Immix: A Mark-Region Garbage Collector with
Space Efficiency, Fast Collection, and Mutator Performance *

Stephen M. Blackburn

Australian National University
Steve.Blackburn@anu.edu.au

Abstract

Programmers are increasingly choosing managed languages for
modern applications, which tend to allocate many short-to-medium
lived small objects. The garbage collector therefore directly deter-
mines program performance by making a classic space-time trade-
off that seeks to provide space efficiency, fast reclamation, and mu-
tator performance. The three canonical tracing garbage collectors:
semi-space, mark-sweep, and mark-compact each sacrifice one ob-
jective. This paper describes a collector family, called mark-region,
and introduces opportunistic defragmentation, which mixes copy-
ing and marking in a single pass. Combining both, we implement
immix, a novel high performance garbage collector that achieves all
three performance objectives. The key insight is to allocate and re-
claim memory in contiguous regions, at a coarse block grain when
possible and otherwise in groups of finer grain lines. We show
that immix outperforms existing canonical algorithms, improving
total application performance by 7 to 25% on average across 20
benchmarks. As the mature space in a generational collector, im-
mix matches or beats a highly tuned generational collector, e.g. it
improves job2000 by 5%. These innovations and the identification
of a new family of collectors open new opportunities for garbage
collector design.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection)
General Terms Algorithms, Experimentation, Languages, Performance,
Measurement

Keywords Fragmentation, Free-List, Compact, Mark-Sweep, Semi-
Space, Mark-Region, Immix, Sweep-To-Region, Sweep-To-Free-List

1. Introduction

Modern applications are increasingly written in managed lan-
guages and make conflicting demands on their underlying mem-
ory managers. For example, real-time applications demand pause-
time guarantees, embedded systems demand space efficiency, and
servers demand high throughput. In seeking to satisfy these de-
mands, the literature includes reference counting collectors and
three canonical tracing collectors: semi-space, mark-sweep, and
mark-compact. These collectors are typically used as building
blocks for more sophisticated algorithms. Since reference count-
ing is incomplete, we omit it from further consideration here. Un-
fortunately, the tracing collectors each achieve only two of: space

*This work is supported by ARC DP0666059, NSF CNS-0719966, NSF CCF-
0429859, NSF EIA-0303609, DARPA F33615-03-C-4106, Microsoft, Intel, and IBM.
Any opinions, findings and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’0S, June 7-13, 2008, Tucson, Arizona, USA.

Copyright (© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

Kathryn S. McKinley

The University of Texas at Austin
mckinley@cs.utexas.edu

efficiency, fast collection, and mutator performance through con-
tiguous allocation of contemporaneous objects.

Figure 1 starkly illustrates this dichotomy for full heap versions
of mark-sweep (MS), semi-space (SS), and mark-compact (MC)
implemented in MMTk [12], running on a Core 2 Duo. It plots
the geometric mean of total time, collection time, mutator time,
and mutator cache misses as a function of heap size, normalized
to the best, for 20 DaCapo, SPECjvm98, and SPECjbb2000 bench-
marks, and shows 99% confidence intervals. The crossing lines in
Figure 1(a) illustrate the classic space-time trade-off at the heart of
garbage collection. Mark-compact is uncompetitive in this setting
due to its overwhelming collection costs. In smaller heap sizes, the
space and collector efficiency of mark-sweep perform best since
the overheads of garbage collection dominate total performance.
Figures 1(c) and 1(d) show that the primary advantage for semi-
space is 10% better mutator time compared with mark-sweep, due
to better cache locality. Once the heap size is large enough, garbage
collection time reduces, and the locality of the mutator dominates
total performance so semi-space performs best.

To explain this tradeoff, we need to introduce and slightly ex-
pand memory management terminology. A tracing garbage collec-
tor performs allocation of new objects, identification of live ob-
jects, and reclamation of free memory. The canonical collectors all
identify live objects the same way, by marking objects during a
transitive closure over the object graph.

Reclamation strategy dictates allocation strategy, and the litera-
ture identifies just three strategies: (1) sweep-to-free-list, (2) evacu-
ation, and (3) compaction. For example, mark-sweep collectors al-
locate from a free list, mark live objects, and then sweep-to-free-list

15 64

g
o 1l4r 1 \q_'; s2r QAQ
= E 167 %
- 13 = 8 & R et S
& 3 oo
T 12 - 4 Q..
E & 2 TEL ©
S 11 g =
s ! B
A — ; ; ; ; Z o5l
1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) Total Time (b) Garbage Collection Time
12 =) 4
5]]
E g
= =
S L1i5© 1 8
g 5 2
2 11 g
° =
8 T 1
5 105 o
£ g
S E
R i i s dfn “assarasais S o5l
1 2 3 4 5 6 1 2 3 4 5 6

Heap size relative to minimum heap size Heap size relative to minimum heap size

(c) Mutator Time (d) Mutator L2 Misses

Figure 1. Performance Tradeoffs For Canonical Collectors: Geo-
metric Mean for 20 DaCapo and SPEC Benchmarks.

puts reclaimed memory back on the free list [30, 29, 24]. Because
mark-sweep collection is non-moving, it is time and space efficient,
but cannot provide locality for contemporaneously allocated ob-
jects. Semi-space, older-first, garbage-first, and others evacuate by
moving all live objects to a new space, reclaiming the old space en
masse [19, 9, 4, 26, 36, 17, 22]. Mark-compact, the compressor, and
others compact by moving all live objects to one end of the same
space, reclaiming the unused portion en masse [37, 20, 28, 33].
Evacuation and compaction strategies provide contiguous alloca-
tion, which puts contemporaneously allocated objects next to each
other in space, and thus offer good mutator locality. However, evac-
uation incurs a 2 x space overhead and in-place compaction is time
inefficient because it requires multiple passes over the heap.

This paper identifies the mark-region family of non-moving
tracing collectors. Mark-region uses the sweep-to-region strategy,
which reclaims contiguous free regions and thus provides contigu-
ous allocation. To reduce fragmentation in mark-region and other
non-moving collectors, this paper introduces opportunistic defrag-
mentation which mixes copying and marking in a single pass. Us-
ing these building blocks, we introduce immix, a novel high per-
formance garbage collector that combines mark-region with oppor-
tunistic defragmentation to achieve space efficiency, fast collection,
and contiguous allocation for mutator performance.

In a mark-region collector, region size embodies the collector’s
space-time tradeoff. Large contiguous regions maximize mutator
performance and minimize collection cost, but are space inefficient
since a single object can withhold an entire region. Small regions
increase space efficiency but increase collection time, reduce muta-
tor performance, and make placement of large objects harder. Im-
mix balances these concerns by preferentially managing memory
at a coarse block grain and falling back to a fine /ine grain when
necessary. Immix reclaims completely free 32KB fixed size blocks,
and groups of free 128B lines in partially populated blocks. Immix
contiguously allocates objects in empty and partially filled blocks.

Immix addresses fragmentation, a problem for all non-moving
collectors, with demand-driven, opportunistic evacuation. When
defragmentation is necessary, immix chooses source blocks (to
evacuate) and target blocks (to allocate into) prior to collection. It
evacuates objects from source blocks, leaving forwarding pointers.
Evacuation is opportunistic because if immix runs out of space, it
stops evacuating. If an object is pinned by the application or is on a
target page, immix simply marks the object, leaving it in place.

We evaluate immix as a full heap collector and in two composite
collectors. Comprehensive performance measurements show that
immix consistently outperforms the best of the canonical collectors
by 5 to 25% in total performance on average across many heap
sizes, rarely degrades performance, and improves one benchmark
by 75%. To measure space efficiency, we compute the minimum
heap size in which each algorithm executes. Immix requires on
average only 3% more memory than mark-compact, and it requires
15% less than mark-sweep. Furthermore, it matches the mutator
locality of semi-space and the collection time of mark-sweep.

We build a generational collector with an evacuating semi-space
nursery and an immix mature space. Although we did not tune im-
mix for the mature space, this collector performs slightly better on
20 benchmarks than an evacuating semi-space nursery and mark-
sweep mature space, Jikes RVM’s best performing production gen-
erational collector. However, it significantly improves several inter-
esting benchmarks, e.g., total time for SPECjbb2000 improves by
5% or more on all heap sizes we tested. We also design and im-
plement an in-place generational variant based on the sticky mark
bits algorithm of Demmers et al. to support pinning [21]. We made
these collectors publicly available in Jikes RVM.

