
Integrating Asynchronous Task Parallelism and

Data-centric Atomicity

⇤

Vivek Kumar

†

Rice University

Julian Dolby

IBM T.J. Watson Research

Stephen M. Blackburn

Australian National University

ABSTRACT
Processor design has turned toward parallelism and het-
erogeneous cores to achieve performance and energy e�-
ciency. Developers find high-level languages attractive as
they use abstraction to o↵er productivity and portability over
these hardware complexities. Over the past few decades, re-
searchers have developed increasingly advanced mechanisms
to deliver performance despite the overheads naturally im-
posed by this abstraction. Recent work has demonstrated
that such mechanisms can be exploited to attack overheads
that arise in emerging high-level languages, which provide
strong abstractions over parallelism. However, current im-
plementation of existing popular high-level languages, such
as Java, o↵er little by way of abstractions that allow the
developer to achieve performance in the face of extensive
hardware parallelism.

In this paper, we present a small set of extensions to the
Java programming language that aims to achieve both high
performance and high productivity with minimal program-
mer e↵ort. We incorporate ideas from languages like X10
and AJ to develop five annotations in Java for achieving
asynchronous task parallelism and data-centric concurrency
control. These annotations allow the use of a highly e�cient
implementation of a work-stealing scheduler for task paral-
lelism. We evaluate our proposal by refactoring classes from
a number of existing multithreaded open source projects to
use our new annotations. Our results suggest that these an-
notations significantly reduce the programming e↵ort while
achieving performance improvements up to 30% compared
to conventional approaches.

⇤This work was supported by IBM and ARC
LP0989872. Any opinions, findings and conclusions ex-
pressed herein are the authors’ and do not necessarily reflect
those of the sponsors.

†Work done while the author was a�liated with Aus-
tralian National University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPPJ’16, August 29-30, 2016, Lugano,Switzerland

c� 2016 ACM. ISBN 978-1-4503-4135-6/16/08. . . $15.00

DOI: http://dx.doi.org/...

CCS Concepts
•Software and its engineering ! Concurrent pro-
gramming structures; Source code generation; Run-
time environments;

Keywords
Task Parallelism, Work-Stealing, Data-centric Atomicity, Jikes
RVM

1. INTRODUCTION
Today and in the foreseeable future, performance will be

delivered principally in terms of increased hardware paral-
lelism. This fact is an apparently unavoidable consequence
of wire delay and the breakdown of Dennard scaling, which
together have put a stop to hardware delivering ever faster
sequential performance. Unfortunately, software parallelism
is often di�cult to identify and expose, which means it is
often hard to realize the performance potential of modern
processors. Common programming models using threads
impose significant complexity to organize code into multi-
ple threads of control and to manage the balance of work
amongst threads to ensure good utilization of multiple cores.

Much research has been focused on developing program-
ming models in which programmers simply annotate por-
tions of work that may be done concurrently and allow the
system to determine how the work can be executed e�ciently
and correctly. X10 [13] is one such recently developed paral-
lel programming language that provides async-finish based
annotations to the users to specify the tasks that can run
asynchronously. Other closely related programming models
are ICC++ [15], Cilk [20], and Habanero-Java [11, 24]. All
these implementations employ a work-stealing scheduler [9]
within the underlying language runtime that schedules fine-
grained packets of work exposed by the programmer, ex-
ploiting idle processors and unburdening those that are over-
loaded. However, a drawback of this approach is the runtime
overheads due to over decomposition of tasks. As a common
work-around, programmer chooses a granularity size, which
can stop the creation of new tasks. Again, choosing a right
granularity size for each async-finish block in a large code-
base can be a daunting task.

Further, to ensure the correctness of parallel program, it
is important that threads of execution do not interfere with
each other while sharing data in the memory (data-race).
Traditional approaches to avoid data-race follow control-
centric approaches where the instruction sequences are pro-

http://dx.doi.org/...

tected with synchronization operations. This is a burden
on the programmer, as he has to ensure that all shared data
are consistently protected. In a large code-base, this control-
centric approach can significantly decrease the productivity
and can lead to data-races that are frustratingly di�cult to
track down and eliminate. To remove this burden from the
programmer, Atomic Sets for Java (AJ) introduced a data-
centric approach for synchronization [17]. In this model,
the user simply groups fields of objects into atomic sets to
specify that these objects must always be updated atomi-
cally. AJ then uses the Eclipse Refactoring [32] tool to au-
tomatically generate synchronization statements at all rel-
evant places. The basic idea behind atomic sets is simple:
the reason we need synchronization at all is that some sets
of fields have some consistency property that must be main-
tained. The atomic sets model abstracts away from what
these properties are, and has them declared explicitly. While
AJ has been extensively studied in several prior works [36,
17, 37, 31, 22, 26], it is still not open-sourced. Moreover, all
prior studies on AJ have been done only by using explicit
Java threading for expressing parallelism.

Our principal contribution is an open-sourced new sys-
tem, AJWS1—Atomic Java with Work-Stealing, which by
drawing together the benefits of work-stealing and AJ, al-
lows the application programmer to conveniently and suc-
cinctly expose the parallelism inherent in their program in
a mainstream object-oriented language. We have imple-
mented AJWS by using JastAdd meta-compilation system [18].
AJWS uses a highly scalable and low-overhead implementa-
tion of a work-stealing runtime [28, 27], which relieves the
programmer in choosing the granularity of each parallel sec-
tion.

In summary, the contributions of this paper are as follow-
ing:

• We introduce a new parallel programming model (AJWS)
that provide a set of five annotations to bring together
the benefits of work-stealing and data-centric approach
for synchronization.

• We provide compiler transformation of AJWS anno-
tations to vanilla Java that uses a recently developed
highly scalable implementation of a work-stealing run-
time.

• We demonstrate the benefits of AJWS by modifying
three large open-sourced Java applications and by eval-
uating the performance on a quad-core smartphone, to
evaluate AJWS on mobile devices that are increasingly
multicore.

