
Dynamic Object Sampling for Pretenuring

Maria Jump

Department of Computer Sciences
The University of Texas at Austin

Austin, TX, 78712, USA
mjump@cs.utexas.edu

Stephen M Blackburn

Department of Computer Science
Australia National University

Canberra, ACT, 0200, Australia
Steve.Blackburn@anu.edu.au

Kathryn S McKinley∗

Department of Computer Sciences
The University of Texas at Austin

Austin, TX, 78712, USA
mckinley@cs.utexas.edu

ABSTRACT
Many state-of-the-art garbage collectors are generational, collect-
ing the young nursery objects more frequently than old objects.
These collectors perform well because young objects tend to die
at a higher rate than old ones. However, these collectors do not
examine object lifetimes with respect to any particular program or
allocation site. This paper introduces low-cost object sampling to
dynamically determine lifetimes. The sampler marks an object and
records its allocation site every n bytes of allocation. The collector
then computes per-site nursery survival rates. Sampling degrades
total performance by only 3% on average for sample rates of 256
bytes in Jikes RVM, a rate at which overall lifetime accuracy com-
pares well with sampling every object.

An adaptive collector can use this information to tune itself. For
example, pretenuring decreases nursery collection work by allocat-
ing new, but long-lived, objects directly into the mature space. We
introduce a dynamic pretenuring mechanism that detects long-lived
allocation sites and pretenures them, given sufficient samples. To
react to phase changes, it occasionally backsamples. As with pre-
vious online pretenuring, consistent performance improvements on
SPECjvm98 benchmarks are difficult to attain since only two com-
bine sufficient allocation load with high nursery survival. Our pre-
tenuring system consistently improves one of these, 213 javac,
by 2% to 9% of total time by decreasing collection time by over a
factor of two. Sampling and pretenuring overheads slow down all
the others. This paper thus provides an efficient sampling mecha-
nism that accurately predicts lifetimes, but leaves open optimiza-
tion policies that can exploit this information.

Categories and Subject Descriptors: D.3.3[Language Constructs
and Features]:

General Terms: Languages

Keywords: Memory management, garbage collection, object sam-
pling, dynamic pretenuring

∗This work is supported by NSF ITR CCR-0085792, NSF CCR-
0311829, NSF EIA-0303609, DARPA F33615-03-C-4106, ARC
DP0452011, and IBM. Any opinions, findings and conclusions ex-
pressed herein are the authors and do not necessarily reflect those
of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISMM’04, October 24–25, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-945-4/04/0010 ...$5.00.

1. Introduction
Many high performance garbage collectors today use generational
organizations that separates young objects from old objects and
then collects the younger objects more frequently. These collec-
tors perform well because young objects usually die quickly and at
a higher rate than older ones (the weak generational hypothesis [16,
25]). A problem for these collectors is that they usually do not ac-
commodate or detect objects that do not follow this hypothesis.

This paper introduces a low-cost dynamic object sampling mech-
anism to determine object lifetimes in a generational collector. This
sampling mechanism piggybacks on a contiguous bump-pointer al-
locator. It samples one object after every n bytes of allocation,
where n is a power of two. Using an address alignment allows for
efficient identification of samples. The sampler adds a word to the
sampled object that identifies the object’s allocation site, and incre-
ments a site allocation counter. During a collection, the collector
notes any surviving sampled objects and computes survival rates
for each allocation site. For sample rates of 256 and 512 bytes in
Jikes RVM using MMTk, this mechanism accurately computes site
lifetimes, adding on average a 1% to 3% time and 1% space over-
head. Previous approaches sample objects with weak pointers that
identify their allocation site [1]. Weak pointer sampling must trace
both dead and live objects, incurring large overheads. Huang et
al. [15] use type to predict object lifetimes, but type is not a good
predictor. To our knowledge, our object sampling technique is the
first to combine low overhead and accuracy.

Potential uses for dynamic lifetime information include adaptive
garbage collection optimizations and algorithms. For example, pre-
tenuring allocates long-lived objects directly into the mature space
to reduce nursery copying costs in generational collectors. We in-
troduce a dynamic pretenuring mechanism based on dynamic sur-
vivor rates. For a site with a high survival rate and sufficient sam-
ples, the collector modifies the allocation site to allocate subsequent
objects directly into the mature space. To detect lifetime phase
changes, backsampling occasionally allocates these sites into the
nursery in order to reexamine their survival rate. We examine a
range of heuristics for minimum number of samples, pretenuring
thresholds, and backsample thresholds. Backsampling provides a
robustness to mistakes as well as adaptiveness to phase changes.

The potential for pretenuring on the SPECjvm98 programs is
low. Only two programs combine substantial collector load (i.e.,
lots of allocation) with nursery survival rates greater than 5%. Pre-
tenuring speeds up one of these, 213 javac. It improves garbage
collection time by a factor of two, and total time by 2% to 9% since
collection time is generally a modest fraction of total time. For the
other cases, the overheads and pretenuring errors slow programs
down on average by 1% to 4%, and up to 16%. Prior dynamic
pretenuring work [14, 15] achieves smaller improvements and sim-

ilar worst case degradations, e.g., 205 raytrace slows down by
15% [14]. To prevent degradations when pretenuring is not applica-
ble, the system could trigger sampling only when nursery survival
statistics indicate some potential. For example, the collector could
turn on sampling and dynamic pretenuring only when nursery sur-
vival rates rise above 15%. We did not explore this feature.

We thus introduce an efficient online sampling mechanism for
determining lifetimes and a dynamic pretenuring mechanisms for
exploiting object lifetimes. However, we leave open policies that
use this information to consistently improve performance.

2. Related Work
This section compares our work to previous research on object life-
time prediction, dynamic object sampling, dynamic pretenuring,
and static pretenuring.

Other than the weak generational hypothesis [16, 25], previ-
ous work using analytical modeling and experimental classifica-
tion across programs has not yielded any additional general object
lifetime hypotheses [9, 22]. However, many memory management
techniques improve performance for a given program based on its
individual characteristics.

To determine and exploit lifetimes dynamically, previous work
uses write barriers and weak pointers. Domani et al. [11] and Qian
and Hendren [17] use write barriers to trap and differentiate global
and local heap pointers. They then collect the local heaps inde-
pendently. Qian and Hendren further redirect sites that allocate
global variables into the global heap. Both of these techniques can
add significantly to the execution time of the program, whereas our
mechanism adds negligible overhead.