These results show that mark-region collectors coupled with de-
fragmentation offer an interesting direction for further exploration.

2. Related Work

Researchers have previously addressed the tension between muta-
tor performance, collection speed, and space efficiency. However,
we are unaware of any published work which describes or evaluates
a mark-region collector. We define mark-region and the sweep-to-
region strategy on which it is based. We implement and provide de-
tailed analysis of immix, a high performance collector which com-
bines mark-region collection and opportunistic defragmentation.

Mark-Region Collectors. We believe that there are two previous
implementations of mark-region collectors, a JRockit [11] collec-
tor and an IBM [18] collector. Our descriptions here are based on
web sites where neither are described in detail or evaluated, and
the original JRockit web site is no longer available. The JRockit
collector uses a range of coarse grain block sizes, and only recy-
cles completely free blocks for allocation. To limit fragmentation,
it compacts a fraction of the blocks at every garbage collection,
incurring multi-pass overheads for that fraction of the heap.

The IBM collector uses ‘thread local heaps’ (TLH), which
are unsynchronized, variable-sized, bump-allocated regions with a
minimum size of 512 bytes [18]. The allocator uses a TLH for ob-
jects smaller than 512 bytes, and for larger objects only when they
fit in the current TLH. The collector uses a global synchronized
free list to allocate both TLHs and large objects. The allocation
and mark phase each use bit vectors at an 8 byte resolution. When
the allocator fills a TLH, it scans the TLH and records the start
positions of each of the objects in the ‘allocbits’ bit vector. Immix
does not use allocation bits, which impose avoidable overhead.
The mark phase records live objects in a ‘markbits’ vector, which
requires synchronization that immix avoids. The sweep phase com-
pares the markbits and allocbits vectors to identify free memory.
The collector places contiguous free memory greater than 512 bytes
on the free list for subsequent use as either a TLH or large object.
It does not recycle ‘dark matter’, regions less than 512B.

Immix differs in a number of regards. Our metadata overhead is
lower (0.8% compared to 3.1%). The IBM collector requires 8-byte
alignment and an extra header word in each object that stores the
object size (typically around 10% space overhead). Immix is struc-
tured around aligned 128B lines and 32KB blocks, and can reclaim
space at 128B granularity. The IBM collector does not reclaim re-
gions smaller than 512B, but can apparently reclaim space at 8 byte
alignment. The IBM collector addresses fragmentation using com-
paction, described by Borman [18] as ‘complex’, while immix uses
evacuation to achieve lightweight and opportunistic defragmenta-
tion. The IBM mark-region collector and its derivatives have been
referred to in publications [10, 28], but to date have not been de-
scribed or evaluated in a publication.

Mark-Sweep Variants. Spoonhower et al. [34] take a differ-
ent approach, developing a collector which dynamically applies
mark-sweep and semi-space policies to regions of the heap, us-
ing page residency counts. Immix applies mark-region uniformly
to all of memory. Vam [24] is designed to provide contiguous al-
location when possible for non-moving explicit memory manage-
ment. If a block becomes fragmented, Vam must revert to size-
segregated free-lists which make no guarantees about locality. The
Metronome real-time garbage collector attains pause time guaran-
tees, space guarantees, and collector efficiency using mark-sweep,
but not mutator locality [8, 7]. Metronome’s mostly non-copying
on-demand defragmentation is most similar to immix’s defrag-
mentation. However, it requires exact fragmentation statistics for
each size-segregated block from a previous collection to evacuate
objects from one block to another. Whereas, opportunistic defrag-
mentation adds the ability to evacuate as dynamically possible and
without first computing precise fragmentation statistics.

Global Free Block Allocator Recycled Allocation Start

Recycled Allocation Limit

' = WEZ7Z77 [T [ITD 7

Y
| [EETI10 [ITEL]

(LI [
[T

Legend

D Free: unmarked in previous collection

D Live: marked in previous collection

A

Bump Pointer Cursor Bump Pointer Limit

Freshly allocated

E Conservatively marked in previous collection

Figure 2. Immix Heap Organization

Space Efficiency and Contiguous Allocation. Approaches to im-
prove the space efficiency of contiguous heap organization, such as
mark-compact, MCZ, and copy size reduction [1, 20, 33, 31], all
may substantially increase garbage collection costs. The garbage-
first collector [22] bump allocates into empty 1MB fixed sized
regions. Each collection selectively evacuates the most fragmented
regions. It relies on a concurrent tracing collector to identify
garbage and bi-directional remembered sets to evacuate regions
in arbitrary order. Although Kermany and Petrank introduced an
efficient two pass compaction algorithm [28] which uses a single
compact pass after a mark pass, immix opportunistic evacuation
performs defragmentation in one pass, the mark pass. Immix then
performs a separate sweep pass to find free blocks. Immix always
performs fine-grained line sweeps lazily. Kermany and Petrank im-
plemented in Jikes RVM, but their source is not available. They
show improvements over mark-sweep but are not competitive with
Jikes RVM'’s high performance generational production collector,
except on one benchmark, job2000. We match and sometimes out-
perform the Jikes RVM production collector even with our full
heap algorithm. Three immix variants, including the most simple
full heap algorithm, substantially outperform Jikes RVM’s produc-
tion collector on jbb2000 (see Figure 4(c)).

Generational Collectors. High performance generational col-
lectors resolve the tensions between reclamation strategies with
composite algorithms. State-of-the-art collectors use an evacuating
nursery that provides mutator locality to the young objects, and
typically a mark-compact or mark-sweep mature space for col-
lection and space efficiency, together with occasional mature space
compaction [11]. However, some application domains, such as real-
time, have yet to benefit much from generational collection [25].

3. Immix: Mixing Locality, Speed, and Efficiency

A naive mark-region implementation is straightforward. Memory
is divided into fixed sized regions, each of which is either free or
unavailable. The allocator bump allocates into free regions until all
free regions are exhausted, triggering a collection. The collector
marks any region containing a live object as unavailable and all
others as free. Objects may not span regions.

This simple algorithm motivates the design of immix and raises
two questions: (1) How big should the regions be? Large regions
are space-inefficient since a single small object can withhold an
entire region, while small regions increase space efficiency but
increase collection time. (2) How to defragment? An entire region
is unavailable as long as any object within it remains alive, so
defragmentation is essential.

Immix addresses the dilemma of region sizing by operating at
two levels, coarse grained blocks and fine grained lines. By reclaim-
ing at line granularity, it recycles partially used blocks. When the
allocator recycles a block, it skips over unavailable lines, allocat-
ing into contiguous free lines. Objects may span lines, but cannot
span blocks. Immix addresses fragmentation by using lightweight
opportunistic evacuation, which is folded into marking when de-
fragmentation is necessary, as described in Section 3.2.

3.1 Efficient Mark-Region Design

The base mark-region algorithm used by immix is quite simple.

Initial Allocation. All blocks are initially empty. A thread-local
allocator obtains an empty block from the global allocator, and
bump allocates objects into the block. When the allocator exhausts
the block, it requests another block and repeats until the entire heap
is exhausted, which triggers a collection.

Identification. The collector traces the live objects by performing
a transitive closure starting with the application roots. As immix
traces the object graph, it marks objects and lines in a line map.

Reclamation. When immix completes the trace, it performs a
coarse-grained sweep, linearly scanning the line map and identi-
fying entirely free blocks and free lines in partially free blocks. It
returns entirely free blocks to a global pool, and it recycles partially
free blocks for the next phase of allocation.

Steady State Allocation. Threads resume allocation into recycled
blocks, provided on demand, in address order, and skip over com-
pletely full and completely empty blocks. The thread-local alloca-
tor linearly scans the line map of each recycled block until it finds a
hole (one or more contiguous free lines). The allocator then bump
allocates into that hole. Once it exhausts the hole, the it continues its
linear scan for another hole until it exhausts the recyclable block. It
then requests another block. Once the allocators have exhausted all
recyclable blocks, they allocate into empty blocks until the entire
heap is exhausted.