The rest of the paper is structured as follows. We start by
giving a motivating analysis in Section 2 to show the benefits
of our new AJWS parallel programming model. In Section 3
we provide a background on AJWS’s work-stealing runtime.
Section 4 explains the design and implementation of AJWS.
Section 5 discusses our evaluation methodology for AJWS.
Section 6 discusses the improvements to productivity and
performance by using AJWS. Section 7 discusses the related
work and finally Section 8 concludes the paper with some
directions to future work.

1https://github.com/vivkumar/ajws

2. MOTIVATION
Pundits predict that for the next twenty years processor

designs will use large-scale parallelism with heterogeneous
cores to control power and energy [10]. Software demands for
correctness, complexity management, programmer produc-
tivity, time-to-market, reliability, security, and portability
have pushed developers away from low-level programming
languages towards high-level ones. Java is a high-level lan-
guage that has gained huge popularity. As evident from the
TIOBE [6] index for June 2016, Java is on number one spot
in the programming language community.

However, mainstream languages such as Java do not pro-
vide support for parallel programming that is both easy to
use and e�cient. Figure 1 shows a bank account transaction
code written both in plain Java and AJWS. The class Bank

carries out money transfer between a pair of sender and re-
ceiver accounts. The class Transfer contains the detail of
sender and receiver accounts. Multiple transfers might be
taking place to/from the same account. The other operation
performed by class Bank is adding interest to each account.

2.1 Bank transaction in plain Java
Figure 1(a) shows a plain Java pseudocode for this bank

program. The methods processTransfer (Line 35) and
addInterest (Line 41) contain codes that can exploit paral-
lelism. Di↵erent techniques that the user can choose for par-
allelizing are (a) partitioning the for loops (Line 36 and 42)
among threads, (b) using Java’s concurrent utilities for par-
allelizing these for loops, and (c) using async-finish con-
structs from Habanero-Java. The first two approaches incur
significant syntactic overheads with respect to the sequen-
tial version of the same code. Moreover, in all the above
approaches the programmer must control the granularity of
the parallel executions to avoid runtime overheads. To en-
sure consistency, class Account requires a lock object to
access any member methods (e.g., method addInterest at
Line 15). Further, to ensure proper accounting in case of
inter-account transfer (Line 22), both the participating ac-
counts should be locked before the transfer actually happens
(Line 24). However, Line 24 can create a potential deadlock.
Suppose there is a thread T1 doing transfer from account A
to B and another thread T2 is doing transfer from account
B to A. At Line 24, T1 locks A and T2 locks B. Next, T1 try
locking B and T2 try locking A, thereby creating a deadlock.

2.2 Bank transaction using AJWS
To minimize programming complexities, our AJWS sys-

tem provides the user a set of five annotations to ensure
race free concurrency (syntax and semantics are explained
in Section 4.1). Figure 1(b) shows the AJWS version of
the code in Figure 1(a). AJWS’s async-finish annotations
are used inside methods processTransfer (Line 28) and
addInterest (Line 35) for using task-parallelism. An async

construct launches an asynchronous task that can execute
in parallel to other async tasks. To synchronize on async,
a finish construct is used. Control does not return from
inside a finish, until all transitively launched async within
the scope of the finish have terminated. The user need not
worry about formulating correct granularity, as our AJWS
system perform load-balancing of these async tasks by using
the TryCatchWS work-stealing runtime from Kumar et. al.,
which has extremely low runtime overheads (Section 3). To
ensure consistency, AJWS reuses the data-centric concur-

https://github.com/vivkumar/ajws

1 class Account {
2 double balance; long id;
3 Lock l;
4 Account(i) {
5 id = i;
6 l = new ReentrantLock ();
7 }
8 int getId() {return id;}
9 void lock() {l.lock ();}

10 void unlock () {l.unlock ();}
11 // user must take lock

12 // before calling any method

13 void credit(amount) { ... }
14 void debit(amount) { ... }
15 void addInterest () {
16 lock (); ...; unlock ();
17 }
18 ...
19 }
20 class Transfer {
21 Account a1 , a2;
22 void run() {
23 // potential deadlock

24 a1.lock (); a2.lock ();
25 a1.debit(amount);
26 a2.credit(amount);
27 a1.unlock (); a2.unlock ();
28 }
29 ...
30 }
31 class Bank {
32 Transfer [] transfers;
33 Account [] accounts;
34 // how parallelize ? granularity ?

35 void processTransfer () {
36 for(int i=0; i<total; i++) {
37 transfers[i].run();
38 }
39 }
40 // how parallelize ? granularity ?

41 void addInterest () {
42 for(int i=0; i<total; i++) {
43 accounts[i]. addInterest ();
44 }
45 }
46 ...
47 }

(a) A sample scenario that can lead to dead-
lock. Here, user ensures atomicity by calling
methods of class Account within lock()
and unlock()

1 class Account {
2 @AtomicSet(A);
3 @Atomic(A) double balance;
4 long id;
5 Account(i) {
6 id = i;
7 }
8 int getId() {return id;}
9 // It is now AJWS ’s resposibility

10 // for proper synchronizations

11 void credit(amount) { ... }
12 void debit(amount) { ... }
13 void addInterest () { ... }
14 ...
15 }
16 class Transfer {
17 Account a1, a2;
18 @Atomic(a1.A) @Atomic(a2.A)
19 void run() {
20 a1.debit(amount);
21 a2.credit(amount);
22 }
23 ...
24 }
25 class Bank {
26 Transfer [] transfers;
27 Account [] accounts;
28 void processTransfer () {
29 finish {
30 for(int i=0; i<total; i++) {
31 async {transfers[i].run ();}
32 }
33 }
34 }
35 void addInterest () {
36 finish {
37 for(int i=0; i<total; i++) {
38 async {accounts[i]. addInterest ();}
39 }
40 }
41 }
42 ...
43 }

(b) Programming using our new AJWS system, where it
is AJWS’s responsibility to ensure proper synchroniza-
tions