Agesen and Garthwaite [1] sample objects by inserting weak
pointers which identify the object allocation sites. Their approach
is most similar in spirit to ours. After a collection, they must
trace both the dead and surviving sampled objects through the weak
pointers to gather statistics. They do not report overhead separately,
but as part of dynamic pretenuring. Total performance improves
and degrades on average by 1% to 2%, but 205 raytrace from
SPECjvm98 degrades by 15%. We instead mark samples by their
respective memory addresses. During collection, we need only
track survivors. At the end of a collection, the allocation and sur-
vivor statistics completely specify lifetimes. These mechanisms
reduce our space and collector time overheads compared to weak
pointers. Both mechanisms require specialized allocation and col-
lection support. Our object sampling is more general than weak
pointers since it needs no language support.

Harris [14] uses Agesen and Garthwaite’s sampling mechanism
to make dynamic pretenuring decisions for Java programs in the
context of a two generation collector. When the system detects a
long-lived allocation site, it begins allocating into a mature gener-
ation. His system samples in the higher generation to determine
whether or not to reverse a decision, but the infrequency of higher
generation collections reduces the accuracy of these lifetime sam-
ples. We instead allocate the occasional pretenured site back into
the nursery. Harris notes that these objects will always survive if
they are connected to another pretenured object, and in this case
our mechanism would not yield useful samples. We find that this
case does not occur frequently, and thus we can react more quickly
to phase changes. Harris uses separate thresholds for pretenuring
and reversal. He uses backpatching to change the allocation site,
rather than a load to determine the allocation region. Neither tech-
nique recompiles the method. Harris uniquely identifies the alloca-
tion site without any call chain information. Because Jikes RVM
performs aggressive inlining, allocation sites in our system tend to
have more context, which Harris suggests should be useful. His

dynamic pretenuring results show both improvements and a few
significant degradations but are limited to a single heap size. We
find improvements in a wide range of heap sizes while using a
faster collector, providing a more general mechanism, and incur-
ring lower overhead.

Huang et al. [15] compute per-class rather than per-site allo-
cation and survival statistics which is easy to implement, since
each object header includes the type already. However, type is
not a good predictor of lifetime. They use the Jikes RVM base-
line compiler which does not produce high quality code and thus
can hide any overhead. We use the adaptive optimizing compiler.
Their approach degrades total execution time slightly for the two of
three SPECjvm98 benchmarks they test, 202 jess and 228 jack,
while improving 213 javac by 2% to 5%.

Another approach to lifetime classification for heap optimiza-
tions is static profiling [4, 7, 8, 13, 18, 19, 23, 24]. For instance, a
static profiler finds allocation sites for long-lived objects in a gen-
erational collector and recompiles the program to allocate these di-
rectly to mature generations [7, 8, 23, 24]. A profile-driven ap-
proach is problematic for a just-in-time compiler. If programmers
were willing to profile, they would compile ahead of time.

3. Object Sampling
This section describes and evaluates object sampling for lifetime
prediction. The sampling mechanism requires a bump-pointer allo-
cation with a copying collector. We focus here on lifetime sampling
for newly allocated nursery objects, but this mechanism can sample
other characteristics as well.

Bump-pointer allocators use monotonically increasing addresses
within a contiguous region of memory by repeatedly increment-
ing (bumping) a pointer. This fast path of the allocation sequence
uses only a few instructions including a test to check whether the
allocation exceeds some boundary. Figure 1(a) illustrates this se-
quence. When the allocator exceeds the boundary, it calls the slow
path which determines, for example, whether the allocator needs
to request more memory or if it should trigger a collection. A suf-
ficiently large allocation region makes the fast path the common
case, and executes the more expensive slow path infrequently.

Figure 1(b) illustrates dynamic object sampling. Sampling adds
no instructions to the most frequently executed fast path (compare
lines 1-9 in Figure 1(a) & (b)). Object sampling however introduces
an intermediate path whose test succeeds every SAMPLE_PERIOD
bytes of allocation. For lifetime sampling, the allocator then records
a one-word object tag which encodes the object allocation site and
a magic number, which allows sampled survivors to be identified
(allocSample(), line 23). Lifetime prediction also increments
a per-site allocation counter. The compiler inline pragma, line 1 in
Figure 1(a) and (b), directs the compiler to inline the fast path of
the allocation sequence into the caller, leaving the sample path and
cold slow path as method calls.

Instead of the addition of special actions at every allocation, the
sampling path occurs only every SAMPLE_PERIOD bytes. We
can tune the sampling rate by statically or dynamically adjusting
it. Larger values, of course, trade lower overhead for fewer sam-
ples. We explore only statically specified sample rates here.

The garbage collector aggregates object statistics during collec-
tion. As the collector copies all reachable objects out of the nursery,
it checks each surviving object. If the word before the object con-
tains the magic number, the object is a sample, and the collector de-
codes the object’s allocation site from the tag. This approach allows
different sites to use different sample rates and frees the collector
from knowing a priori whether an object had been sampled. Life-
time sampling computes transient and total object survival statistics

1 VM_Address alloc(int bytes)
2 throws VM_PragmaInLine {
3 VM_Address oldCursor = cursor;
4 VM_Address newCursor = oldCursor.add(bytes);
5 if (newCursor.GT(limit)) // need more memory?
6 return allocSlow(bytes);
7 cursor = newCursor;
8 return oldCursor;
9 }

(a) Original bump pointer allocation

1 VM_Address alloc(int bytes, int siteID)
2 throws VM_PragmaInline {
3 VM_Address oldCursor = cursor;
4 VM_Address newCursor = oldCursor.add(bytes);
5 if (newCursor.GT(sampleLimit)) // need to sample?
6 return sample(bytes, siteID);
7 cursor = newCursor;
8 return oldCursor;
9 }

10 VM_Address sample(int bytes, int siteID)
11 throws VM_PragmaNoInline {
12 VM_Address rtn;
13 int required = bytes + SAMPLE_BYTES;
14 VM_Address newCursor = cursor.add(required);
15 if (newCursor.GT(limit)) { // need more memory?
16 rtn = allocSlow(required, siteID);
17 if (rtn.isZero()) return rtn; // we need to GC
18 } else {
19 rtn = cursor;
20 cursor = newCursor;
21 sampleLimit = roundUp(cursor, SAMPLE_PERIOD);
22 }
23 allocSample(rtn, bytes, siteID); // record sample
24 return rtn.add(SAMPLE_BYTES); // skip object tag
25 }

(b) Sampling bump pointer allocation

Figure 1: Changes to the Bump Pointer Allocation

in an array indexed by site. Transient statistics are for one collec-
tion phase (or several), while total statistics accumulate information
over the entire program.