Figure 2 illustrates the basic immix heap organization during
steady state allocation. Just like a semi-space allocator, the allocator
maintains a cursor and a limit, as shown in the figure, pointing into
block five. The limit for immix is either the next occupied line,
or the end of the block. When the cursor would exceed the limit,
immix finds the next hole in the block, and resets the cursor and the
limit. If there is no hole, it requests another block.

3.1.1 Mark-Region Details and Policies

The above algorithm is relatively easy to implement. However, we
found that for high performance over a wide range of workloads,
we needed to consider and tune the following policies and mecha-
nisms.

Recycling Policy. At the end of a collection, each block is either
free, recyclable, or unavailable. The collector marks a partly used
block with at least F' free lines as recyclable. We explored various
thresholds for immix but found that the most simple policy of
F =1 worked best. Section 5.4 shows that the overhead of recycling
blocks with few available lines is only incurred regularly when
space is very scarce, which is precisely when such diligence is
rewarded.

Allocation Policy. Immix allocates into recyclable blocks in ad-
dress order. It saves allocating into completely free blocks until last
because multiple consumers may compete for free blocks and they

offer more flexibility. For instance, the thread-local allocators and
the LOS (large object space) compete for pages. The LOS requires
completely free pages. Inspired by prior work [36, 17, 22], we ex-
plored other allocation orderings in an effort to maximize the like-
lihood of reclaiming completely free blocks at collection time. In
the full heap setting, we found the simple address order process-
ing worked best. We did not revisit these policies for a generational
setting and believe they are an interesting avenue for future work.

Parallelism. Our immix implementations are parallel. They sup-
port multiple collector threads and multiple mutator threads. Our
implementations however do not perform concurrent collection in
which the mutator and collector execute in parallel. To achieve scal-
able parallel allocation and collection throughout immix, we follow
a design pattern common to many systems. The design pattern max-
imizes fast, unsynchronized thread-local activities and minimizes
synchronized global activities. Thus, the synchronized global allo-
cator gives blocks to the thread-local allocators (TLA), which are
unsynchronized. Similarly, our base mark-region collector requires
hardly any synchronization. The transitive closure is performed in
parallel. It allows races to mark objects since at worst an object
will be marked and scanned more than once. Since updating nearby
bits in a bitmap can generate a race, we use bytes to represent line
marks, incurring a 1/128 metadata overhead, but avoiding synchro-
nization. Immix performs coarse-grained sweeping in parallel by
dividing the heap among the available collector threads. Our eval-
uation demonstrates that immix performs very well on uniproces-
sors and a two-way machine, but we leave to future work a detailed
study of parallelism.

Demand Driven Overflow Allocation. We found in an early de-
sign that the allocator occasionally skipped over and wasted large
numbers of holes when trying to allocate medium objects into frag-
mented blocks. We define a medium object as greater than a line.
To address this problem, we implement demand driven overflow al-
location. We pair each immix allocator with an overflow allocator
that is also a contiguous allocator, however it always uses empty
blocks. If immix cannot accommodate a medium object in the cur-
rent block, but there are one or more free lines between the bump
pointer cursor and limit, immix allocates it with the overflow allo-
cator. Thus, immix allocates medium objects in the overflow blocks
only on demand. For example in Figure 2, there are three free lines
between the cursor and the limit. If the mutator requests an object
whose size exceeds three lines, immix triggers overflow allocation
to avoid wasting three lines. Since the vast majority of objects in
Java programs tend to be small [14] and lines accommodate several
objects on average, this optimization improves space efficiency. It
is extremely effective at combating, dynamically on demand, the
pathological effect of occasional medium object allocations into a
recycled block dominated by small holes. Section 5.4 shows that
overflow allocation improves performance in memory constrained
heaps that tend to fragment more.

3.2 Defragmentation: Lightweight Opportunistic Evacuation

A pure mark-region collector is non-moving and thus subject to
fragmentation. Both evacuation [8, 7] and compaction [18] can
be effective defragmentation mechanisms. Immix uses opportunis-
tic evacuation. At the start of each collection, immix determines
whether to defragment, e.g., based on fragmentation levels. If so,
immix uses statistics from the previous collection to select defrag-
mentation candidates and evacuation targets.

When the collector encounters a live object in a candidate block,
it opportunistically evacuates the object. It only evacuates an ob-
ject if the application has not pinned it and prior evacuation has not
exhausted all target space. If an object is unmovable when the col-
lector encounters it, the collector marks the object and line as live

and leaves it in place. Otherwise, the collector evacuates the object
to a new location on a target block and leaves a forwarding pointer
which records the address of the new location. If the collector en-
counters subsequent references to a forwarded object, it replaces
them with the value of the object’s forwarding pointer.

To evacuate an object, the collector uses the same allocator as
the mutator, continuing allocation right where the mutator left off.
Once it exhausts any unused recyclable blocks, it uses any com-
pletely free blocks. The collector of course does not allocate into
defragmentation candidate blocks. By default, immix sets aside a
small number of free blocks that it never returns to the global allo-
cator and only ever uses for evacuating. This headroom eases de-
fragmentation and is counted against immix’s overall heap budget.
By default immix reserves 2.5% of the heap as compaction head-
room, but Section 5.4 shows immix is fairly insensitive to values
ranging between 1 and 3%.

3.2.1 Defragmentation Policies and Details

This section describes additional details of opportunistic defrag-
mentation, including parallelism, and pinning.

Candidate Selection. A variety of heuristics may select defrag-
mentation candidates. A simple policy would target fractions
of the heap in a round-robin manner like JRockit. Similar to
Metronome [8, 7], our implementation instead performs defrag-
mentation on demand. If there are one or more recyclable blocks
that the allocator did not use or if the previous collection did not
yield sufficient free space, immix triggers defragmentation at the
beginning of the current collection.

If immix chooses to defragment, it selects candidate blocks with
the greatest number of holes since holes indicate fragmentation.
It uses conservative statistics from the previous collection and al-
location statistics from the last mutator period to select as many
blocks as the available space allows. To compute these estimates ef-
ficiently, immix uses two histograms indexed by hole count; a mark
histogram estimating required space and an available histogram re-
flecting available space. The mark histogram is constructed eagerly
during the coarse-grain sweep at the end of each collection. Immix
marks each block with its number of holes and updates the mark
histogram to indicate the distribution of marked lines in the heap as
a function of the number of holes in the associated block. For exam-
ple, if a block has thirty marked lines and four holes, we increment
the fourth bin in the histogram by thirty. Since these operations are
cheap, we can afford to perform them at the end of every collec-
tion, even if there is no subsequent defragmentation. Immix creates
the available histogram lazily, once it decides to defragment. Each
bin in the available histogram reflects the number of available lines
within the blocks with the given number of holes.

To identify candidates, immix walks the histograms, starting
with the most fragmented bin, increments the required space by
the volume in the mark histogram bin, and it decrements the avail-
able space by the volume in the available histogram bin. Immix
decrements the bin number, moving from most fragmented to least.
When including the blocks in the bin would exceed the estimated
available space, immix selects as defragmentation candidates all
blocks in the previous bin and higher. Section 5.4 shows this policy
works very well for our full-heap collector, but we have not tuned
it for a generational setting, which we leave to future work.

Mixing Marking and Evacuation. The collector mixes evacua-
tion and marking, combining a mark bit, orthodox forwarding bits,
and forwarding pointer in the object header. Even without defrag-
mentation, a per-object mark is necessary in addition to a line mark,
to ensure the transitive closure terminates. Objects on candidate
blocks are movable, except if they are pinned. Pinned objects are
not movable. Remember that immix: a) only triggers defragmenta-

tion if there is available memory, and b) when selecting candidates,
tries to ensure that it can accommodate their evacuation. However,
since candidate selection is based entirely on space estimates, the
collector may consume all the unused memory before evacuating
all the candidate objects. At this point, all subsequently processed
objects become unmovable.

Initially all objects are neither marked or forwarded. When the
collector processes a reference to an object, if the object is un-
marked and not movable, it marks the object and enqueues the ob-
ject for processing of its children. If the object is unmarked and
movable, it evacuates the object, installs a forwarding pointer, sets
the forwarded bits, and then enqueues the forwarded object for pro-
cessing of its children. If an object is marked and not forwarded, the
collector performs no additional actions. If the object is forwarded,
the collector updates the reference with the address stored in the
forwarding pointer.