Figure 1: Pseudocode in Java for a concurrent bank account transactions. (complete code available at [1])

rency control mechanism introduced by Atomic Sets pro-
gramming model for Java (AJ) [36, 17, 37]. In this model,
the programmer specifies that sets of object fields share some
consistency property, without specifying what the property
may be. This di↵ers from traditional object oriented models
in two key ways: the first is that the programmer specifies all
consistency, and unannotated fields have no synchronization.
The second is that the idiom naturally encompasses specify-
ing both subsets of an object’s fields and sets of fields that
span multiple objects. In Figure 1(b), the class Account

declares a single Atomic Set A using the @AtomicSet anno-
tation (Line 2) and specifies that the field balance belong
to Atomic Set A using the @Atomic annotation (Line 3). The
field id is fixed for each Account, hence its not annotated
as @Atomic access (Line 4). For the case of inter-account
transfer (Line 19), programmer simply uses @Atomic anno-
tations on the method run to declare that this method is an
additional unit of work for the Atomic Sets a1.A and a2.A

(Line 18). Our AJWS annotations ensure that the calls to
method run never deadlocks. It also ensures that the calls
to method addInterest (Line 13) are always synchronized.
We explain our implementation in Section 4.

3. TryCatchWS WORK-STEALING RUNTIME
FOR AJWS

In our new AJWS system, we translate the async-finish
annotations to use Kumar et. al.’s TryCatchWS work-stealing
framework [28, 27] that was originally designed for the Java
backend of X10 language [33]. To perform load-balancing
of these asynchronous tasks, a work-stealing runtime is em-
ployed. Work-stealing [9] is a popular load balancing tech-
nique for dynamic task-parallelism. It maintains a pool
of workers, each of which maintains a double-ended queue
(deque) of tasks and continuations. When a local deque be-
comes empty, the worker becomes a thief and seeks a victim
from which to steal work.
Although the specific details vary among the various im-

plementations of work-stealing schedulers, they all incur some
form of sequential overhead—the increase in single-core exe-
cution time due to transformations that expose parallelism [28].
As observed by Kumar et. al. [28], this overhead could
be as high as 2⇥ to 12⇥ over the sequential implementa-
tion. Programmers can reduce these overheads to some ex-
tent by stopping the creation of new async tasks beyond
certain granularity. However, choosing a right granularity
for multiple occurrences of async-finish blocks in a large
codebase is extremely di�cult. To reduce these sequential
overheads, Kumar et. al. implemented the TryCatchWS
work-stealing runtime for the Java backend of X10 language.
This work-stealing runtime is implemented within the Jikes
RVM [8] Java runtime. They reuse several existing mech-
anisms in managed runtimes to reduce the sequential over-
heads to just 15%. They demonstrated that by using this
same mechanism, TryCatchWS also achieves very low dy-
namic overhead—an overhead that increases with core count
and is most evident when parallelism is greatest [27]. Man-
aged runtime features used by Kumar et. al. are yieldpoint
mechanism [30], on-stack-replacement [19], dynamic code-
patching [34], exception delivery mechanism [21], and return
barriers [23].
The TryCatchWS system re-writes X10’s async-finish

into regular Java and exploiting the semantics Java o↵ers for

…….
processTransfer
transfer[0].run

…….
…….
…….

Victim Thief
(a) Initial stack states when the vic-
tim is executing the method run for
the first iteration (i=0)

…….
processTransfer
transfer[0].run

…….
…….
…….

processTransfer

Victim Thief
(b) Victim is stopped using
yieldpoint mechanism and
the thief copies stack frame
processTransfer

…….
processTransfer
transfer[0].run

…….
…….
…….

processTransfer
transfer[1].run

Victim Thief
(c) Victim is released from yield-
point and the thief throws a special
exception to start executing method
run for the next iteration (i=1)

Figure 2: Execution stack states of the victim and
thief. The victim is executing the async at Line 31 in
Figure 1(b) and a thief is stealing the continuation
of this async. Stack growth is from the bottom to
the top.

exception handling, which is very e�ciently implemented in
most modern JVMs. The result is that the runtime can walk
a victim’s execution stack and identify all async and finish

contexts. TryCatchWS uses the Java thread stack of both
the victim and thief as their implicit deque. TryCatchWS
follows the work-first principal for task scheduling, which is
similar to Cilk [20]. Under this policy, a victim executes
an async task and leaves the continuation to be stolen and
executed by the thief. Figure 2 shows the state of the ex-
ecution stack for both victim and thief when the thief is
trying to steal the continuation of the async at Line 31 in
Figure 1(b). In the Figure 2(a), victim follows the work-
first policy and starts executing the method run for the first
iteration (i=0). A thief queries the runtime and find that
this victim has steal-able task. It then requests the run-
time to stop the victim (using yieldpoint mechanism), so
that it may safely walk the victim’s execution stack. It then
copies the stack frame processTransfer from victim’s ex-
ecution stack on to its own stack (Figure 2(b)). It copies
frame processTransfer because it contains the steal-able
task (continuation to an async). The thief then runs a mod-
ified version of the runtime’s exception delivery code to start
this stolen task (Figure 2(c)). In this case it is the call to
the method run for the next iteration (i=1). For a detailed

overview of TryCatchWS we refer readers to [28, 27].

4. IMPLEMENTATION
Section 2.1 identified shortcomings in current implemen-

tations of Java with respect to both concurrency control and
the expression of parallelism. Data-centric concurrency con-
trol annotations as used in the AJ language provide an ele-
gant solution for concurrency control and have been demon-
strated to be very e↵ective. However, AJ is limited to
programs that use explicit Java threading to express par-
allelism, which leaves the programmer with the significant
burden of e�ciently balancing work on modern multicore
hardware. On the other hand work-stealing o↵ers a means
of expressing parallelism that carries a lower syntactic load
which may improve programmer productivity, as well as of-
fering high performance and natural load-balancing.

