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Abstract

When a system behaves abnormally, a diagnosis is a set of
system components whose failure explains the abnormality.
It is known that compiling the system model into determinis-
tic decomposable negation normal form (d-DNNF) allows ef-
ficient computation of the complete set of diagnoses. We ex-
tend this approach tosequential diagnosis, where a sequence
of measurements is taken to narrow down the set of diagnoses
until the actual faults are identified. We propose novel prob-
abilistic heuristics to reduce the diagnostic cost, defined as
the number of measurements. Our heuristics involve the pos-
terior probabilities of component failures and the entropies
of measurement points. The structure of the system is ex-
ploited so that a joint probability distribution over the faults
and system variables is represented compactly as a Bayesian
network, which is then compiled into d-DNNF. All posterior
probabilities required are computed exactly and efficiently by
traversing the d-DNNF. Finally, we scale the approach further
by performing the diagnosis in a hierarchical fashion. Com-
pared with the previous GDE framework, whose heuristic in-
volves the entropy over the set of diagnoses and estimated
posterior probabilities, we avoid the often impractical need
to explicitly go through all diagnoses, and are able to com-
pute the probabilities exactly. Experiments with ISCAS-85
circuits indicate that our approach can solve for the first time
a set of multiple-fault diagnostic cases on large circuits, with
good performance in terms of diagnostic cost.

1 Introduction
When a system behaves abnomormally, the task ofdiagnosis
is to identify the reasons for the abnormality. For example,
in the combinational circuit in Figure 1, given the inputsP ∧
Q∧¬R, the outputV should be0, but it is actually1 due to
the faults at gatesJ andB.

Given a knowledge base modeling the behavior of a sys-
tem comprising a set of components, along with the (abnor-
mal) observed values of some system variables,consistency-
based diagnosiscomputes a set of diagnoses, where a diag-
nosis is a set of components whose failure together with the
observation is logically consistent with the system model.In
our example,{V }, {K}, {A}, and{J,B} are some of the
diagnoses given the observation. In general, the number of
diagnoses can be exponential in the number of system com-
ponents, and only one of them will correspond to the set of
actual faults.

Figure 1:A faulty circuit.

In this paper, therefore, we consider the problem ofse-
quential diagnosis(de Kleer & Williams 1987), where a
sequence of measurements of system variables is taken to
narrow down the set of diagnoses until the actual faults are
identified. The goal is to reduce the diagnostic cost, defined
as the number of measurements.

The heuristic proposed in the classical GDE (general di-
agnosis engine) framework (de Kleer & Williams 1987;
de Kleer, Raiman, & Shirley 1992; de Kleer 2007) for this
purpose required computing the Shannon’s entropy of the
probability distribution over the set of diagnoses, which was
shown to be quite effective but can be infeasible to com-
pute when the number of diagnoses is too large. In addition,
the posterior probabilities of system variables with unknown
values had to be estimated, due to the lack of an efficient
method to compute them exactly.

We propose a new heuristic that does not require com-
puting the entropy of diagnoses. Instead we consider the
entropies of the system variables to be measured as well as
the posterior probabilities of component failures. The idea
is to select a component that has the highest posterior prob-
ability of failure (Heckerman, Breese, & Rommelse 1995)
and from the variables of that component, measure the one
that has the highest entropy.

To model the joint probability distribution over the sys-
tem variables and component failures, we exploit the system
structure and model each component as a conditional proba-
bility table and combine them into aBayesian network(Pearl
1988), which is then compiled into deterministic decom-
posable negation normal form (d-DNNF) (Darwiche 2001;
Darwiche & Marquis 2002). The d-DNNF size can remain



compact even when the number of diagnoses is large, thanks
to the structure present in many systems. All the required
posterior probabilities can be exactly computed by evalu-
ating and differentiating the d-DNNF in time linear in the
d-DNNF size (Darwiche 2003).

We scale our approach further to handle larger systems
by using an idea similar to the abstraction based hierarchi-
cal diagnosis (Siddiqi & Huang 2007). Self-contained sub-
systems, calledcones, are treated as single components and
diagnosed only if they are found to be faulty in the top-level
diagnosis. This significantly reduces the number of system
components, allowing larger systems to be compiled and di-
agnosed. For example, the subcircuit in the dotted box in
Figure 1 is a cone (withA as output and{P,D} as inputs)
which contains a fault. First, coneA, as a whole, is deter-
mined as faulty. It is only then thatA is compiled separately
and diagnosed.

Experiments on ISCAS-85 (Brglez & Fujiwara 1985)
benchmark circuits indicate that we can solve, for the first
time, a set of multiple-fault diagnostic cases on large cir-
cuits with good results, whereas the public version of GDE
was unable to handle circuits with more than19 gates.