This design combines mark-region and evacuation on a per-
object basis. It also uses the same allocator for the mutator and
collector. These innovations achieve opportunistic, single-pass
evacuation-based defragmentation.

Parallel Defragmentation. During defragmenting collection, as
with any evacuating garbage collection, some form of synchroniza-
tion is essential to avoid evacuating an object into two locations
due to a race. We use a standard compare and exchange approach
to manage the race to forward an object. We exploit MMTk’s fa-
cility for trace specialization to separately specialize the collector
code for defragmentation and normal scenarios. This specialization
gives us all the benefits of defragmentation and only pays for the
synchronization overhead when it is actually required.

Pinning. In some situations, an application may request that an
object not be moved. This language feature is required for C#, and
although not directly supported by Java, some JVM-specific class
library code in Jikes RVM optimizes for the case when an object
is immovable, for example, to improve buffer management for file
I/0. We therefore leverage immix’s opportunism and offer explicit
support for pinning. When the application requests pinning for an
object, immix sets a pinned bit in the object header. Defragmenta-
tion never moves pinned objects.

3.3 Further Implementation Details

This section describes a few more implementation details.

Block and Line Size. Key parameters for immix are the block
and line size. We experimentally selected a line size of 128B and
a block size 32KB, as shown in Section 5.4. We roughly size the
blocks to match the operating system page size. For simplicity,
we choose a uniform block size and do not permit objects to span
blocks. We use the default large object size of 8K currently im-
plemented in MMTk. Thus, immix only considers objects smaller
than 8K. A 32KB block can accommodate at least four immix
objects, bounding worst-case block-level fragmentation to about
25%. Blocks are also the unit of coarse-grain space sharing among
threads, which has two consequences: (1) each block acquisition
and release must be synchronized, and (2) threads cannot share
space at a finer granularity than a block. Smaller block sizes would
have higher synchronization overheads and a higher worst case
fragmentation bound, but more space sharing. Larger blocks would
have less synchronization and lower worst case fragmentation, but
worse space sharing. Section 5.4 shows that immix performance is
not very sensitive to block size, but large block sizes can reduce
memory efficiency in small heap sizes.

We roughly size lines to match the architecture’s cache line and
to accommodate more than one object. The 128B line size reflects
a tension between metadata overhead for small lines (since we re-
quire one mark byte per line), and higher fragmentation for large

lines (since we only reclaim at line granularity). Section 5.4 shows
that immix is more sensitive to line size than block size. The small-
est object size in Jikes RVM is 8B—the size of the standard header
with no payload—for an object with no fields. In theory, if all ob-
jects are 8B and only one object per two lines survives a collection
and each survivor straddles two lines, worst-case line fragmenta-
tion is 97%. Given the allocation and live object size demographics
for these benchmarks, a line size of 128 B accommodates one to
four objects on average [14] with an average worst-case internal
fragmentation of 25% and a lower expected fragmentation. Tuning
line size seems most closely tied to the programming language’s
influence on object size demographics, rather than the architecture.

Size and Accounting of Metadata. We embed all immix meta-
data in the heap, leveraging a mechanism provided by MMTk to
interleave metadata at 4MB intervals. Thus, immix, like all other
MMTK collectors, is correctly charged for its metadata space over-
head. Immix requires one byte per line and four bytes per block,
totaling 260 bytes per 32KB block, which amounts to 0.8%.

Conservative Marking. Immix may allocate objects across line
boundaries. This choice impacts marking, allocation, and space ef-
ficiency. Since immix cannot reclaim space at a finer granularity
than a line, the collector must mark all lines on which a live object
resides. A simple exact marking scheme interrogates the object’s
type information to establish its size, and then iterates through the
address range, marking the relevant lines. We found experimentally
that these operations were quite expensive, especially when com-
pared to mark-sweep which simply sets a bit in the object header.

We instead use conservative line marking. We leverage the
observation that the overwhelming majority of objects are less
than 128 bytes [14], so can span at most two lines. Conservative
marking explicitly marks just the line associated with the start
of each small object, independent of the object’s exact size and
placement, making marking simple and cheap. Since a small object
may span two lines, conservative marking implicitly marks the
second line by skipping the first line in each hole at allocation time.
In the worst case, conservative marking could waste nearly a line
for every hole. Since medium objects are uncommon, we perform
exact marks for them at collection time. However, our optimization
requires that we differentiate small and medium objects, which
requires interrogating each object’s size, defeating much of the
effect of the optimizations. We solve this problem by using a single
header bit to mark each object as small (0) or medium (1) when the
object is allocated. Since in Java, the size of non-array objects is
statically known, Jikes RVM'’s optimizing compiler can statically
evaluate the conditional and elide the setting of the size bit for
small objects, which form the overwhelming majority of allocated
objects. Figure 2 shows example line marks due to conservative
marking. Conservative marking significantly speeds up marking of
small objects compared with exact marking.

Optimization of Hot Paths. We took great care to ensure the
allocation and tracing hot paths were carefully optimized. As we
experimented with various algorithmic alternatives, we evaluated
the performance of the resulting mechanism, ensuring the allocator
matched semi-space performance, and the tracing loop was as close
as possible to mark-sweep tracing. For example, we examined the
compiled IR for the allocation sequence, confirming the compiler
eliminated setting a bit in the header of small objects.

We found that tracing performance was noticeably better if the
collector performs the line mark operation when it scans an object,
rather than when it marks an object. Because the scanning code
is longer and loops over and examines any child references, we
believe that it provides better latency tolerance for hiding the cost
of the line mark operation.

15 15 15
o l4F 4 o l4F 4 o 14 4
£ £ £
= = =
5 13 S 13 5 13
() () ()
N N N
T 1.2 T 1.2 T 1.2 N
£ £ E
S 11 S 11 S 11)
o)
1 1 1 h | | | b
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Heap size relative to minimum heap size Heap size relative to minimum heap size Heap size relative to minimum heap size
(a) Total Time Intel Core 2 Duo (b) Total Time AMD Athlon (c) Total Time PPC 970
1.2 —m . . > 4 _. 64
2 ; MS ----s S =)
£ MC -t b= S 2t
— 115t §S =o 4 O o
S £ 16
8 by IX —m— 5 2 | £ :
S L5 T 1%} L
S 11 [7 i i 5
= DT 32 2 4
! 5 &
S 105 -] g 1 2
35 © I
L I 5 4 5 o - S £ 5 1!
| | v | | 3 2 05 | | | | | | z 05 | | | | | |
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Heap size relative to minimum heap size

(d) Mutator Time Core 2 Duo

Heap size relative to minimum heap size

(e) Mutator L2 Misses Core 2 Duo

Heap size relative to minimum heap size

(f) Collector Time Core 2 Duo

Figure 3. Geometric Mean Full Heap Algorithm Performance Comparisons for Total, Mutator, and Collector Time

12 12

" G|SS-MS -
M

115 115 -

11 11r

1.05 1.05

Normalized Time
Normalized Time

e

GISS-MS -8 1 GISS-MS -
VIS —— \ i N
GISS-IX —8— g 115p SS-
GlIX-AX —a— = s
IX — o i
g 11
E g
E
5 105
=z
1 1

1 2 3 4 5 6 1 2
Heap size relative to minimum heap size

(b) luindex Core 2 Duo

Heap size relative to minimum heap size

(a) javac Core 2 Duo

3

1 15 2 25 3 35 4
Heap size relative to minimum heap size

(c) pjbb2000 Core 2 Duo

4 5 6

Figure 4. Selected Benchmarks Showing Immix, Mark-Sweep and Composite Performance

4. Methodology
We use the following experimental methodology.

Benchmarks. We use all the benchmarks from SPECjvm98 and
DaCapo (v. 2006-10-MR2) suites, and pseudojbb2000. The Da-
Capo suite [14] is a recently developed suite of real-world open
source Java applications which are substantially more complex than
the SPECjvm98. The characteristics of both are described else-
where [15]. Pseduojbb2000 is a fixed workload version of SPEC
jbb2000 [35]. We configure it with 8 warehouses and 12500 trans-
actions per warehouse. Of these benchmarks, jbb2000, hsqldb,
lusearch, and xalan are multi-threaded.