Our contribution is to identify the principal benefits of
work-stealing and data-centric concurrency control respec-
tively, and then bring those together into a single, simple
model within Java that combines data-centric concurrency
control with a high performance work-stealing implementa-
tion. We call this new parallel programming model AJWS—
Atomic Java with Work-Stealing. Section 2.2 describes a
simple usecase of AJWS.

We now discuss the design and implementation of AJWS.

4.1 Annotations in AJWS
AJWS provides three annotations for data-centric concur-

rency control and two annotations for expressing parallelism
with work-stealing. These annotations are: a) @AtomicSet,
b) @Atomic, c) @AliasAtomic, d) finish, and e) async. Syn-
tax and usage of these annotations (except @AliasAtomic) is
shown in Figure 1(b) by using a bank transaction program.

The @AtomicSet(A) is used to declare a new Atomic Set
in a class or an interface. Currently we support only one
Atomic Set declaration inside a class (Line 2) or interface.
Extending AJWS to support more than one Atomic Set per
class is only a software engineering e↵ort and not a limitation
of our approach. We would extend AJWS in the future for
supporting multiple Atomic Set declarations inside a class.
However, due to this current restriction, if the class inherits
an Atomic Set, it is not allowed to declare a new Atomic Set.

The @Atomic(A) annotation is allowed on instance fields
and classes. A field can belong to at most one Atomic Set
(Line 3). Annotated fields can only be accessed from the
this reference. In AJWS, the @Atomic annotation subsumes
the role of AJ’s unifor(A) annotation. Hence, @Atomic an-
notation can also be used to annotate a method (or its argu-
ments). This declares the method to be an additional unit
of work for the specified Atomic Set in the argument object
(Line 18).
The @AliasAtomic(A=this.B) annotation could be ap-

plied on variable declarations and constructor calls. This
unifies the Atomic Set A in the annotated variable or con-
structed object with the current object’s Atomic Set B. In
Figure 3 we show a sample use case of @AliasAtomic annota-
tion. With the annotation @AliasAtomic(A=this.A) on the
field parent and the constructor parameter p, AJWS en-
sures that both the parent and LinkedAccount instance are
associated with the same lock (LinkedAccount is inheriting
Atomic Set A from Account class).

The async-finish computation (Section 3) in AJWS is
a terminally strict computation. Hence, the parent async

1 class LinkedAccount extends Account{
2 @AliasAtomic(A=this.A) Account parent;
3 LinkedAccount(@AliasAtomic(A=this.A) Account p){
4 parent = p;
5 }
6 void debit(amount) {
7 parent.debit(amount);
8 }
9 ...

10 }

Figure 3: Using AJWS’s @AliasAtomic annotation
inside a LinkedAccount class that inherits from the
Account class shown in Figure 1(b)

is allowed to terminate before its child async. The current
implementation of AJWS limits async call only on method
calls and for loops. AJWS does not permit the use of async-
finish blocks within an atomic section (both directly or
indirectly via a method call).

4.2 Translating AJWS to Java
AJ [17] annotations for data-centric atomicity were ex-

pressed as Java comments in the program, which were trans-
lated to Java using Eclipse refactoring. Expressing AJ anno-
tations as comments is not very expressive and also Eclipse
refactoring is a heavy process. To avoid these shortcomings,
we use JastAdd [18], an extensible Java compiler to perform
the translation of our AJWS to vanilla Java. The bene-
fits of using JastAdd are: a) AJWS annotations can be ex-
pressed as standard Java annotations; b) JastAdd provides
an easy to use interface for extending the Java program-
ming language, making the implementation of AJWS fairly
straightforward; and c) AJWS can be straightforwardly in-
tegrated into build processes, allowing AJWS to be used
in large codebases easily. The semantics of AJWS’s anno-
tations for data-centric atomicity are very close to those
of AJ, so we follow a similar pattern in performing our
rewrites. We perform the Java rewrite via the JastAdd
AST classes for VariableDeclaration, ClassDeclaration,
TypeDeclaration, MethodAccess, ConstructorDeclaration,
Block, and MethodDeclaration.

4.2.1 Translating Annotations for Data-centric Atom-

icity

Figure 4 shows the translation of AJWS code in Fig-
ure 1(b) to vanilla Java. The Account class in Figure 1(b)
declares an @AtomicSet, hence in Figure 4 it declares a lock
field _lockA of type OrderedLock (Line 4). Constructor of
Account class is transformed to take lock object as an ex-
tra parameter (Line 6). Classes that inherit Account class

(e.g., LinkedAccount in Figure 3), the lock object is passed
to Account class constructor. If a class declares or inher-
its an Atomic Set (or if a method has some @Atomic anno-
tation, e.g., Line 18 in Figure 1(b)), two versions of each of
its method are generated. The first version has the default
name, whereas the second version has the su�x _internal

that is called only when AJWS is sure that all needed locks
are already acquired. If the method performs atomic ac-
cesses of any fields, the default version of method uses proper
synchronized blocks (e.g., creditmethod at Line 18 in Fig-
ure 4). In case of non-atomic access, synchronized is not
required (e.g., getId method at Line 15 in Figure 4). For
detailed overview of translating data-centric annotations to
Java, we refer readers to [17].