2 Background and Previous Work
We start by formally modeling the system to be diagnosed
by a joint probability distributionPr(X ∪ H) over a set
of variables partitioned intoX and H.1 VariablesX are
those whose values can be either observed or measured, and
variablesH are thehealthvariables, one for each compo-
nent describing its health mode (we shall also use theseH
variables to refer to components themselves). For exam-
ple, for a system consisting of only the inverterJ in Fig-
ure 1, we haveX = {P, J} and H = {okJ}. In what
follows, we will assume for simplicity that all our variables
are binary and thatH = 1 indicates a healthy component
for all H ∈ H. Diagnosis starts in the initial (belief) state
I0 = Pr(X∪H | Xo = xo) where valuesxo of some vari-
ablesXo ⊆ X 2 are given by the observation, and we wish to
reach a goal stateIn = Pr(X ∪ H | Xo = xo,Xm = xm)
after measuring the valuesxm of some variablesXm ⊆
X\Xo, |Xm| = n, one at a time, such that (the boldface
0 and1 denote vectors of0’s and1’s):

∃Hf ⊆ H, P r(Hf = 0 | Xo = xo,Xm = xm) = 1 and

Pr(Hf = 0,H\Hf = 1 | Xo = xo,Xm = xm) > 0.

That is, in a goal state a set of componentsHf are known
to be faulty with certainty and no logical inconsistency arises
if all other components are assumed to be healthy.3 Two

1Variables are denoted by uppercase letters, their values by low-
ercase letters, vectors (or sets) of variables by boldface uppercase
letters, and vectors of values by boldface lowercase letters.

2Note that we are abusing notation by using boldface uppercase
letters to mean both sets and vectors.

3Other types of goal conditions are possible. For example, if
the health states of all gates are to be determined with certainty, the
condition will be thatPr(H = 0 | Xo = xo,Xm = xm) is 0 or
1 for all H ∈ H. Such goals, though, are only possible to reach if
strong fault models are given.

special casese are worth mentioning: (1) If the initial state
I0 satisfies the goal condition withHf = ∅ then the obser-
vation is normal and no diagnosis is required. (2) If the ini-
tial stateI0 satisfies the goal condition with someHf 6= ∅,
then the observation is abnormal but the diagnosis is already
completed (assuming that we are able to check probabilities
as necessary), in other words, a sequence of length0 solves
the problem.

As in (de Kleer & Williams 1987), we assume that all
measurements have unit cost. Hence the objective is to reach
a goal state in the fewest measurements possible.

The classical GDE framework, on receiving an abnormal
observationXo = xo, computes the set of allminimal di-
agnoses, which characterize the set of all diagnoses. It then
computes the Shannon’s entropy of the probability distribu-
tion over the set of diagnoses and proposes to measure a
variableX whose value will reduce that entropy the most,
on average. The idea is that the probability distribution over
the diagnoses reflects the uncertainty over the actual faults,
and the entropy captures the amount of this uncertainty. Af-
ter a measurement is taken the entropy is updated by updat-
ing the posterior probabilities of the diagnoses, potentially
reducing some of them to0.

The results in (de Kleer, Raiman, & Shirley 1992) involv-
ing single-fault cases for ISCAS-85 circuits indicate thatthis
method leads to measurement costs close to those of opti-
mal policies. However, as described earlier, it has two major
drawbacks. First, it can be impractical when the number of
minimal diagnoses is large (when the fault cardinality is not
restricted). Second, at each update step, the posterior prob-
abilities of variables whose values are not predicted so far
are only estimated due to the lack of an efficient method to
compute them exactly.

3 Overview of New Method
We propose and implement a new method that addresses
both drawbacks of GDE. From here on, we shall use combi-
national circuits as a concrete example of the type of systems
we wish to diagnose. The method, however, applies as well
to other types of systems as long as a probabilistic model is
given that defines the behavior of the system.

We model the circuit as a propositional formula in con-
junctive normal form (CNF), and compile it, together with
an abnormal observation, into d-DNNF, where we associate
real numbers with the propositional variables, which repre-
sent the prior probabilities of gate failures given as part of
the input to the diagnosis task. Because of the independence
condition that exists among the gates, our d-DNNF compi-
lation amounts to a compilation of a Bayesian network that
compactly encodes the joint probability distribution overall
the wires and faults of the circuit.