This mechanism samples larger objects more frequently and thus
yields more accurate statistics for them. As Harris [14] points out,
large objects are important – especially if they are prolific.

3.1 Overhead and Accuracy
To evaluates the lifetime sampling overhead and accuracy as a func-
tion of sample rate, we start by briefly describing our experimental
setting, collector organizations, and Jikes RVM. We then demon-
strate that sampling overheads are on average low, between 1% and
3%, and at worst 6%, for sample periods of 256 and 512 bytes.
Even sampling every object adds an overhead of only on average
8% to 9%, but the worst case rises to 18%. We then compare the
accuracy of sampling for collecting lifetime statistics for sample
periods of between 32 and 4K bytes compared with sampling every
object. We find that modest sample rates are sufficient to accurately
predict nursery survival rates.

3.2 Methodology
We use the system and methodology described here for all the re-
sults in this paper.

3.2.1 Collector
We implement our technique in MMTk, a memory management
toolkit in Jikes RVM version 2.3.0.1 (formerly known as Jalapeño).
MMTk implements a number of collectors [5, 6]. We use a well
performing [5] 4 MB bounded bump-pointer nursery and a mark-
sweep mature generation (GenMS). However, our technique is com-

patible with other mature generation organizations. In MMTk, the
bounded nursery takes a command line parameter as the initial
nursery size, collects after the nursery is full, and resizes the nurs-
ery below the bound only when the mature space cannot accom-
modate a nursery of survivors. When the nursery size falls below a
lower bound (we use 256KB), it triggers a mature space collection.

The mark-sweep mature space is organized as a segregated-fits
free-list with lazy freeing. The allocator divides memory into blocks
of same size chunks. The collector traces and marks live objects,
and puts blocks with free objects on the appropriate free-block list.
The allocator constructs the free object list for the block the first
time it allocates from the block. (See Blackburn et al. [5] for addi-
tional MMTk details.)

3.2.2 Jikes RVM and Jikes Compilers
Jikes RVM is a high-performance VM written in Java with an ag-
gressive optimizing compiler [2, 3]. We only use configurations
that precompile as much as possible, including key libraries and
the optimizing compiler (the Fast build-time configuration), and
turn off assertion checking. We report two configurations: fully op-
timized compilation and pseudoadaptive compilation. In the fully
optimized methodology, the optimizing compiler precompiles all
methods. Pseudoadaptive compilation deterministically applies the
optimizing compiler to frequently executed methods chosen by the
adaptive compiler in previous (offline) runs. This methodology
gives us a realistic mixture of optimized and unoptimized code, but
does not expose the experiments to the natural variations in alloca-
tion and time due to timer-based adaptive compilation.

Eeckhout et al. [12] show that including adaptive compilation
in performance measurements obscures application behavior. We
thus report only application performance by running two iterations
of each benchmark. The first run uses one of the compiler con-
figurations from above, and then turns off compilation. Before the
second iteration, a whole heap collection flushes compiler objects
from the heap.

Jikes RVM compiler aggressively inlines methods. This policy
is a doubled-edged sword. On the positive side, it provides extra
context to differentiate call sites. If context is unnecessary, i.e., all
calls to this allocation have very similar lifetime statistics, it takes
longer to determine lifetimes for each individual inlined site than it
will if one site does all the allocation. Previous work on C and ML
suggest this context is useful [4, 8], whereas work on Java found it
may not always be necessary [7].

3.2.3 Benchmarks, Architecture, and Measurements
We evaluate our techniques using the SPEC JVM benchmarks and
pseudojbb, a variant of SPEC JBB2000 [20, 21] that executes a
fixed number of transactions to perform comparisons under a fixed
garbage collection load. We perform all of our experiments on a
3.2 GHz Intel Pentium 4 with hyper-threading enabled, an 8KB 4-
way set associative L1 data cache, a 12Kµops L1 instruction trace
cache, a 512KB unified 8-way set associative L2 on-chip cache,
and 1GB of main memory, running Linux 2.6.0.

We explore the time-space trade-off by executing each program
on five heap sizes, ranging from the smallest one possible for the
execution of the program to three times that size. We execute tim-
ing runs five times in each configuration and choose the best ex-
ecution time (i.e., the one least disturbed by other effects in the
system). We perform separate statistics gathering runs that accu-
mulate overall and individual collection statistics. We compute and
report statistics such as the number of collections, the number of
samples, the number of surviving samples, bytes allocated between
collections, and bytes copied per collection.

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.5 2 2.5 3

N
or

m
al

iz
ed

 G
C

 T
im

e

Heap size relative to minimum heap size

GenMS Sampling All
GenMS Sampling 64

GenMS Sampling 256
GenMS Sampling 512

(a) GC Time

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.5 2 2.5 3

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

Heap size relative to minimum heap size

GenMS Sampling All
GenMS Sampling 64

GenMS Sampling 256
GenMS Sampling 512

(b) Mutator Time

1

1.05

1.1

1.15

1.2

1.5 2 2.5 3

N
or

m
al

iz
ed

 T
ot

al
 T

im
e

Heap size relative to minimum heap size

GenMS Sampling All
GenMS Sampling 64

GenMS Sampling 256
GenMS Sampling 512

(c) Total Time

Figure 2: Sampling Overhead for Pseudoadaptive Compilation

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.5 2 2.5 3

N
or

m
al

iz
ed

 G
C

 T
im

e

Heap size relative to minimum heap size

GenMS Sampling All
GenMS Sampling 64

GenMS Sampling 256
GenMS Sampling 512

(a) GC Time

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.5 2 2.5 3

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

Heap size relative to minimum heap size

GenMS Sampling All
GenMS Sampling 64

GenMS Sampling 256
GenMS Sampling 512

(b) Mutator Time

1

1.05

1.1

1.15

1.2

1.5 2 2.5 3

N
or

m
al

iz
ed

 T
ot

al
 T

im
e

Heap size relative to minimum heap size

GenMS Sampling All
GenMS Sampling 64

GenMS Sampling 256
GenMS Sampling 512

(c) Total Time

Figure 3: Sampling Overhead for Optimizing Compilation

3.3 Lifetime Sampling Overhead
This section presents sampling time and space overheads, shown in
Figure 2 with the pseudoadaptive methodology and in Figure 3 with
fully optimized application code. The figures normalize sampling
against no sampling for a range of heap sizes using the geometric
mean of our benchmarks. Error bars show show the variations for
sampling every 512, 256, and 64 bytes, as well as all objects. The
direct overhead of sampling has two components, the spatial over-
head of a four byte site identifier and the computational overhead
of periodically executing sample() (Figure 1(b), lines 10-25).