1 import ajws.Atomic;
2 import ajws.OrderedLock;
3 class Account implements Atomic {
4 final OrderedLock _lockA;
5 double balance; long id;
6 Account(i,l) {
7 id=i; _lockA=l;
8 }
9 Account(i) {

10 this(i, new OrderedLock ());
11 }
12 OrderedLock getLockObj () {
13 return _lockA;
14 }
15 int getId () {return id;}
16 int getId_internal () {return id;}
17 void credit(amount) {
18 synchronized(_lockA) { ... }
19 }
20 void credit_internal(amount){...}
21 void debit(amount) {
22 synchronized(_lockA) {...}
23 }
24 void debit_internal(amount){...}
25 void addInterest(amount) {
26 synchronized(_lockA) {...}
27 }
28 void addInterest_internal (){...}
29 }

30 class Transfer {
31 Account a1, a2;
32 void run() {
33 OrderedLock l1=null ,l2=null;
34 OrderedLock l3=a2.getLockObj ();
35 OrderedLock l4=a1.getLockObj ();
36 if (l3.index() > l4.index ()){
37 l1 = l3; l2 = l4;
38 } else {
39 l1 = l4; l2 = l3;
40 }
41 synchronized(l1) {
42 synchronized(l2) {
43 a1.debit(amount);
44 a2.credit(amount);
45 }
46 }
47 }
48 void run_internal () {
49 a1.debit(amount);
50 a2.credit(amount);
51 }
52 ...
53 }

54 class Bank {
55 Transfer [] transfers;
56 void processTransfer () {
57 try {
58 for(int i=0;i<total;i++){
59 try {
60 RT.continuationAvail ();
61 transfers[i].run();
62 RT.checkIfStolen ();
63 }
64 catch(ExceptionEntryThief c)
65 { }
66 }
67 RT.doFinish ();
68 }catch(ExceptionFinish f) { }
69 }
70 ...
71 }

Figure 4: Translation of AJWS code in Figure 1(b) to vanilla Java

In case a critical section involves locking on multiple lock
objects (e.g., run method at Line 32 in Figure 4), AJWS
ensures that all locks must be acquired without introducing
deadlock. This is achieved by enforcing an ordering among
lock objects (similar to AJ). Each lock object is given a
unique id in OrderedLock, and locks are always acquired in
the order of increasing id (Lines 34 to 42). AJ does not de-
tail about its implementation of the OrderedLock, hence in
AJWS we used Java ReentrantLock (static field) to ensure
consistency while assigning unique id to each lock objects.

4.2.2 Translating Work-Stealing Annotations

AJWS performs the translation of async-finish annota-
tion to vanilla Java in much the same way as Try-CatchWS [28].
In Figure 4, we show this translation for the async-finish
blocks in the method processTransfer (Line 56). The run-
time (RT) method continuationAvailmarks the availability
of a continuation (Line 60). Thief who steals the continu-
ation, throws ExceptionEntryThief (a special exception)
to start the stolen continuation (Line 64). The runtime call
doFinish performs synchronization of all the spawned async

(Line 67). The special exception ExceptionFinish is used
only to store the partial results from those async that can
return values (Line 68).

5. METHODOLOGY
Before presenting the evaluation of AJWS, we first de-

scribe our experimental methodology.

5.1 Benchmarks
Because our goal is to show productivity with perfor-

mance, we have targeted open-sourced applications with large
codebases that addresses real world problems. Our three
benchmarks are (available online [1]):

jMetal It is a Java-based framework for multi-objective
optimization with metaheuristic techniques [2]. It pro-

vides several sets of classes, which can be used as the
building blocks of multi-objective techniques. The De-
fault implementation of jMetal o↵ers limited paral-
lelism. We have parallelized the entire benchmark, but
for performance comparison (total 6 parallel sections)
we only use two of their algorithms, for which the De-
fault implementation of jMetal also o↵ers parallelism.
We are using the release 4.4 of jMetal. Default jMetal
uses java.util.concurrent.Executer and Java threads
for parallelism.

JTransforms This is a multithreaded FFT library written
in Java [3] and there are many open source projects
(including applications for mobile devices) that use
JTransforms internally. This library o↵ers benchmarks,
which we have used for the performance comparison
of total 186 parallel sections. We are using the re-
lease 2.4 of JTransforms. Default implementation of
JTransforms uses java.util.concurrent.Future for
parallelism.

SJXP Simple-Java-XML-Parser is a XML parser build for
Android OS and other Java platforms [4]. The Default
implementation of SJXP is sequential. It also provides
a benchmark for testing SJXP’s performance in pars-
ing XML files (one after another). For performance
comparison we use this same benchmark for parsing a
total of 56 XML files of di↵erent sizes. We chose SJXP
to represent XML workloads on mobile. We are using
the release 2.2.

In our evaluations, we are using the sequential version of
each of the above benchmarks as the baseline case. To get
the plain sequential Java version, we have removed all con-
currency control (synchronized keywords) from the default
implementation of benchmarks. We have also removed all
code that expresses parallelism and converted each bench-
mark to plain sequential Java.

5.2 Hardware Platform
Performance evaluation of TryCatchWS (as managed X10

backend) has already been performed in the past on a wide
variety of multicore processors. These study also included
comparison with several existing work-stealing implementa-
tions (e.g., Cilk, Java fork/join, managed X10 and Habanero-
Java) [28, 27]. To further demonstrate the e↵ectiveness of
TryCatchWS (now with our new AJWS backend) on modern
multicore mobile devices, we performed all experiments on
a quad-core ASUS ZenFone 2 (ZE551ML) smartphone hav-
ing Android OS (version 5). The processor was Intel Atom
Z3580 running at 2.3 GHz. We used Linux Deploy mobile
application to install Ubuntu (64 bit) version 15.10 on this
smartphone.

5.3 Software Platform
Jikes RVM Version hg 11181. We used the a production

build. This is used as the Java runtime. A fixed heap
size of 1GB and single garbage collector thread is used
across all experiments. Other than this, we preserve
the default settings of Jikes RVM.

TryCatchWS This is the Java work-stealing implemen-
tation from Kumar et al. [28]. We have ported their
implementation in Jikes RVM Java runtime version
hg 11181. Also available online [5].

JastAdd This is an implementation of an extensible com-
piler for Java [18]. The compiler consists of basic mod-
ules for Java 1.4, and extension modules for Java 1.5
and Java 7. There are several open source projects,
which uses JastAdd internally (eg. Soot [35]).

5.4 Measurements
For each benchmark, we ran fifteen invocations, with six

iterations per invocation where each iteration performed the
kernel of the benchmark. We report the final iterations,
along with a 95% confidence interval based on a Student t-
test. We report the total execution time in all experiments
(including time for garbage collection).