Hardware and Operating System We use three hardware plat-
forms: (1) Intel Core 2 Duo with a 2.4GHz clock, a 800MHz DDR2
memory, a 32KB, 64B line 8-way L1, and a 4MB, 64B line 16-
way L2; (2) AMD Athlon 3500+ with a 2.2GHz clock, a 400MHz
DDR2 memory, a 64KB, 64B line 2-way L1, and a 512B, 64B line
16-way L2; and (3) IBM PowerPC 970 G5 with a 1.6GHz clock,
a 333MHz DDR memory, a 32KB, 128B line 2-way L1, and a
512KB, 128B line 8-way L2. All the systems run Linux 2.6.20 ker-
nels from Ubuntu 7.04. We use the perfctr [32] library to gather
hardware performance counters on the Core 2 Duo. All CPUs oper-
ate in 32-bit mode, and use 32-bit kernels. We use all available pro-
cessors in our performance evaluations, so our main results, from

the Core 2 Duo use two processors. We use separate uniprocessor
runs to gather performance counter data due to perfctr limitations.
Our AMD and PPC results are uniprocessor.

Jikes RVM and MMTk. We implement our algorithm in the
memory management toolkit (MMTK) [13, 12] in revision 13767
of Jikes RVM [3, 2] (October 2007). Jikes RVM is an open source
high performance [27] Java virtual machine (VM) written almost
entirely in a slightly extended Java. Jikes RVM does not have a
bytecode interpreter. Instead, a fast template-driven baseline com-
piler produces machine code when the VM first encounters each
Java method. The adaptive compilation system then optimizes the
frequently executed methods [5]. Using a timer-based approach, it
schedules periodic interrupts. At each interrupt, the adaptive system
records the currently executing method. Using a threshold, the op-
timizing compiler selects and optimizes frequently executing meth-
ods at increasing levels of optimization. Since the interrupts are not
deterministic, the level of compiler activity and final code quality
are non-deterministic.

We use four standard MMTk collectors in our experiments. MS
is a mark-sweep implementation that uses a Lea-style segregated
fits free list [29]. SS is a classic semi-space garbage collector,
although it uses a mark stack rather than a Cheney scan [19]. MC is
a Lisp-2 [37] style mark-compact collector which unconditionally

benchmark time (ms) MS SS MC X
compress 3305 1.00 1.01 1.02 1.00
jess 1405 1.00 | 1.06 1.20 0.90
raytrace 1034 1.00 | 1.33 1.32 0.92
db 6256 1.00 | 1.06 1.04 0.96

javac 2616 1.00 1.03 1.03 0.93
mpegaudio 2554 1.00 | 098 | 0.94 0.97
mtrt 771 1.00 | 1.44 1.28 0.97
jack 2319 1.00 | 1.17 1.22 0.92

antlr 2117 1.00 | 1.21 1.16 0.93
bloat 8038 1.00 | 1.27 1.27 0.87
chart 7009 1.00 1.04 1.14 0.93
eclipse 33412 1.00 1.07 0.93
fop 1795 1.00 | 1.02 1.03 0.95
hsqldb 1562 1.00 | 1.14 | 0.87 0.88
jython 7459 1.00 | 1.40 0.82
luindex 9830 1.00 1.11 1.11 0.96
lusearch 10463 1.00 1.25 1.39 0.95
pmd 4775 1.00 | 1.19 1.39 1.01
xalan 4773 1.00 | 1.I1 1.14 0.90
pjbb2000 16510 1.00 | 0.99 | 0.95 0.88
min 1.00 | 098 | 0.87 0.82

max 1.00 | 1.44 | 1.39 1.01
geomean 1.00 | 1.14 1.13 0.93

time Copying (G|SS-*) In-Place (G|x-x)
benchmark (ms) MS SS IX MS IX xrm
compress 3297 1.00 1.00 0.99 1.00 0.99 1.00

jess 1116 1.00 1.04 1.02 1.19 1.01 1.10
raytrace 884 1.00 1.93 0.96 1.18 1.02 1.01
db 6362 1.00 1.01 1.02 | 0.99 0.97

javac || 2650 || 100 | 1.02 || 099 | 106 | 102 | 1.02
mpegaudio || 2487 || 1.00 | 097 || 100 | 100 | 1.00 | 1.00

mitrt 670 1.00 1.81 1.01 1.21 1.07 1.05
jack 2156 1.00 1.12 0.96 1.19 1.06 1.06
antlr 1950 1.00 1.20 0.96 1.06 0.99

bloat 6371 1.00 1.09 1.00 | 1.24 1.03 1.08
chart 6657 1.00 1.03 0.99 1.06 | 0.98 0.98
eclipse 31588 1.00 1.02 0.99 1.10 | 0.99 1.01
fop 1722 1.00 | 0.99 0.99 1.02 1.00 0.99
hsqldb 1756 1.00 | 2.04 1.11 1.00 1.16
jython 5322 1.00 1.17 0.98 1.19 | 0.99 1.01
luindex 9763 1.00 1.47 1.00 | 1.02 | 0.99 0.98
lusearch 8088 1.00 | 0.99 0.97 1.15 | 0.98 1.01

pmd 4799 1.00 1.18 1.02 1.23 1.18 1.27
xalan 4999 1.00 0.93 1.11 1.01

pjbb2000 15288 1.00 0.95 1.05 0.97 1.04

min 1.00 0.97 0.93 1.00 0.97 0.97

max 1.00 2.04 1.11 1.24 1.18 1.27

geomean 1.00 1.20 0.99 1.10 1.02 1.03

Table 1. Full Heap Algorithm Performance at 2x Minimum Heap

compacts the entire heap. G|SS-MS is a generational collector with
a variable sized evacuating nursery and mark-sweep mature space.
All collectors, including immix, use MMTK’s large object space
(LOS) for objects greater than 8KB.

Experimental Design and Data Analysis. We conduct all of our
comparisons across a range of heap sizes from one to six times
the minimum heap in which mark-sweep will run (see Figure 5).
To limit experimental noise, machines are stand-alone with all
unnecessary daemons stopped and the network interface down. We
ran each experiment six times, with each execution interleaved
among the systems being measured. We discard the fastest and
slowest experiments and report here the mean of the remaining four
experiments. Each graph shows 99% confidence intervals.

We use Jikes RVM’s replay feature to factor out non-determ-
inistic allocation into the heap by the compiler due to timer-based
adaptive optimization decisions [14]. For collector experiments, the
allocation load must remain constant. Replay uses a profile of all
the dynamic information gathered for compilation decisions: edge
frequencies, the dynamic call graph, and method optimization lev-
els. When executing, the system lazily compiles, as usual, but under
replay uses the profile to immediately compile the method to its fi-
nal level of optimization. We gathered five sets of profiles for each
benchmark using a build of Jikes RVM with the mark-sweep col-
lector, running each benchmark for ten iterations to ensure the pro-
file captured steady state behavior. We selected profile information
from the fastest of the five trials and then used that profile for all ex-
periments reported in this paper. We choose the fastest since slower
mutator performance obscures differences due to the garbage col-
lector. We also use Jikes RVM’s new profiling mechanism to build
optimized, profiled images for each collector. Because the first it-
eration is dominated by compilation and startup costs, we time the
second iteration of the benchmark. We measured the performance
of second iteration replay and found that it outperformed a tenth it-
eration run using the default adaptive optimization system. We also
compared our replay configuration with Sun’s 1.5 and 1.6 produc-
tion JVMs in server mode, timing the second iteration on the Da-
Capo benchmarks, and found Jikes RVM with replay outperformed
JDK 1.5 by 5% while JDK 1.6 outperformed replay by 12%. We are
therefore confident that our experiments are conducted in a highly
optimized environment.

Table 2. Generational Performance at 1.5x Minimum Heap

5. Results

We first evaluate immix (IX) against three canonical collectors
representing the three previously published reclamation strategies,
mark-sweep (‘MS’, sweep-to-free-list), semi-space (‘SS’, evacu-
ate), and mark-compact (‘MC’, compact) on three architectures.
We break down performance by mutator and collector. We use
hardware performance counters to reveal the role of locality and
minimum heap sizes to show space efficiency. Section 5.2 mea-
sures immix as a component of a composite generational collec-
tor and compares against Jikes RVM’s production collector, a high
performance generational mark-sweep composite. Section 5.3 eval-
uates an in-place generational algorithm that handles pinning with
respect to both mark-sweep and immix full heap algorithms. Sec-
tion 5.4 teases apart the contributions of various aspects of immix.
Together the results show that a full heap implementation of im-
mix outperforms existing canonical full heap collectors and occa-
sionally outperforms a production generational collector. A genera-
tional composite based on immix modestly but consistently outper-
forms the production collector on average and on some benchmarks
significantly outperforms the production collector.