Since lifetime sampling adds a four byte site identifier to each
sampled object, it increases space requirements by at most 0.8%
for a 512 byte sample rate, and 1.6% for 256. The impact of this
spatial overhead on garbage collection time is subtle, as shown in
Figures 2(a) and 3(a). One would assume that the dominant cost
would always be the additional work associated with collecting the
nursery more frequently, but more subtle effects of perturbing col-
lection trigger points can dominate. Changing when a collection
occurs can have cascading positive and negative effects on promo-
tion results and locality. For example, if the program is about to
allocate some medium lifetime objects, an earlier collection avoids
copying them. Any change in the amount of allocation results in
these effects [7]. Only when every allocation is sampled is the av-
erage collection time overhead significant (5% to 10%). For 256
and 512 byte sample rates the average collection overhead is negli-
gible and is dominated by perturbations, which can produce up to
15% degradation and 10% improvement.

The mutator time overheads are very reasonable. They average
between 0.5% and 2% of mutator time for sample rates of 256 and
512. Figures 2(b) and 3(b) show mutator time overhead and 2(c)
and 3(c) show the total time overhead. The error bars show the
worst case overheads and a few tiny improvements. For sampling
at 256 and 512 bytes these range from -0.5% to 3.5%, and are

slightly lower with the optimizing compiler. This mutator overhead
includes the additional instructions required to sample, but also in-
cludes the effects of data and instruction locality, which presumably
account for the tiny performance improvements. The overhead is
still low on average (4% to 5%) for 64 bytes.

For sample rates of 256 and 512, total time overhead ranges from
6% to less than -1%. The average rate is between 1% and 3%, and is
slightly higher using the optimizing compiler. The average object
size is 32 bytes which includes Jikes RVM’s 8 byte header [10].
Sampling every 64 bytes thus samples approximately every two
objects. When sampling every 64 bytes or all objects, overheads
grow substantially, up to 18% worst case, but 7% to 9% on average.

3.4 Lifetime Sampling Accuracy
This section evaluates the error introduced by sampling when com-
puting nursery survival rates. For each allocation site in a program,
we establish the actual survival rate (the number of surviving ob-
jects over the total number of objects allocated), and the survival
rate predicted with sampling. Depending on the particular demo-
graphics of the subset of objects at that site which were sampled,
the survival rate can be overestimated or underestimated.

We use a survival threshold to classify sites as either short-lived
or long-lived. For example, one might classify all sites with a sur-
vival rate higher than 80% as long-lived, and all others as short-
lived. We then measure sampling accuracy in terms of site mispre-
diction. At each site, we determine for each sample rate whether
the sampled survival rate would cause the site to be classified dif-
ferently from the site’s actual survival rate. We then quantify this
misprediction by summing for a given survival threshold the ob-
jects and bytes allocated at mispredicted sites. We repeat this pro-
cess for a range of survival thresholds from 0 to 1.

Figure 4 plots site mispredictions for 202 jess and 213 javac,
which are representative and diverse. The x-axis varies the survival
threshold and the y-axis plots the level of misprediction for all sites

0%

0.2%

0.4%

0.6%

0.8%

1%

1.2%

1.4%

1.6%

1.8%

 0 0.2 0.4 0.6 0.8 1

M
is

pr
ed

ic
te

d
O

bj
ec

ts

Survival Threshold

4096
2048
1024
512
256
128
64
32

(a) 202 jess Site Misprediction (Objects)

0%

0.5%

1%

1.5%

2%

2.5%

3%

3.5%

4%

4.5%

5%

 0 0.2 0.4 0.6 0.8 1

M
is

pr
ed

ic
te

d
B

yt
es

Survival Threshold

4096
2048
1024

512
256
128

64
32

(b) 202 jess Site Misprediction (Bytes)

0%

5%

10%

15%

20%

25%

30%

35%

40%

 0 0.2 0.4 0.6 0.8 1

M
is

pr
ed

ic
te

d
O

bj
ec

ts

Survival Threshold

4096
2048
1024
512
256
128
64
32

(c) 213 javac Site Misprediction (Objects)

0%

5%

10%

15%

20%

25%

30%

35%

 0 0.2 0.4 0.6 0.8 1

M
is

pr
ed

ic
te

d
B

yt
es

Survival Threshold

4096
2048
1024

512
256
128

64
32

(d) 213 javac Site Misprediction (Bytes)

Figure 4: Site Mispredictions as a Function of Survival Threshold and Sample Rate

that are mispredicted at a given survival threshold. Consider a site
with an actual survival rate of 20% and a predicted survival rate of
80%. For survival thresholds between 0% and 20% the site would
be correctly classified as ‘long lived’ (both predicted and actual sur-
vival rates are greater than the threshold). However, for thresholds
between 20% and 80% it would be incorrectly classified as ‘long
lived’ (the predicted survival rate is greater than the threshold, but
the actual survival rate is not). For thresholds above 80% it would
be correctly classified as ‘short lived’ (both predicted and actual
survival rates are lower than the threshold). All objects and bytes
allocated at this site would be included in all points on the site mis-
prediction curve between the 20% and 80% survival thresholds. A
site that was perfectly predicted would never contribute to the site
misprediction curve. The figures plot site mispredictions with re-
spect to objects (Figure 4(a) & (c)), and bytes (Figure 4(b) & (d))
of allocation associated with each mispredicted site. For example,
sampling is less accurate for sites that have short-lived objects (sur-
vival rates between 5% and 15%) on both programs, compared with
predicting objects with long lifetimes (rates above 60%).

The figures include one line for each sample rate from 32 bytes
through to 4KB. Figure 4(a) shows that the level of misprediction in
202 jess is very low (< 2%), even at coarse sample rates. As the

threshold grows, mispredictions become even less common. This
trend reflects that 202 jess has mostly low survival sites. Fig-
ure 4(b) measures site mispredictions in bytes and has almost the

same curve as (a), but with a considerable spike just before the 20%
survival threshold. Note that only the two coarsest sample rates ex-
perience this spike. This spike reflects a site that allocates large
objects with a survival rate a little under 20%.

Figure 4(c) shows site misprediction for 213 javac accounts for
nearly ten times as many objects (around 20% of all allocations).
The level of misprediction in 213 javac is almost the same for all
sample rates greater than 32, suggesting that the mispredicted sites
are predominately allocating objects < 64 bytes in size. The flat
curve illustrates a 20% misprediction rate between survival thresh-
olds of 20% to 90%. Figure 4(d) shows that as a percentage of
bytes, mispredictions are much lower, only around 6%. Mispre-
dicted sites thus tend to allocate very small objects. 213 javac
has a sensitive spot at around 75% where the very coarsest sample
rates see substantial degradation. This result suggests a site or sites
allocating large objects with around 75% survival rate.