6. RESULTS
We now evaluate both the programmatic and performance

impact of AJWS. We begin the evaluation by measuring
the reduction in programming e↵ort, both with respect to
parallelism and atomicity. We then evaluate the parallel
performance of AJWS.

6.1 Evaluation of AJWS’s productivity
We start our evaluation by evaluating the syntactic over-

head associated with AJWS compared to existing alterna-
tives for Java. Figure 5 shows the syntactic overhead of par-
allelism and atomicity constructs in all three benchmarks,
both for the default case and AJWS implementations. We
removed all parallelism related code in Default versions to
get the corresponding sequential version (except SJXP that
was already sequential). Syntactic overhead in both Default
and AJWS version is the di↵erence in LOC (Lines-Of-Code)
from the sequential version. Introducing parallelism in tra-
ditional ways can bloat the code. From Figure 5, we can
see this is true for Default version of jMetal and JTrans-
forms that has a syntactic overhead of 1.2% and 14.3% re-
spectively. Default jMetal and JTransforms has a total of

6 and 372 parallel sections respectively. Due to simplic-
ity of AJWS’s async-finish block, where the programmer
need not induce extra code for controlling granularity, we
are able to introduce 7⇥ more parallelism in jMetal with
just 0.1% syntactic overhead. Even with extremely large
number of parallel sections in JTransforms, AJWS version
has just 3.7% syntactic overhead. To parallelize SJXP, we
implemented a new class (80 lines) for parallel parsing of
XML files, which resulted in slightly higher syntactic over-
head (6.5%).

Default jMetal has a total of 10 synchronized blocks for
just 6 parallel sections. AJWS version of jMetal is able to
achieve this same e↵ect with just 3 @Atomic annotations for
7⇥ more parallelism. Recall, that for declaring any field
as @Atomic, user first need to declare the corresponding
@AtomicSet. We were able to parallelize SJXP using just
2 @Atomic annotations.

6.2 Evaluation of AJWS’s performance
We now turn to performance evaluation of AJWS. Fig-

ure 6(a), Figure 6(b) and Figure 6(c) shows the speedup
(over sequential version) for jMetal, JTransforms, and SJXP
respectively. In this evaluation we are using the same amount
of parallelism in both Default and AJWS versions. Recall
that by using TryCatchWS runtime, AJWS relieves the pro-
grammer from worrying about setting correct granularity
size for async-finish computation. Due to this, none of the
AJWS version of our benchmarks is controlling the granu-
larity of async-finish blocks. To evaluate the e↵ect of this,
we consider the single thread speedup of AJWS. We noticed
that single thread execution of AJWS performed very simi-
lar to the sequential execution (for all benchmarks), thereby
supporting our claim that AJWS removes the need for gran-
ularity control. Default version of JTransforms strictly con-
trols the granularity in all 372 parallel section, hence its
single thread execution performs similar to its sequential
version. This is not true for Default jMetal as it does not
controls the granularity in its 6 parallel sections (resulting in
25% slowdown with single thread). The existing mechanism
for granularity control in Default JTransforms restricts its
execution with only an even number of threads. However,
as the AJWS version of JTransforms does not uses granular-
ity control, it can be executed with any number of threads.
Overall, AJWS performed better than Default version with
any number of threads (for each benchmark). With four
threads, compared to the Default, AJWS is 30% and 10%
faster for jMetal and JTransforms, respectively.

These results demonstrate that AJWS annotations are
extremely e↵ective in reducing the syntactic overhead of
parallel and concurrent constructs, enhancing programmer
productivity, an important consideration given the current
hardware trend. We also show that a high performance im-
plementation of work-stealing can significantly boost per-
formance relative to existing parallel Java implementations.
Java is also the most widely used language for mobile ap-
plication development. Modern mobile devices are becom-
ing increasingly multicore and pose a significant challenge
for writing high performance Java applications using tra-
ditional approaches. Our above performance evaluation of
AJWS on a low-end multicore smartphone, suggests that it
is a very simple platform for performing high performance
parallel programming on mobile devices.

Benchmark

Sequential Default AJWS

Files LOC synchs kism E↵ort @AtomicSet @Atomic kism E↵ort

jMetal 329 28,216 10 6 1.2% 2 3 47 0.1%
JTransforms 45 42,756 0 372 14.3% 0 0 372 3.7%
SJXP 17 1,250 – – – 1 2 1 6.5%

Figure 5: This table compares the productivity of Default and AJWS versions of each benchmark. LOC is
generated using David A. Wheeler’s ‘SLOCCount’ [38]. LOC overhead (“E↵ort”) is the di↵erence between
sequential and parallel version. “synchs” is the total number of synchronized blocks used in Default version.
kism denotes total number of parallel blocks. In case of AJWS, each kism denotes a pair of async-finish block.
In AJWS version of jMetal, we are able to introduce more parallelism. JTransforms do not have any atomic
block. The Default version of SJXP is sequential, hence it does not have any entry in the table. In AJWS
version, we only show the annotations that we have used in the benchmark.

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4

S
e

e
d

u
p

 (
T

im
e

 f
o

r
S

e
q

u
e

n
tia

l /
 P

a
ra

lle
l)

Threads

Default AJWS

(a) jMetal

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4

S
e

e
d

u
p

 (
T

im
e

 f
o

r
S

e
q

u
e

n
tia

l /
 P

a
ra

lle
l)

Threads

Default AJWS

(b) JTransforms

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4

S
e

e
d

u
p

 (
T

im
e

 f
o

r
S

e
q

u
e

n
tia

l /
 P

a
ra

lle
l)

Threads

AJWS

(c) SJXP

Figure 6: Speedup of AJWS over the Sequential Java version on a quad-core smartphone. Here, we have
used equal amount of parallelism across both versions of benchmarks. Speedup with 3 threads for Default
JTransforms is missing as it only support even number of threads

7. RELATED WORK
Attempting to create systems that provide a high-level

interface to parallelism has a long history that predates cur-
rent hardware trends. The actor model [7] was instanti-
ated in many languages, such as the ABCL [40] family, and
there have been numerous e↵orts to blend object-oriented
features with parallelism (see, for instance, this survey that
covers just C++[39]). This work has received new impe-
tus due to increasing hardware parallelism, giving rise to
recent high-level languages like X10 [13] and Chapel [12].
However, while some of these languages attempted to in-
teroperate with existing languages, they have not become
mainstream. In contrast, our focus has been on defining a
small set of extensions for parallelism and synchronization
that exist in a mainstream language, leveraging both exist-
ing code and also existing runtime mechanisms with minimal
change.