5.1 Full Heap Immix Performance

Figure 3 shows performance as the geometric mean for all 20
benchmarks for the three canonical collectors and immix. Each
graph normalizes performance to the best result on the graph and
covers heap sizes from 1x to 6x the minimum heap in which
mark-sweep will run each benchmark. Figures 3(a)-(c) show total
performance for the three architectures, and Figures 3(d)-(f) show
the Core 2 Duo mutator time, mutator L2 cache misses, and garbage
collection time. Table 1 presents a detailed performance slice at 2x
the minimum heap size.

Figures 3(a)-(c) show that immix (IX) outperforms each of the
collectors on all heap sizes on all three architectures, typically by
around 5-10%. Immix achieves this result by breaking the perfor-
mance dichotomy illustrated in Figure 1. Figures 3(d) and (e) show
that immix matches the superior mutator times of contiguous allo-
cation by providing comparable numbers of L2 misses on the Core
2 Duo. Figures 3(f) shows that immix matches the superior garbage
collection times of mark-sweep. Figures 3(b)-(c) show that immix
performs even better on the AMD and PPC than it does on the Core
2. The rest of our analysis focuses on the Core 2.

Heap Size Relative to Mark Sweep

Figure 5. Minimum Heap Sizes for Canonical Algorithms, Normalized to Mark-Sweep. Mark-Sweep Minimum Shown in Label (in MB).

Figure 5 shows the minimum heap sizes for each of the canon-
ical algorithms and immix, normalized to mark-sweep (MS). The
legend contains the heap sizes for mark-sweep for each benchmark
in MB. The minimums reported here are total heap sizes, inclu-
sive of LOS, metadata, etc. Immix (86%) is 14% more space ef-
ficient than mark-sweep on average, and is close to the efficiency
of mark-compact (83%). Immix is occasionally more space effi-
cient than mark-compact, e.g., see pmd and db. We speculate that
one cause may be pathological interactions between mark-compact
(which may move every object at every collection), and address-
based hashing, which pays a one word header penalty for any ob-
ject that is moved after being hashed. Immix minimizes moving, so
is much less exposed to this problem.

Table 1 shows that immix achieves its improvements reliably
and uniformly, improving over or matching the best of the other
collectors on nearly every benchmark. The worst degradation suf-
fered by immix is 1%, and its greatest improvement is 18% at this
heap size. Across the 11 heap sizes and 20 benchmarks we mea-
sured, the worst result for immix was a 4.9% slowdown on hsgldb
at a 1.1x heap. The best result for immix was a 74% (a factor
of four) improvement for jython compared to MS, at a 1x heap.
These results indicate that immix not only performs very well, but
is remarkably consistent and robust. Since performance deteriorates
rapidly for all collectors at very small heap sizes, we highlight 2 x
heap size in Table 1, which in Figure 3(a) is approximately the
‘knee’ in all four performance curves.

In some cases, immix significantly outperformed Jikes RVM’s
high performance production generational collector (‘GenMS’,
G|SS-MS), with a semi-space nursery (‘G|SS’) and mark-sweep
old space (‘MS’). Figure 4(a) shows that for javac, immix is by
far the best choice of collector, outperforming mark-sweep (MS)
and three generational collectors. Figure 4(b) shows that for luin-
dex, immix is again the best performing collector, except in a very
tight heap where the immix in-place generational collector (G|IX-
IX, Section 5.3) performs slightly better. In Figure 4(c), the immix
full heap algorithm eclipses mark-sweep (MS) and the Jikes RVM
production collector (G|SS-MS) in all but the tightest heaps. Fig-
ure 6(c) shows that in larger heaps immix outperforms G|SS-MS
on average across all benchmarks.

5.2 A Generational Composite

We now examine the performance of immix in a composite gen-
erational collector. We implemented our composite following the
template of Jikes RVM’s production collector (G|SS-MS), which is
a highly tuned collector representative of many high performance
production collectors. This collector allocates into a variable-sized
evacuating nursery and promotes survivors of nursery collections
into a mark-sweep mature space [13]. Thus it is a generational

semi-space, mark-sweep composite. Because it uses a semi-space
for young objects, this collector does not support pinning. It uses
an efficient ‘boundary’ write barrier [16], identifying nursery ob-
jects as those lying above a certain (constant) address boundary. We
created a semi-space, immix composite (G|SS-IX), which mirrors
G|SS-MS in all regards except for the change in mature space algo-
rithm. We also compare with Jikes RVM’s ‘GenCopy’ collector, a
semi-space, semi-space generational composite (G|SS-SS), which
also differs only in its mature space algorithm. We did not com-
pare against a semi-space, mark-compact composite (G|SS-MC)
because Jikes RVM does not currently have such a collector.

Figure 6(a) shows the total performance of each of the three
generational semi-space composites using a geometric mean of our
20 benchmarks, and includes mark-sweep (MS) as a reference.
First, we note that the generational collectors significantly and
consistently outperform MS in this geometric mean, explaining the
wide-spread use of such collectors. We see that G|SS-IX performs
similar to and slightly better than G|SS-MS. It is interesting to
note that G|SS-IX performs well even at larger heap sizes, where
the mutator performance will tend to dominate. Since each of the
three collectors shares exactly the same write barrier, allocator, and
nursery implementation, the observed performance difference is
most likely due to better mature space locality offered by immix
as compared to mark-sweep.

Table 2 shows a performance slice of the generational semi-
space composites at a 1.5x heap, which Figure 6(a) indicates is
the ‘knee’ in the performance curves for these collectors. G|SS-
IX performs slightly better than Jikes RVM’s production collector
(G|SS-MS) on average, with five good results, only one poor result
(hsqldb), and the remainder neutral. The few empty cells indicate
a collector failing to successfully complete either due to memory
exhaustion or some other failure.

Figures 4(a) and (b) show that for some benchmarks, includ-
ing javac and luindex, there is little difference between G|SS-I1X
and G|SS-MS. However, Figure 4(c) shows that for some impor-
tant benchmarks, including job2000, G|SS-IX consistently outper-
forms G|SS-MS. Our implementation of G|SS-IX is untuned—we
use exactly the same parameters and configuration in the immix
mature space as for the full heap algorithm. We believe there is
room for improvement, but leave that to future work.

5.3 Sticky Mark Bit In-Place Collector

We now evaluate mark-sweep (MS) and immix (IX) based im-
plementations of a ‘sticky mark bit’ in-place generational algo-
rithm [21] (G|MS-MS and G|IX-IX). The sticky mark-bit is a sim-
ple and elegant extension of a full heap collector to perform partial
collections, collecting only the newly allocated objects. The pri-
mary difference between our implementation and Demmers et al.’s

12 12 12
g 115+t g 115 g 115
P P P
° o o
g 11 g 11 & 11p
‘3 ‘3 ‘3
€ £ £
& 105 & 105 & 105p
z z z

1y o e v 1 1

1 2 3 4 5 8 1 2 4 5 6 1 2 3 4 5 8

Heap size relative to minimum heap size

(a) Copying Generational

Heap size relative to minimum heap size

(b) In-Place Generational

Heap size relative to minimum heap size

(¢) Immix Variants

Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, GIMS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-1X
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5x heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IX" will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance

Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2-6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2x
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2x heap size, immix allocates 76% at a 6x heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2x heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress
and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (/ine), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop
waste 25 to 20%, but most benchmarks waste less than 6%.