Overall, sample rates between 128 and 1024 bytes have high ac-
curacy, with typical site misprediction rates in bytes ranging from
nearly zero to around 6%. For these benchmarks with few long-
lived objects, their behavior follows 202 jess; i.e., mispredictions
are highest at the lowest thresholds.

4. Dynamic Pretenuring
This section describes an example use of object sampling: dy-
namic pretenuring. Pretenuring seeks to reduce the load on the

nursery collector by allocating long-lived objects directly in to the
mature space. Our dynamic pretenuring system consists of the
following steps: (1) determining which allocation sites produce
long-lived objects; (2) redirecting the allocation site directly into
the old space; and (3) backsampling to detect allocation site phase
changes in a timely manner. The policy components use the fol-
lowing thresholds.

Minimum Samples : The minimum number of samples required
from an allocation site during an allocation phase for the site
to be considered for pretenuring.

Pretenuring Threshold : The survival rate above which a site is
pretenured.

Backsampling Policy : The backsampling functions include con-
stant (cbs), linear (lbs), and exponential (ebs).

Backsampling Shift : The backsampling trigger as a function of
the number of objects used to make the pretenuring decision.

Decay Shift : The amount by which mature statistics should be
decayed.

We now describe these components in more detail.

4.1 Pretenuring Statistics and Policies
We compute aggregate and transient lifetime statistics for pretenur-
ing. As Section 3 describes, the sampler increments a counter for
the allocation site of every sampled object. During a nursery col-
lection, the collector increments a site counter for any surviving
sampled objects allocated from each site. At the end of a nursery
collection, we compute survival rates for this collection (transient)
and aggregate statistics. We only use one collection phase for tran-
sient in our experiments. This separation focuses on those sites that
changed in the last allocation phase (those with non-zero transient
entries). For a site with sufficient samples and survival rate, dy-
namic pretenuring starts to allocate from the site into the old space
after the first garbage collection.

Pretenuring polices can use either transient or aggregate statis-
tics. To react quickly to phase changes, we use transient statis-
tics to begin pretenuring any site with a survival rate exceeding a
threshold ts. This policy is very aggressive and introduces some
errors but quickly captures newly allocating sites producing long-
lived objects.

4.2 Dynamic Allocation Targets
In order to act on pretenuring decisions, we add a dynamic test to
the allocation sequence (see Figure 5). It uses only a two instruc-
tions, an array lookup (line 12)1 and a conditional branch (line 3).
This implementation is simple and easily generalizes. As our re-
sults section shows, when the optimizing compiler inlines the entire
allocation sequence and then optimizes it in context, the overhead
of this additional test is on average 1% to 2%.

Another approach would be to backpatch the allocation instruc-
tions, which completely removes allocation time overhead. We
originally implemented this approach, but later concluded that it
was a premature optimization. The backpatcher was complex and
extremely brittle as it had to parse and manipulate instruction se-
quences generated by an aggressive optimizing compiler, and the
nature of those sequences was different between platforms and sub-
ject to change as the code in the allocation sequence and the com-
piler evolved. We ultimately choose this simpler approach since it
is very robust and although the overhead is not zero, it is very low.
1Our implementation uses a special instruction that avoids the array
bounds check.

1 ...
2 case NURSERY_SPACE:
3 region = nursery.alloc(isScalar, bytes);
4 break;
5 ...

(a) Original allocation

1 ...
2 case NURSERY_SPACE:
3 if (DynamicPretenure.nurseryAlloc(site))
4 region = nursery.alloc(isScalar, bytes, site);
5 else
6 region = matureAlloc(isScalar, bytes, site);
7 break;
8 ...
9

10 public final static boolean nurseryAlloc(int site)
11 throws VM_PragmaInline {
12 return pretenureTable[site] >= 0;
13 }

(b) Allocation with Dynamic Test

Figure 5: Dynamic Test Added to the Allocation Sequence

4.3 Backsampling
Once the system decides to pretenure a site, allocating its objects
into the mature space, the sampler can no longer compute that site’s
nursery survival rate. If the decision were wrong or the application
behavior changed, the system would never know. To avoid this
situation, we use backsampling. Backsampling periodically allo-
cates pretenured sites back in the nursery for one allocation phase,
thereby providing an opportunity to reassess the site’s survival rate.

We experiment with different policies that vary the frequency of
backsampling, based on the backsampled transient and total sur-
vival rates. We implement backsampling by initializing the site’s
mature counter to the negative of the backsampling target, which
is the total number of allocations used in making the pretenuring
decision. Each time an object is allocated into the mature space, the
mature counter is incremented, and when it reaches zero, the site
allocates into the nursery for one allocation phase. If at the next
collection the survival rate is no longer high enough, the system
reverses the pretenuring decision. Otherwise, the system reinforces
the pretenuring decision by changing the backsampling target ac-
cording to one of the following heuristics:

• The constant heuristic (cbs) leaves the backsampling target
as the number of allocations used to make the original deci-
sion (n).

• The linear heuristic (lbs) makes it harder to backsample the
site by initializing the backsampling interval to a multiple
(f ≥ 1) of n where f grows linearly with each consecutive
agreeing decision.

• The exponential (ebs) heuristic, f grows exponentially as a
power of 2.

The constant heuristic backsamples the most frequently, the linear
less than constant, and the exponential backsamples the least fre-
quently. Backsampling is a conservative mechanism. It reduces the
effectiveness of good choices, but protects the system from sam-
pling errors and changes in allocation lifetime phase behavior.

5. Dynamic Pretenuring Results
This section evaluates dynamic pretenuring. We first discuss its po-
tential on our benchmarks and find two programs that might benefit

from pretenuring. We then present the overheads due to the change
in the allocation sequence (see Figure 5), and the combination of
this together with sampling overheads. We show that the total over-
head is on average 0 to 4%.

Next, we evaluate the accuracy and coverage of the pretenuring
decisions, some decisions are accurate, but coverage is poor. We
miss pretenuring opportunities due to the warm-up and backsam-
pling periods or lack of allocation site lifetime homogeneity. We
explored the parameter space for pretenuring to find good configu-
rations and report the ones with the best performance for 213 javac.
Table 1 shows these configurations. One thing that we did not
vary is the use of transient or aggregate statistics, these results al-
ways use transient statistics. Aggregate are more conservative, and
would probably reduce some errors.

