalem processors also
appear to have greater power variability, even among the single-
threaded benchmarks, but this result may simply reflect the single-
threaded Java benchmarks’ capacity to utilize extra cores. It is
intriguing that higher power consumption on multi-threaded Java
benchmarks does not translate to considerable average performance
improvement.

5. Conclusion
As far as we are aware, this paper is the first to quantitatively study
measured power and performance across hardware generations us-
ing single and multi-threaded, native and managed workloads.

With respect to methodology for power-performance analysis,
we show that relative power across hardware generations cannot
be accurately estimated from TDP, TDP per core, or maximum
power specifications. We also show that Java benchmarks behave
differently to native benchmarks with respect to power and perfor-
mance trends. Given the commercial importance and widespread
use of managed workloads, this finding indicates that future studies
should include Java or other managed languages.

We find that performance gains from generation to genera-
tion have slowed and that in the transition from 45nm to 32nm
processors appear to have already hit the power wall. Further-
more, many performance improvements have come at a signifi-
cant cost to power. In particular, in the most recent processors,
multi-threaded benchmarks are notably more power-intensive rel-
ative to their single-threaded counterparts. We also find that sub-
sequent hardware generations improve native floating point bench-
marks more than integer and Java benchmarks.

We study both native and Java benchmarks and are encouraged
to see that the Java runtime exploits multiple cores, even when
executing single-threaded workloads. On the other hand, we found
that many parallel benchmarks do not scale with the number of
hardware contexts. Much further analysis, including cache and
bus measurements, are need to explain the root causes of these
problems.

In summary, our findings challenge widely used methodology,
offer new insight into how microarchitectures have traded power
and performance as process technology has shrunk, and point to
the need for much additional analysis.

Acknowledgements
We gratefully acknowledge the generous assistance of Bob Ed-
wards of ANU for his work in fabricating and calibrating the cur-
rent sensors we used throughout this work.

References
[1] International technology roadmap for semiconductors, 2010.

http://www.itrs.net.
[2] Predictive technology model, 2010. http://ptm.asu.edu.
[3] SPEC CPU2006 benchmark descriptions. ACM SIGARCH newsletter,

Computer Architecture News, 34(4), September 2006.
[4] L. E. Andy Georges, Dries Buytaert. Statistically rigorous Java perfor-

mance evaluation. In ACM Conference on Object–Oriented Program-
ming Systems, Languages, and Applications, pages 57–76, 2007.

[5] W. L. Bircher and L. K. John. Analysis of dynamic power management
on multi-core processors. In ICS ’08: Proceedings of the 22nd annual
international conference on Supercomputing, pages 327–338, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-158-3. doi: http:
//doi.acm.org/10.1145/1375527.1375575.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.

The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications, pages 169–190, Oct. 2006.

[7] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffman, A. M.
Khan, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
Wake up and smell the coffee: Evaluation methodologies for the 21st
century. Communications of the ACM, 51(8):83–89, Aug. 2008.

[8] K. Chakraborty. Over-provisioned Multicore Systems. PhD thesis,
University of Wisconsin-Madison, 2008.

[9] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for
a warehouse-sized computer. In ISCA ’07: Proceedings of the 34th
annual international symposium on Computer architecture, pages 13–
23, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-706-3. doi:
http://doi.acm.org/10.1145/1250662.1250665.

[10] M. Hempstead, G.-Y. Wei, and D. Brooks. Navigo: An early-stage
model to study power-contrained architectures and specialization. In
Proceedings of Workshop on Modeling, Benchmarking, and Simula-
tions (MoBS) (Held in conjunction with ISCA-36), June 21 2009.

[11] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bern-
stein. Scaling, power, and the future of CMOS. In Proceedings of
International Electron Devices Meeting (IEDM), pages 7–15, Decem-
ber 2005.

[12] C. Isci and M. Martonosi. Runtime power monitoring in high-end pro-
cessors: Methodology and empirical data. In International Symposium
on Microarchitecture, pages 93–104, December 3–5 2003.

[13] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP design
space exploration subject to physical contraints. In Proceedings of In-
ternational Sympsoium on High-Performance Computer Architecture
(HPCA-12), pages 17–28, Feb 2006.

[14] V. Pallipadi and A. Starikovskiy. The ondemand governor: past,
present and future. In Proceedings of Linux Symposium, volume 2,
pages 223–238, July 19–22 2006.

[15] Standard Performance Evaluation Corp. SPEC Benchmarks, 2010.
http://www.spec.org.

[16] The DaCapo Research Group. The DaCapo Benchmarks, beta-2006-
08, 2006. http://www.dacapobench.org.