Allocation Marking Waste Pinning Compaction (1.5x Min Heap)
clean < < < | >=|over- pinned Compactions Candidate Blocks % net
blocks| 25%|50% |75% | 75% | flow block | line | consv calls | objects # GCs KB live reuse | yield
compress 0% | 58%(38%| 0% | 2% | 1% 18% | 8% | 2% 68 2 7 100% 5600 83% 89% | 5%
jess|| 27% | 61%|10%| 1% | 0% | 0% 208% |22% | 12% 127 3 1 5% 5280 13% 100% | 100%
raytrace|| 60% | 11%| 2% |25%| 1% | 0% 100% | 37% | 20% 368 3 0
dbj| 87% | 9% | 3% | 1% | 0% | 0% 15% | 9% | 3% 314 2 0
javac|| 23% | 38%|20%|12%| 4% | 3% 216% |75% | 25% 5K | 450 2 20% 5664 27% 100% | 100%
mirt|| 65% | 12%| 2% |18% | 2% | 0% 76% |44% | 20% 488 4 0
jack|| 26% | 61%| 7% | 2% | 2% | 4% 188% |23% | 10% 34 2 2 8% 12832 8% 100% | 100%
antlr|| 51% | 30%| 7% | 6% | 1% | 5% 48% (13%| 5% SK | 4529 0
bloat|| 30% | 64%| 3% | 1% | 1% | 1% 101% |13% | 6% 33 8 6 10% 33888 | 17% 100% | 100%
chart|| 42% | 48%| 6% | 1% | 3% | 1% 134% | 15%| 5% 29K | 58 0
eclipse|| 34% | 54%| 4% | 1% | 2% | 6% 87% |13%| 5% 112K | 35K 13 24% 229696| 21% 97% | 95%
fop|| 36% | 17%|26%|14% | 4% | 4% 134% | 44% | 20% 0 0 0
hsqldb|| 99% | 0% | 0% | 0% | 0% | 0% 26% |23%| 1% 43 0 0
jython|| 64% | 11%| 1% | 1% | 0% | 23% 24% | 7% | 2% 14 0 2 5% 10816 | 50% 91% | 96%
luindex|| 45% | 39%| 7% | 3% | 1% | 4% 76% |12%| 5% 43K | 7K 0
lusearch|| 25% | 53%| 9% | 7% | 3% | 4% 52% | 9% | 3% 171K| 9K 1 1% 8544 52% 3% | 5%
pmd|| 43% | 33%|11%|10%| 1% | 2% 110% |35% | 15% 137 2 4 17% 43488 | 43% 90% | 96%
xalan 11% | 41%|18% | 9% | 3% | 18% 59% | 10% | 4% 39K | 27K 1 6% 7360 39% 100% | 100%
min 0% 0% | 0% | 1% | 0% | 0% 15% | 7% | 1% 1% 8% 3% | 5%
max|| 99% | 64%|38% |25%| 4% | 23% 216%|75%| 25% 100% 83% 100% | 100%
mean|| 43% | 36%|10%| 7% | 2% | 4% 93% |23% | 9% 20% 35% 87% | 80%

Table 3. Allocating, Marking, Pinning, and Compaction Statistics. Compaction at 1.5x Minimum Heap, All Others at 2x Minimum Heap

Pinning Opportunistic evacuation allows immix to elegantly sup-
port object pinning. Although Java does not support object pinning,
it is an important feature of C# and Jikes RVM’s class libraries
optimize for pinning in the classes gnu.java.nio.VMChannel
and org.jikesrvm. jni.VM_JNIFunctions. Ineach case, the li-
brary avoids indirection and buffering when the VM assures an ob-
ject will not move. Columns 11 and 12 of Table 3 show the number
of times a call was made to pin an object during the second iteration
of each benchmark, and the number of objects which were pinned
as a result. Objects are pinned only once. The pinning interface
always returns true for mark-sweep since it never moves objects,
and always returns false for semi-space and mark-compact because
neither support pinning. Immix pins the requested object and re-
turns true. Immix performs pinning in all of the results reported in
this paper. We performed detailed performance analysis and found
that pinning has no effect on performance for most benchmarks;
has a very small advantage for three benchmarks which use pinning
heavily; and slightly degrades performance for a fourth benchmark.

Opportunistic Defragmentation Columns 13-18 of Table 3 show
the behavior of opportunistic defragmentation in a 1.5x heap. Even
at this modest heap size, only 8 benchmarks require defragmenta-
tion and only compress triggers defragmentation on every collec-
tion. We measured the volume of blocks marked as defragmenta-
tion candidates and the amount of /ive data on those blocks, ex-
pressed as a percentage. This percentage is an indirect measure of
fragmentation since it does not quantify the number of holes. We
see wide variations from 8% to 83% of live objects on candidate
blocks. We see that the vast majority (87%) of evacuated live ob-
jects are tucked into recyclable blocks rather than being evacuated
to completely free blocks. We measured defragmentation yield. Op-
portunistic defragmentation has limited success on compress and
lusearch, but neither of these programs stress the collector much.
On the remaining programs, defragmentation successfully converts
95% or more of the candidate space to completely free blocks.
These statistics show that opportunistic defragmentation effectively
compresses the heap on demand and is only occasionally triggered.

Defragmentation Headroom We also explored, but do not show
in detail, how immix’s minimum heap size is influenced by elimi-
nating (1) the default 2.5% defragmentation headroom, (2) defrag-
mentation, and (3) both defragmentation and line-grain reclama-
tion. Eliminating defragmentation and line-grain reclamation, thus

only performing block-grain recycling, would require more than
doubling the average minimum heap size. Performing line-grain
marking, but no defragmentation still increases the minimum heap
size significantly, on average 45% and up to 361%. Headroom also
significantly benefits immix. With zero headroom, immix would re-
quire an increase of between 16% on average, although for xalan
and antlr, immix performed berter with no headroom. We exper-
imented with headroom of 1, 2, and 3%; all were sufficient to
achieve small heap sizes in immix. Immix was not very perfor-
mance sensitive to these choices; 2% performs slightly better than
our current 2.5% threshold across a number of heap sizes, but all
were sufficient for robust immix performance in small heaps.

Block and Line Sizes Columns 6-9 of Table 4 show the sensitiv-
ity of immix to line and block size, measuring half and twice the
default sizes of 32KB and 128B for blocks and lines respectively.
Per-benchmark variation based on block size ranges from 7% better
to 7% worse for large blocks. Large blocks show a slight improve-
ment at a 2x heap size, but they perform worse in smaller heaps.
Smaller blocks have slightly less variation, but neither change im-
mix much. The eclipse and xalan benchmarks are most sensitive to
line size, and sensitivity grows in smaller heap sizes. Most bench-
marks are not that sensitive to line size, but we found that 128B is
more consistent and better across many heap sizes.

6. Conclusion

This paper describes mark-region, a new family of non-moving col-
lectors that allocate and reclaim memory in contiguous regions. To
combat fragmentation, we introduce lightweight opportunistic de-
fragmentation, which mixes copying and marking in a single pass.
‘We combine both ideas in immix, a novel high performance garbage
collector which attains space efficiency, fast collection and muta-
tor performance. Immix outperforms existing canonical collectors,
each of which sacrifice one of these three performance objectives.
As a mature space in a generational collector, immix matches or
beats a highly tuned generational collector. By describing mark-
region for the first time and presenting a detailed analysis of a high
performance mark-region implementation, this paper opens up new
directions for future collector design.

Acknowledgments

We thank our anonymous reviewers for helping us greatly improve
the paper. We thank David Bacon, Daniel Frampton, Robin Garner,

Algorithmic Features Block Size Line Size
benchmark || Block|Line |No HR [No Ov 16KB | 64KB 64B | 256B
compress 1.00 | 1.00| 1.00 | 1.01 1.00 | 1.00 1.00| 1.01

jess 0.98 | 1.00 1.04 | 0.99 1.02| 0.99
raytrace 1.07 | 1.00| 1.00 | 1.01 0.98 | 0.96 0.97| 0.96
db 1.04 |1.04| 1.03 | 1.00 1.00 | 1.00 1.01| 1.00
javac 0.99| 1.00 | 1.01 1.03 | 0.98 0.99| 1.02
mpegaudio || 0.99 [1.00| 1.00 | 1.00 1.00 | 1.00 1.01] 1.00
mtrt 1.26 | 1.02| 1.00 | 0.98 0.99 | 0.98 1.00| 1.00
jack 1.01| 1.02 | 097 0.99 | 0.98 0.98] 0.97
antlr 1.06| 1.05 | 1.04 1.00 | 1.07 0.98] 1.01
bloat 0.99 1.01 | 0.99 1.00| 1.01
chart 1.03| 1.00 | 1.01 1.02 | 1.00 1.01| 1.00
eclipse 1.02 1.03 | 1.02 1.05] 1.02
fop 1.02| 1.01 1.01 1.01 | 1.00 1.02| 1.00
hsqldb 1.09 | 1.08| 1.28 | 1.00 1.00 | 0.92 0.99] 0.91
jython 3.15| 1.81 | 1.08 1.03 | 0.99 1.06| 1.01
luindex 124 |1.05] 1.04 | 1.00 1.01 | 1.01 0.99| 1.00
lusearch 1.57 | 1.13| 1.05 | 1.05 1.04 | 1.00 1.05] 1.03
pmd 1.04| 1.05 | 1.00 1.00 | 1.00 1.00| 1.00
xalan 1.60 | 1.20| 1.98 | 091 0.96 | 0.97 0.93] 1.03
minf| 0.99 [0.99] 0.98 | 0.91 0.96 | 0.92 0.93| 0.91

max || 1.60 |3.15| 1.98 | 1.08 1.04 | 1.07 1.06| 1.03
geomean|| [1.19 |1.12| 1.11 | 1.0] 1.01 | 0.99 1.00| 1.00