We report total time, garbage collection time, and mutator time
results for dynamic pretenuring for these configurations. We show
that dynamic pretenuring improves one program by up to 9%, and
degrades all the others. Reasonable configurations can degrade per-
formance by up to 16%, and poor ones by even more.

5.1 Potential of Pretenuring
Table 2 shows key characteristics of our benchmarks using pseu-
doadaptive compilation and an infinite heap with a 4MB nursery.
The alloc column in Table 2 indicates the total number of megabytes
allocated. The second column lists the ratio of total allocation to the
minimum heap size (the smallest heap that the benchmark can run
in) for the GenMS collector in MMTk and thus quantifies garbage
collection load. We order the table by the % nrs srv ratio, which
indicates the percentage of objects that survive a nursery collection.
This percentage indicates the potential for dynamic pretenuring to
eliminate unnecessary copying.

Only three of these programs are likely to benefit from pretenur-
ing, pseudojbb, 213 javac, and 209 db. In particular with a
4MB nursery, pseudojbb and 213 javac perform 50 and 53 nurs-
ery collections (respectively), whereas 209 db performs 20. How-
ever, closer examination of 209 db and pseudojbb show pre-
tenuring is unlikely to improve them. In pseudojbb, only a few al-
location sites produce the majority of long-lived objects, but these
same sites produce many short lived objects as well. Thus, these
sites never produce survival rates high enough to benefit from pre-
tenuring without more calling context than we examine here. In
209 db, all the long-lived objects are allocated in the first 8MB of

allocation. Dynamic pretenuring misses these opportunities while
it is warming up.

5.2 Pretenuring Overheads
Figure 6 reports the overhead for the dynamic test that is added
to the allocation sequence. Since we are measuring overhead, this
test is set to dynamically resolve to false. It shows that the run-
time overhead of the dynamic test in Figure 5 is around 1% in the
fully optimized case and in the noise in the adaptive case. In a
non-optimized setting the overhead of the extra memory load and
conditional will be swamped by other inefficiencies. The mix of
optimized and non-optimized code in the adaptive case hides the
small overhead in the optimized code.

Figures 7 and 8 reports the overhead for sampling and the dy-
namic allocation test. We measure this by running dynamic pre-
tenuring with a configuration which will not actually pretenure by
setting the pretenuring threshold above 100%. Figure 7 uses the
pseudoadaptive methodology, and Figure 8 the fully optimized ap-
plication code. Again, all the results exclude the compiler itself.
Using the optimizing compiler on the adaptive pretenuring alloca-
tion sequence lowers its average overhead by 2% to 3%, but in-

OLPT parameter values
parameter 80 LBS 80 EBS 85 LBS
minimum samples 8 4 10
pretenuring threshold 80% 80% 85%
backsampling policy linear exponential linear
backsampling shift 1 4 1
decay shift 0 0 1

Table 1: Configuration Settings for Base Results

alloc alloc: % nrs
Benchmark (MB) min srv
pseudojbb 210 4:1 41
213 javac 172 6:1 28

209 db 74 4:1 11
227 mtrt 117 6:1 6
228 jack 225 18:1 3

205 raytrace 110 6:1 3
202 jess 261 18:1 1

201 compress 105 7:1 0

Table 2: Benchmark Characteristics

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.5 2 2.5 3

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

Heap size relative to minimum heap size

Optimizing
Pseudoadaptive

Figure 6: Dynamic Allocation Test Overhead with the Optimiz-
ing Compiler: Geometric Mean of Total Execution Time

creases the variation from a range of 8% to -10%, to a range of
12% to -15%. The compilation differences again reflect that a fully
optimized setting exposes any overhead more.

5.3 Accuracy and Coverage
We now quantify the accuracy and coverage of pretenuring deci-
sions in bytes of allocation. Accuracy measures how many of the
objects chosen for pretenuring were actually long-lived. Coverage
measures how many of the long-lived objects were actually chosen
for pretenuring. Accuracy can be high while missing opportunities
(low coverage).

Figure 9(a) shows accuracy, and 9(b) shows coverage for each
benchmark and a range of pretenuring thresholds. We assume an
infinite mature space, thus the nursery is always 4MB. This config-
uration therefore examines accuracy without cascading the penalty
of mistakes. The other parameters values are the same as 80 LBS
from Table 1.

In Figure 9(a) the height of the bars represents the total volume of
pretenured objects. The solid portion shows long-lived objects (i.e.
correctly pretenured), and the striped portion indicates short lived
objects (i.e. incorrectly pretenured). Pretenuring accuracy is 80%
or better for 213 javac, which is the only benchmark we speed up.
The error rate for 209 db is 34%, and even worse for pseudojbb
at just under 50%. We expect errors to grow with a lower threshold
because while decisions are per-allocation site, here we measure
individual objects. For example, if a site has an 80% survival rate
and is pretenured, the 20% of objects which are short lived at that

0.96

0.98

1

1.02

1.04

1.5 2 2.5 3

N
or

m
al

iz
ed

 G
C

 T
im

e

Heap size relative to minimum heap size

GenMS OLPT 256
GenMS OLPT 512

(a) GC Time

0.99

1

1.01

1.02

1.03

1.04

1.05

1.5 2 2.5 3

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

Heap size relative to minimum heap size

GenMS OLPT 256
GenMS OLPT 512

(b) Mutator Time

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.5 2 2.5 3

N
or

m
al

iz
ed

 T
ot

al
 T

im
e

Heap size relative to minimum heap size

GenMS OLPT 256
GenMS OLPT 512

(c) Total Time

Figure 7: Sampling and Pretenuring Overhead for Pseudoadaptive Compilation

0.9

1

1.1

1.2

1.3

1.4

1.5

1.5 2 2.5 3

N
or

m
al

iz
ed

 G
C

 T
im

e

Heap size relative to minimum heap size

GenMS OLPT 256b
GenMS OLPT 512b

(a) GC Time

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.5 2 2.5 3

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

Heap size relative to minimum heap size

GenMS OLPT 256b
GenMS OLPT 512b

(b) Mutator Time

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.5 2 2.5 3

N
or

m
al

iz
ed

 T
ot

al
 T

im
e

Heap size relative to minimum heap size

GenMS OLPT 256b
GenMS OLPT 512b

(c) Total Time

Figure 8: Sampling and Pretenuring Overhead for Optimizing Compilation

pseudojbb javac db mtrt jack raytrace jess compress
0

5

10

15

P
er

ce
nt

 o
f

T
ot

al
 V

ol
um

e

Pretenuring Threshold 100
Pretenuring Threshold 95
Pretenuring Threshold 90
Pretenuring Threshold 85
Pretenuring Threshold 80
Pretenuring Threshold 75