In writing parallel programs, one of the most serious chal-
lenges is coordinating access to the shared data among threads.
For concurrency control, most widely used techniques in
high-level languages like Java and C# are mutual-exclusion
locks [16]. These are control-centric approaches that do not
guarantee deadlock freedom. Transactional Memory (TM)
is a famous control-centric approach that o↵ers a simpler
alternative to mutual exclusion by shifting the burden of
correct synchronization from a programmer to the TM sys-
tem [29]. TM guarantee lock-free and deadlock avoidance
by employing a rollback in case of transactional conflicts.
However, TM has its own side e↵ects as these rollbacks can
degrade the performance. Lock inference [14] is another
control-centric approach that combines compiler transfor-

mations and runtime techniques in building deadlock free
critical sections. Our AJWS system di↵ers from all these
approaches as it builds upon AJ’s data-centric approach for
concurrency control that guarantees deadlock freedom [31].

Most closely related to our own work is Habanero-Java [24,
11]. It has a pure based library implementation that can
run on top of any JVM. It provides Java 8 lambda based
APIs to expose variety of asynchronous tasks, and uses a
scalable work-stealing runtime for load-balancing of these
tasks. Similar to X10, Habanero-Java is also prone to se-
quential overheads. Users can avoid these overheads by
controlling the task granularity. This is not mandatory in
the case of AJWS as it uses the TryCatchWS work-stealing
runtime that has extremely low sequential overheads [28].
More recently, Habanero-Java utilized the benefits of roll-
backs in transactions and shared-exclusive locks, to pro-
vide an object-based isolation technique that could resolve
deadlocks at runtime [25]. This is also a control-centric ap-
proach approach that di↵ers from the data-centric approach
in AJWS.

8. CONCLUSION AND FUTURE WORK
To exploit the parallelism from increasing number of cores

on processors, it is important to find better abstractions for
expressing and writing parallel computations. In this paper
we focused on this goal and presented a set of five anno-
tations for the popular Java language, for writing parallel
programs with high productivity and high performance. We
implemented these annotations in a new AJWS system that
builds upon two recent developments: a) a data-centric ap-

proach to concurrency control; and b) a very e�cient work-
stealing implementation designed specifically for managed
runtimes. We evaluated the syntactic overhead of AJWS by
modifying three large open-sourced applications and eval-
uated its performance on a multicore mobile device. Our
approach significantly lowers the syntactic overhead of ex-
posing parallelism, and delivers performance improvements
up to 30% compared to conventional approaches.

There are several directions for the future work. We plan
to provide annotations in AJWS to expose data-parallelism
that could be executed over a graphical processing unit (GPU).
Today almost every mobile device contain GPUs. Providing
a special GPU centric annotation in AJWS would greatly
help in mobile application development. Using AJWS, we
plan to study how work-stealing a↵ects the energy consump-
tion in power-critical mobile devices.

9. REFERENCES
[1] AJWS. https:// github.com/ vivkumar/ ajws.
[2] jMetal. http:// jmetal.sourceforge.net/ .
[3] JTransforms. https:// sites.google.com/ site/

piotrwendykier/ software/ jtransforms.
[4] Simple-Java-XML-Parser. https:

// github.com/ thebuzzmedia/ simple-java-xml-parser .
[5] TryCatchWS.

https:// github.com/ vivkumar/TryCatchWS .
[6] Tiobe index for ranking the popularity of

programming languages.
http://www.tiobe.com/ tiobe index , June 2016.

[7] G. Agha. Actors: A Model of Concurrent Computation
in Distributed Systems. MIT Press, Cambridge, MA,
USA, 1986.

[8] B. Alpern, , S. Augart, S. M. Blackburn, M. Butrico,
A. Cocchi, P. Cheng, J. Dolby, S. J. Fink, D. Grove,
M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss,
T. Ngo, V. Sarkar, and M. Trapp. The Jikes RVM
Project: Building an open source research community.
IBM System Journal, 44(2):399–418, 2005.

[9] R. Blumofe and C. Leiserson. Scheduling
multithreaded computations by work stealing. Journal
of the ACM (JACM), 46(5):720–748, 1999.

[10] S. Borkar and A. A. Chien. The future of
microprocessors. Commun. ACM, 54(5):67–77, May
2011.

[11] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar.
Habanero-java: The new adventures of old x10. In
Proceedings of the 9th International Conference on
Principles and Practice of Programming in Java,
PPPJ ’11, pages 51–61, New York, NY, USA, 2011.
ACM.

[12] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the Chapel language.
International Journal of High Performance Computing
Applications, 21(3):291, 2007.

[13] P. Charles, C. Grotho↵, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. In Proceedings of the
20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, OOPSLA ’05, pages 519–538, New York,
NY, USA, 2005. ACM.

[14] S. Cherem, T. Chilimbi, and S. Gulwani. Inferring
locks for atomic sections. In Proceedings of the 29th
ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08,
pages 304–315, New York, NY, USA, 2008. ACM.

[15] A. A. Chien. ICC++-A C++ dialect for high
performance parallel computing. volume 4, pages
19–23, New York, NY, USA, Apr. 1996. ACM.

[16] B. Demsky and P. Lam. Views: Synthesizing
fine-grained concurrency control. ACM Trans. Softw.
Eng. Methodol., 22(1):4:1–4:33, Mar. 2013.

[17] J. Dolby, C. Hammer, D. Marino, F. Tip, M. Vaziri,
and J. Vitek. A data-centric approach to
synchronization. ACM Trans. Program. Lang. Syst.,
34(1):4:1–4:48, May 2012.