To select a measurement point, we use heuristics that do
not require the enumeration of all diagnoses. Instead we
only require the entropies of the wires together with the pos-
terior probabilities of component failures. All probabilities
required can be exactly computed simultaneously in a single
traversal of the d-DNNF which performs partial differenti-
ation (Darwiche 2003). Finally, we discuss the abstraction



P θP okJ θokJ

1 0.5 1 0.9
0 0.5 0 0.1

P okJ J θJ|P,okJ

1 1 1 0
1 1 0 1
1 0 1 0.5
1 0 0 0.5
0 1 1 1
0 1 0 0
0 0 1 0.5
0 0 0 0.5

Figure 2:Bayesian network for the circuit in Figure 1 and CPTs
for P , J , andokJ .

based hierarchical diagnosis which scales the approach fur-
ther to handle larger circuits.

4 System Modeling and Compilation
In order to define a joint probability distributionPr(X∪H)
over the circuit behavior, we first assume that the prior
probability of failurePr(H = 0) is given for each gate
H ∈ H, as part of the input to the diagnosis task (de Kleer &
Williams 1987). For example, the small table with two en-
tries on the top-right of Figure 2 gives the prior probability of
failure for gateJ as0.1. However, fault probabilities alone
do not define the joint probability distributionPr(X ∪ H).
In addition, we need to specify for each gate how its out-
put is related to its inputs and health mode. A conditional
probability table (CPT) for each gate does this job.

The CPT shown on the bottom-right of Figure 2, for ex-
ample, defines the behavior of gateJ : Each entry gives the
probability of its output (J) being a particular value given
the value of its input (P ) and the value of its health vari-
able (okJ). In caseokJ = 1, the probabilities are always0
or 1 as the behavior of a healthy gate is deterministic. The
case ofokJ = 0 defines thefault modelof the gate, which
is also part of the input to the diagnosis task. In our exam-
ple, we assume that both output values have probability0.5
when the gate is broken. Also, if a gate has more than two
health modes, we can simply increase the number of health
variables accordingly.

Given these tables, the joint probability distribution over
the circuit behavior can be obtained by realizing that the
gates of a circuit satisfy an independence property, known
as theMarkov property: Given its inputs and health mode,
the output of a gate is independent of any wire which is not
in the fan-out of the gate. This means that the circuit can be
effectively treated as a Bayesian network in the straightfor-
ward way, by having a node for each wire and each health
variable, and having an edge going from each input of a gate
to its output, and also from the health variable of a gate to
its output. Figure 2 (left) shows the result of this translation
for the circuit in Figure 1.

The joint probability distribution encoded in the Bayesian
network provides the basis for computing any posterior

Figure 3: d-DNNF compilation of subcircuit (dotted) in Figure 1
given the observationA∧P∧D and computation of the probability
of evidence¬okJ .

probabilities that we may need when proposing measure-
ment points (by thechain rule). However, it does not pro-
vide an efficient way of doing so. Specifically, computing
a posteriorPr(X = x | Y = y) given the valuesy of all
the wiresY with known values involves summing out all
variables other thanX andY, which has a complexity ex-
ponential in the number of such variables if done naively.

4.1 Propositional Modeling
It is known that a Bayesian network can be encoded into
CNF and then compiled into d-DNNF, which, if successful,
allows posterior probabilities of all variables to be computed
efficiently (Darwiche 2003). For the purposes of sequential
diagnosis, we encode the Bayesian network as follows.

Consider the subcircuit in the dotted box in Figure 1 as an
example, which can be modeled as the following five-clause
CNF formula:¬okJ ∨¬P ∨¬J, ¬okJ ∨P ∨ J, ¬okA∨
J ∨¬A, ¬okA∨D∨¬A, ¬okA∨¬J ∨¬D∨A. Specifi-
cally, each signal of the circuit translates into a propositional
variable (A, D, P , J), and for each gate, an extra variable
is introduced to model its health (okA, okJ). The CNF for-
mula is such that when all health variables are true, the re-
maining variables are constrained to model the functionality
of the gates. For example, the first two clauses above are
equivalent tookJ → (J ↔ ¬P ), modeling the function-
ality of the inverter. In general, for each gateX, we have
okX →NORMALBEHAVIOR(X).

Note that the above formula fails to encode half of the
CPT entries, whereokJ = 0. In order to complete the en-
coding of the CPT of nodeJ , we introduce an extra Boolean
variableθJ , and write¬okJ → (J ↔ θJ).

Finally, the health variables (okA, okJ) are associated
with the probabilities of the respective gates being healthy
(0.9 in our experiments), and eachθ-variable (θJ ) is associ-
ated with the probability of the corresponding gate giving an
output of 1 when broken (0.5 in our experiments).

4.2 Compilation
Once we write the above clauses for all the gates, our CNF
formula is ready for compilation into d-DNNF. d-DNNF is



a graph representation of a nested and/or expression where
negation only appears at the leaves next to variables, chil-
dren of every and-node have disjoint sets of variables (de-
composability), and children of any or-node are mutually
logically inconsistent (determinism). Figure 3 shows the
d-DNNF compilation of the subcircuit in the dotted box of
Figure 1 under the observationA ∧ P ∧ D.