(a) Pretenured Objects, Correct (solid) and Incorrect (striped)
pseudojbb javac db mtrt jack raytrace jess compress

0

10

20

30

40

P
er

ce
nt

 o
f

T
ot

al
 V

ol
um

e

None
Pretenuring Threshold 100
Pretenuring Threshold 95
Pretenuring Threshold 90
Pretenuring Threshold 85
Pretenuring Threshold 80
Pretenuring Threshold 75

(b) Long Lived Objects Not Pretenured

Figure 9: Accuracy (a) and Coverage (b) of Pretenuring in Percent of Total Volume

site will be incorrectly pretenured. These results barely show this
trend, thus the errors are most likely due to sampling errors (re-
call that we used a 256 byte sample rate), and from heterogeneous
allocation lifetime phases. Error rates are higher for 227 mtrt,
228 jack, 205 raytrace, and 202 jess, but the pretenuring vol-

ume is extremely low.
Figure 9(b) shows coverage; each bar represents the volume of

long-lived objects that are not pretenured under different pretenur-
ing regimes. The first bar, ‘None’, shows the volume when no
pretenuring is performed, and therefore reflects the total volume
of long-lived objects. The remaining bars vary the pretenuring

threshold, although only pseudojbb, 213 javac, 209 db, and
227 mtrt show any sensitivity to the threshold. The proximity of

these bars to the ‘None’ bar shows dramatic under-pretenuring. At
best we see 43% coverage (in 213 javac with 75% pretenuring
threshold), but in most cases the coverage is much lower. Reasons
for under-pretenuring include objects missed during ‘warm up’ of
the sampling mechanism, objects missed due to the sample rate,
and lack of homogeneity at allocation sites (long-lived objects al-
located from predominantly short-lived sites). Notice less than 5%
of allocation is long lived for the remaining programs.

1

2

3

4

5

6

1 1.5 2 2.5 3

0.2

0.3

0.4

0.5

0.6

0.7

60 80 100 120 140 160 180 200
N

or
m

al
iz

ed
 G

C
 T

im
e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(a) pseudojbb

1

2

3

4

5

6

7

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2

1.4

1.6

30 40 50 60 70 80

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(b) 213 javac

1

2

3

4

5

6

7

1 1.5 2 2.5 3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

15 20 25 30 35 40 45 50 55 60

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(c) 209 db

1

2

3

4

5

6

7

1 1.5 2 2.5 3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

20 30 40 50 60

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(d) 227 mtrt

1

2

3

4

5

6

7

8

9

10

1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

10 15 20 25 30 35 40

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(e) 228 jack

1

1.5

2

2.5

3

1 1.5 2 2.5 3

0.06

0.08

0.1

0.12

0.14

0.16

15 20 25 30 35 40 45 50 55

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(f) 205 raytrace

1

2

3

4

5

6

7

8

9

10

1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(g) 202 jess

1

2

3

4

5

6

7

1 1.5 2 2.5 3

0.5

1

1.5

2

15 20 25 30 35 40 45 50 55
N

or
m

al
iz

ed
 G

C
 T

im
e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(h) 201 compress

Figure 10: Garbage Collection Time

5.4 Pretenuring Results
We examined a range of these thresholds and policies. For the re-
maining experiments, we use the values in Table 1 which generally,
but not uniformly, give the best results in our experiments.

The goal of pretenuring is to reduce garbage collection load. Fig-
ure 10 shows that we are only able to systematically reduce garbage
collection load in 213 javac, where improvements are as much as
a factor of 2.5. We see some modest improvements in 227 mtrt.
209 db and 228 jack are not significantly changed by pretenur-

ing, but the remaining benchmarks all see degradations in garbage
collector performance. In a small heap, erroneously pretenured ob-
jects needlessly occupy the mature space, reducing the bounded
nursery size and triggering expensive full-heap collections. The
pretenuring configurations also show sensitivity to heap size; 85
LBS is particularly bad in a small heap, but matches the best per-
formance in large heaps.

The improvements in GC time for 227 mtrt and 213 javac
translate to total time in Figure 12. 213 javac improves by around
3% on average and by as much as 9% in a tight heap. 227 mtrt im-
proves by around 2% but degrades significantly in a tight heap. All
other benchmarks show degradations in total time. Interestingly,
213 javac shows a greater degradation in mutator time, presum-

ably due locality degradations caused by the disruption of alloca-
tion order that follows from a relatively high pretenuring rate.

6. Conclusion
This paper introduces a low-overhead object sampling technique.
We show that sampling can accurately predict allocation site sur-
vival rates. To use these predictions, we introduce a dynamic pre-
tenuring scheme. Since few of our benchmark programs can benefit
from dynamic pretenuring, attaining performance improvements on
even these is very challenging. Although we are the first to show
significant performance improvements on any of the SPECjvm98
benchmarks using dynamic pretenuring [14, 15], we also show sig-
nificant degradations. The question therefore remains as to whether
there is a pretenuring policy or other optimization policies that can
benefit from lifetime sampling.

7. Acknowledgements
We thank Steve Dropsho, Chip Weems, and Eliot Moss for their
input and discussions on the preliminary versions of this work.

8. REFERENCES
[1] O. Agesen and A. Garthwaite. Efficient object sampling via

weak references. In ACM International Symposium on
Memory Management, pages 121–127, Minneapolis, MN,
October 2000.

[2] B. Alpern et al. Implementing Jalapeño in Java. In ACM
Conference on Object-Oriented Programming Systems,

1

1.1

1.2

1.3

1.4

1.5

1 1.5 2 2.5 3
6

6.5

7

7.5

8

8.5

60 80 100 120 140 160 180 200
N

or
m

al
iz

ed
 M

ut
at

or
 T

im
e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(a) pseudojbb

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 1.5 2 2.5 3

5

5.1

5.2

5.3

5.4

5.5

5.6

30 40 50 60 70 80

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(b) 213 javac

1

1.02

1.04

1.06

1.08

1.1

1 1.5 2 2.5 3

13.4

13.6

13.8

14

14.2

14.4

15 20 25 30 35 40 45 50 55 60

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(c) 209 db

1

1.02

1.04

1.06

1.08

1.1

1 1.5 2 2.5 3

2.1

2.15

2.2

2.25

20 30 40 50 60

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(d) 227 mtrt

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 1.5 2 2.5 3
2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

10 15 20 25 30 35 40

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(e) 228 jack

1

1.01

1.02

1.03

1.04

1.05

1 1.5 2 2.5 3
1.96

1.97

1.98

1.99

2

2.01

2.02

2.03

2.04

2.05

15 20 25 30 35 40 45 50 55

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(f) 205 raytrace

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 1.5 2 2.5 3

2.2

2.25

2.3

2.35

2.4

2.45

2.5

15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(g) 202 jess

1

1.05

1.1

1.15

1.2

1.25

1 1.5 2 2.5 3
5.4

5.6

5.8

6

6.2

6.4

6.6

15 20 25 30 35 40 45 50 55
N

or
m

al
iz

ed
 M

ut
at

or
 T

im
e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(h) 201 compress

Figure 11: Mutator Time

Languages, and Applications, pages 314–324, Denver, CO,
November 1999.