[18] T. Ekman and G. Hedin. The JastAdd extensible Java
compiler. In Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-oriented
Programming Systems and Applications, OOPSLA ’07,
pages 1–18, New York, NY, USA, 2007. ACM.

[19] S. J. Fink and F. Qian. Design, implementation and
evaluation of adaptive recompilation with on-stack
replacement. In Proceedings of the international
symposium on Code generation and optimization:
feedback-directed and runtime optimization, CGO ’03,
pages 241–252, Washington, DC, USA, 2003. IEEE
Computer Society.

[20] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implementation,
PLDI ’98, pages 212–223, New York, NY, USA, 1998.
ACM.

[21] J. B. Goodenough. Exception handling: Issues and a
proposed notation. Commun. ACM, 18(12):683–696,
Dec. 1975.

[22] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic
detection of atomic-set-serializability violations. In
Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 231–240, New
York, NY, USA, 2008. ACM.

[23] U. Hölzle, C. Chambers, and D. Ungar. Debugging
optimized code with dynamic deoptimization. In
Proceedings of the ACM SIGPLAN 1992 Conference
on Programming Language Design and
Implementation, PLDI ’92, pages 32–43, New York,
NY, USA, 1992. ACM.

[24] S. Imam and V. Sarkar. Habanero-java library: A java
8 framework for multicore programming. In
Proceedings of the 2014 International Conference on
Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools,
PPPJ ’14, pages 75–86, New York, NY, USA, 2014.
ACM.

[25] S. Imam, J. Zhao, and V. Sarkar. Euro-par 2015:
Parallel processing: 21st international conference on
parallel and distributed computing, vienna, austria,
august 24-28, 2015, proceedings. chapter A
Composable Deadlock-Free Approach to Object-Based
Isolation, pages 426–437. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2015.

[26] N. Kidd, T. Reps, J. Dolby, and M. Vaziri. Finding

https://github.com/vivkumar/ajws
http://jmetal.sourceforge.net/
https://sites.google.com/site/piotrwendykier/software/jtransforms
https://sites.google.com/site/piotrwendykier/software/jtransforms
https://github.com/thebuzzmedia/simple-java-xml-parser
https://github.com/thebuzzmedia/simple-java-xml-parser
https://github.com/vivkumar/TryCatchWS
http://www.tiobe.com/tiobe_index

concurrency-related bugs using random isolation. In
Proceedings of the 10th International Conference on
Verification, Model Checking, and Abstract
Interpretation, VMCAI ’09, pages 198–213, Berlin,
Heidelberg, 2009. Springer-Verlag.

[27] V. Kumar, S. M. Blackburn, and D. Grove. Friendly
barriers: E�cient work-stealing with return barriers.
In Proceedings of the 10th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments, VEE ’14, pages 165–176, New York,
NY, USA, 2014. ACM.

[28] V. Kumar, D. Frampton, S. M. Blackburn, D. Grove,
and O. Tardieu. Work-stealing without the baggage.
In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’12, pages 297–314, New
York, NY, USA, 2012. ACM.

[29] J. Larus and C. Kozyrakis. Transactional memory.
Commun. ACM, 51(7):80–88, July 2008.

[30] Y. Lin, K. Wang, S. M. Blackburn, A. L. Hosking, and
M. Norrish. Stop and go: Understanding yieldpoint
behavior. In Proceedings of the 2015 International
Symposium on Memory Management, ISMM ’15,
pages 70–80, New York, NY, USA, 2015. ACM.

[31] D. Marino, C. Hammer, J. Dolby, M. Vaziri, F. Tip,
and J. Vitek. Detecting deadlock in programs with
data-centric synchronization. In Proceedings of the
2013 International Conference on Software
Engineering, ICSE ’13, pages 322–331, Piscataway,
NJ, USA, 2013. IEEE Press.

[32] M. Petito. Eclipse refactoring. http://people. clarkson.
edu/˜ dhou/courses/EE564-s07/Eclipse-Refactoring.
pdf, 5:2010, 2007.

[33] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and
D. Grove. X10 language specification, 2011.

[34] V. Sundaresan, D. Maier, P. Ramarao, and
M. Stoodley. Experiences with multi-threading and
dynamic class loading in a java just-in-time compiler.
In Proceedings of the International Symposium on
Code Generation and Optimization, CGO ’06, pages
87–97, Washington, DC, USA, 2006. IEEE Computer
Society.

[35] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a Java bytecode
optimization framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’99, pages 13–. IBM
Press, 1999.

[36] M. Vaziri, F. Tip, and J. Dolby. Associating
synchronization constraints with data in an
object-oriented language. In Conference Record of the
33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’06,
pages 334–345, New York, NY, USA, 2006. ACM.

[37] M. Vaziri, F. Tip, J. Dolby, C. Hammer, and J. Vitek.
A type system for data-centric synchronization. In
Proceedings of the 24th European Conference on
Object-oriented Programming, ECOOP’10, pages
304–328, Berlin, Heidelberg, 2010. Springer-Verlag.

[38] D. A. Wheeler. SLOCCount.
http://www.dwheeler.com/sloccount/, 2001.

[39] G. V. Wilson. Parallel Programming Using C++. MIT
Press, 1996.

[40] A. Yonezawa, editor. ABCL: An Object-oriented
Concurrent System. MIT Press, 1990.

	Introduction
	Motivation
	Bank transaction in plain Java
	Bank transaction using AJWS

	TryCatchWS work-stealing runtime for AJWS
	Implementation
	Annotations in AJWS
	Translating AJWS to Java
	Translating Annotations for Data-centric Atomicity
	Translating Work-Stealing Annotations

	Methodology
	Benchmarks
	Hardware Platform
	Software Platform
	Measurements

	Results
	Evaluation of AJWS's productivity
	Evaluation of AJWS's performance

	Related Work
	Conclusion and Future Work
	References