Table 4. Performance Sensitivity. Relative to Immix 2x Heap.

and
tanc
this

David Grove for their insight, feedback and technical assis-
e. We thank all of the developers of Jikes RVM, without whom
research would not happen.

References

(1

(2]

(3]

[4

[5

(6]

(7

(8]

191

[10]

[11]

[12]

[13]

D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An efficient
parallel heap compaction algorithm. In ACM Conference on Object—
Oriented Programming, Systems, Languages, and Applications, pages 224-236,
Vancouver, BC, Canada, 2004. ACM.

B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd,

S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapefio virtual
machine. IBM System Journal, 39(1), Feb. 2000.

B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel, D. Lieber,
M. Mergen, T. Ngo, J. Shepherd, and S. Smith. Implementing Jalapefo in Java.
In ACM Conference on Object—Oriented Programming, Systems, Languages,
and Applications, Denver, CO, Nov. 1999.

A. W. Appel. Simple generational garbage collection and fast allocation.
Software Practice and Experience, 19(2):171-183, 1989.

M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive
optimization in the Jalapefio JVM. In ACM Conference on Object—
Oriented Programming, Systems, Languages, and Applications, pages 47-65,
Minneapolis, MN, October 2000.

C. Attanasio, D. Bacon, A. Cocchi, and S. Smith. A comparative evaluation of
parallel garbage collectors. In Proceedings of the Workshop on Languages and
Compilers for Parallel Computing, Cumberland Falls, KY, Aug. 2001.

D. F. Bacon, P. Cheng, and V. T. Rajan. Controlling fragmentation and space
consumption in the Metronome a real-time garbage collector for Java. In ACM
Conference on Languages, Compilers, and Tools for Embedded Systems, pages
81-92, San Diego, CA, June 2003.

D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector with low
overhead and consistent utilization. In ACM Symposium on the Principles of
Programming Languages, pages 285-294, New Orleans, LA, Jan. 2003.

H. G. Baker. List processing in real-time on a serial computer. Communications
of the ACM, 21(4):280-94, 1978.

K. Barabash, O. Ben-Yitzhak, I. Goft, E. K. Kolodner, V. Leikehman, Y. Ossia,
A. Owshanko, and E. Petrank. A parallel, incremental, mostly concurrent
garbage collector for servers. ACM Transactions on Programming Languages
and Systems, 27(6):1097-1146, 2005.

BEA Systems Inc. Using the JRockit runtime analyzer. http://edocs.
bea.com/wljrockit/docs142/usingJRA/looking.html, 2007.

S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities: The
performance impact of garbage collection. In Proceedings of the ACM
Conference on Measurement & Modeling Computer Systems, pages 25-36,
NY, NY, June 2004.

S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High
performance garbage collection in Java with MMTK. In Proceedings of the 26th
International Conference on Software Engineering, pages 137-146, Scotland,
UK, May 2004.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis. In ACM
Conference on Object—Oriented Programming, Systems, Languages, and
Applications, pages 169-190, Portland, OR, USA, Oct. 2006.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
Benchmarks: Java benchmarking development and analysis (extended version).
Technical Report TR-CS-06-01, Dept. of Computer Science, Australian
National University, 2006. http://www.dacapobench.org.

S. M. Blackburn and A. Hosking. Barriers: Friend or foe? In The ACM
International Symposium on Memory Management, pages 143—151, Vancouver,
BC, Canada, Oct. 2004.

S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B. Moss. Beltway:
Getting around garbage collection gridlock. In ACM Conference on
Programming Language Design and Implementation, pages 153-164, Berlin,
Germany, June 2002.

S. Borman. Sensible sanitation — understanding the IBM Java garbage
collector. http://www.ibm.com/developerworks/ibm/library/
i-garbagel/, Aug. 2002.

C.J. Cheney. A nonrecursive list compacting algorithm. Communications of
the ACM, 13(11):677-678, Nov. 1970.

J. Cohen and A. Nicolau. Comparison of compacting algorithms for garbage
collection. ACM Transactions on Programming Languages and Systems,
5(4):532-553, Oct. 1983.

A. Demmers, M. Weiser, B. Hayes, H. Boehm, D. Bobrow, and S. Shenker.
Combining generational and conservative garbage collection: framework and
implementations. In ACM Symposium on the Principles of Programming
Languages, pages 261-269, San Francisco, California, United States, 1990.
ACM.

D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage
collection. In The ACM International Symposium on Memory Management,
Vancouver, BC, Canada, Oct. 2004. ACM.

T. Domani, E. K. Kolodner, and E. Petrank. A generational on-the-fly garbage
collector for java. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementation, pages 274—
284, Vancouver, British Columbia, Canada, 2000. ACM.

Q. Feng and E. Berger. A locality improving dynmaic memory allocator. In
The ACM Workshop Memory Systems Performance, pages 68—77, Chicago, IL,
June 2005.

D. Frampton, D. F. Bacon, P. Cheng, and D. Grove. Generational real-
time garbage collection: A a three-part invention for young obects. In
European Conference on Object-Oriented Programming, pages 101-125,
Berlin, Germany, July 2007.

R. L. Hudson and J. E. B. Moss. Incremental collection of mature objects. In
Proceedings of the International Workshop on Memory Management, number
637 in Lecture Notes on Computer Science, pages 388—403. Springer-Verlag,
1992.

Jikes RVM Core Team. VM performance comparisons. http://jikesrvm.
anu.edu.au/~dacapo/index.php?category=release, 2007.

H. Kermany and E. Petrank. The compressor: concurrent, incremental, and
parallel compaction. In ACM Conference on Programming Language Design
and Implementation, pages 354-363, Ottawa, Ontario, Canada, 2006. ACM.

D. Lea. A memory allocator. Technical report, SUNY at Oswego, 1996.

J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, Part I. Commun. ACM, 3(4):184-195, 1960.

P. McGachey and A. L. Hosking. Reducing generational copy reserve overhead
with fallback compaction. In The ACM International Symposium on Memory
Management, pages 17-28, Ottawa, CA, June 2006.

M. Pettersson. Linux Intel/x86 performance counters, 2003.
//user.it.uu.se/~mikpe/linux/perfctr/.

N. Sachindran, J. E. B. Moss, and E. D. Berger. MC?: High-performance
garbage collectionn for memory-constrained environments. In ACM Conference
on Object—Oriented Programming, Systems, Languages, and Applications,
pages 81-98, Vancouver, Canada, Oct. 2004.

D. Spoonhower, G. Blelloch, and R. Harper. Using page residency to balance

tradeoffs in tracing garbage collection. In ACM International Conference on
Virtual Execution Environments, Chicago, IL, June 2005. ACM.

Standard Performance Evaluation Corporation. SPECjbb2000 Documentation,
release 1.01 edition, 2001.

D. Stefanovi¢, K. S. McKinley, and J. E. B. Moss. Age-based garbage
collection. In ACM Conference on Object—Oriented Programming, Systems,
Languages, and Applications, Denver, CO, Nov. 1999.

http:

P. Styger. LISP 2 garbage collector specifications. Technical Report TM-
3417/500/00 1, System Development Cooperation, Santa Monica, CA, Apr.
1967.