[3] B. Alpern et al. The Jalapeño virtual machine. IBM Systems
Journal, 39(1):211–238, February 2000.

[4] D. A. Barrett and B. Zorn. Using lifetime predictors to
improve memory allocation performance. In ACM SIGPLAN
Conference on Programming Languages Design and
Implementation, pages 187–196, Albuquerque, New Mexico,
June 1993.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. In
ACM SIGMETRICS Conference on Measurement &
Modeling Computer Systems, pages 25–36, New York, NY,
June 2004.

[6] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
water? High performance garbage collection in Java with
JMTk. In Proceedings of the International Conference on
Software Engineering, pages 137–146, Scotland, UK, May
2004.

[7] S. M. Blackburn, S. Singhai, M. Hertz, , K. S. McKinley, and
J. E. B. Moss. Pretenuring for Java. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 342–352, Tampa, FL, October 2001.
ACM.

[8] P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. In ACM SIGPLAN
Conference on Programming Languages Design and
Implementation, pages 162–173, Montreal, Canada, May
1998.

[9] W. D. Clinger and L. T. Hansen. Generational garbage
collection and the radioactive decay model. In ACM
SIGPLAN Conference on Programming Languages Design
and Implementation, pages 73–85, Las Vegas, NV, June
1997.

[10] S. Dieckmann and U. Hölzle. A study of the allocation
behavior of the SPECjvm98 Java benchmarks. In
Proceedings of the European Conference on Object-Oriented
Programming, pages 92–115, June 1999.

[11] T. Domani, G. Goldshtein, E. Kolodner, E. Lewis,
E. Petrank, and D. Sheinwald. Thread-local heaps for Java.
In ACM International Symposium on Memory Management,
pages 76–87, Berlin, Germany, June 2002.

[12] L. Eeckhout, A. Georges, and K. D. Bosschere. How Java
programs interact with virtual machines at the
microarchitectural level. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 244–358, Anaheim, CA, October 2003.

[13] D. R. Hanson. Fast allocation and deallocation of memory

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3

6.5

7

7.5

8

8.5
60 80 100 120 140 160 180 200

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(a) pseudojbb

1

1.05

1.1

1.15

1.2

1.25

1.3

1 1.5 2 2.5 3

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

30 40 50 60 70 80

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(b) 213 javac

1

1.01

1.02

1.03

1.04

1.05

1.06

1 1.5 2 2.5 3
13.6

13.7

13.8

13.9

14

14.1

14.2

14.3

14.4
15 20 25 30 35 40 45 50 55 60

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(c) 209 db

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1 1.5 2 2.5 3

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

20 30 40 50 60

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(d) 227 mtrt

1

1.1

1.2

1.3

1.4

1.5

1.6

1 1.5 2 2.5 3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

10 15 20 25 30 35 40

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(e) 228 jack

1

1.01

1.02

1.03

1.04

1.05

1.06

1 1.5 2 2.5 3

2.04

2.06

2.08

2.1

2.12

2.14

15 20 25 30 35 40 45 50 55

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(f) 205 raytrace

1

1.1

1.2

1.3

1.4

1.5

1 1.5 2 2.5 3

2.4

2.6

2.8

3

3.2

3.4

15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(g) 202 jess

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 1.5 2 2.5 3

6

6.5

7

7.5

8

15 20 25 30 35 40 45 50 55
N

or
m

al
iz

ed
 T

im
e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

GenMS
GenMS 256b OLPT 80 LBS
GenMS 256b OLPT 80 EBS
GenMS 256b OLPT 85 LBS

(h) 201 compress

Figure 12: Total Execution Time

based on object lifetimes. Software—Practice and
Experience, 20(1):5–12, January 1990.

[14] T. L. Harris. Dynamic adaptive pre-tenuring. In ACM
International Symposium on Memory Management, pages
127–136, Minneapolis, MN, October 2000.

[15] W. Huang, . Srisa-an, and J. M. Chang. Dynamic pretenuring
schemes for generational garbage collection. In Proceedings
for the 2004 IEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 133–140,
Austin, TX, March 2004.

[16] H. Lieberman and C. E. Hewitt. A real time garbage
collector based on the lifetimes of objects. Communications
of the ACM, 26(6):419–429, 1983.

[17] F. Qian and L. Hendren. An adaptive, region-based allocator
for Java. In ACM International Symposium on Memory
Management, Berlin, Germany, June 2002.

[18] M. L. Seidl and B. G. Zorn. Segregating heap objects by
reference behavior and lifetime. In ACM Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 12–23, San Jose, CA, November
1998.

[19] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh.
Exploiting prolific types for memory management and
optimzations. In ACM Symposium on the Principles of

Programming Languages, pages 295–306, Portland, OR,
January 2002.

[20] Standard Performance Evaluation Corporation. SPECjvm98
Documentation, release 1.03 edition, March 1999.

[21] Standard Performance Evaluation Corporation.
SPECjbb2000 (Java Business Benchmark) Documentation,
release 1.01 edition, 2001.

[22] D. Stefanović, K. S. McKinley, and J. E. B. Moss. On
models for object liftime distributions. In ACM International
Symposium on Memory Management, pages 137–142,
Minneapolis, MN, October 2000.

[23] D. Ungar and F. Jackson. Tenuring policies for
generation-based storage reclamation. In ACM Conference
on Object-Oriented Programming Systems, Languages, and
Applications, pages 1–17, San Diego, California, November
1988.

[24] D. Ungar and F. Jackson. An adaptive tenuring policy for
generation scavengers. ACM Transactions on Programming
Languages and Systems, 14(1):1–27, 1992.

[25] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages
157–167, April 1984.