After the compilation, the probabilityPr(E = e) for an
instantiatione of any set of variablesE can be obtained by
the following linear-time procedure: (i) Set all variablesE to
Boolean constants according to the instantiatione, (ii) set all
other literals to true except those that have numbers associ-
ated with them (negative literals are associated with 1 minus
the corresponding numbers for the positive literals), and (iii)
evaluate the d-DNNF by treating true as1, false as0, the
remaining leaves as their associated numbers, or-nodes as
additions, and and-nodes as multiplications. The number at
the root will bePr(E = e). For example, Figure 3 shows
the computation of the probability of gateJ being broken
given the observationA ∧ P ∧ D. Furthermore, when the
value of a variable becomes known (by measurement), the
posterior probabilities of all variables can be updated simul-
taneously by differentiating the d-DNNF in time linear in the
size of the d-DNNF (Darwiche 2003).

5 Probabilistic Sequential Diagnosis
Able to compute probabilities efficiently and exactly (fol-
lowing successful d-DNNF compilation), we are now ready
to discuss the measurement point selection heuristic. We
start with a definition of Shannon’s entropyH, which is de-
fined with respect to a probability distribution of a discrete
random variableX ranging over valuesx1, x2, . . . , xk. For-
mally: H(X) = −

∑k

i=1
Pr(X = xi) log Pr(X = xi)

Entropy measures the amount of uncertainty over the
value of the random variable. It is maximal when all prob-
abilitiesPr(X = xi) are equal, and minimal when one of
the probabilities is1, corresponding nicely to our intuitive
notion of the degree of uncertainty.

In GDE (de Kleer & Williams 1987; de Kleer 2007), the
entropy is computed for the probability distribution over the
set of diagnoses computed (i.e., the value of the random vari-
ableX here ranges over the set of all diagnoses). As dis-
cussed in those same papers, however, this entropy can be
difficult to compute when the number of diagnoses is large.

5.1 Baseline Approach
We propose a new two-part heuristic that avoids this draw-
back. First, we consider the entropy of a candidate wire to
be measured.

Heuristic Based on Entropy of Wire. Since a wireX
only has two values, its entropy can be written as:H(X) =
−(px log px + px̄ log px̄), wherepx = Pr(X = 1 | Y = y)
andpx̄ = Pr(X = 0 | Y = y) are the posterior proba-
bilities of X having values 1 and 0, respectively, given the
valuesy of wiresY whose values are known.

While H(X) captures the uncertainty over the value of
the wire, we can also interpret it as the average amount of
information gain provided by measuring the wire. Hence

as a first idea we consider selecting a wire with maximal
entropy for measurement at each step.

Improving Heuristic Accuracy. This idea alone, how-
ever, did not work very well in our initial experiments. As
would be confirmed by subsequent experiments, this is large
due to the fact that the space of all diagnoses is generally
very large and can include a large number of unlikely diag-
noses, which tends to compromise the accuracy of the esti-
mate of information gain provided by the entropy.

The experiments to confirm this explanation are as fol-
lows. When the d-DNNF compilation is produced, and
before it is used to compute probabilities, we prune the
d-DNNF graph so that models (satisfying variable assign-
ments) corresponding to diagnoses with more thank broken
gates are removed.4 The resulting d-DNNF can be pruned
further as faults are identified, by subtracting the number of
the identified faults fromk.

We set the initialk to the number of actual faults in the ex-
periments, and observed that a significant reduction of diag-
nostic cost resulted in almost all cases. This improved per-
formance is apparently due to that the pruning updates the
posterior probabilities of all variables, making them more
accurate since many unlikely diagnoses have been elimi-
nated.

In practice, however, the number of faults is not known
beforehand and choosing an appropriatek for the pruning
can be nontrivial (note thatk need not be exactly the same
as the number of actual faults for the pruning to help). Inter-
estingly, the following heuristic appears to achieve a similar
performance gain in an automatic way.

The final heuristic is as follows. We select a compo-
nent that has the highest posterior probability of failure (an
idea from Heckerman, Breese, & Rommelse 1995), and then
from the variables of that component, measure the one that
has the highest entropy. This heuristic does not require the
above pruning of the d-DNNF, and appears to improve the
diagnostic cost to a similar extent by focusing the measure-
ment selection on the component most likely to be broken.

5.2 Hierarchical Approach
We now scale our approach further to handle larger sys-
tems using the idea of abstraction based hierarchical diagno-

4A complete pruning is not easy; however, an approximation
can be achieved in time linear in the d-DNNF size, by a variant
of the minimization procedure described in (Darwiche 2001). It
requires associating two registers with each noden of the d-DNNF,
namely,ur anddr, and a two-pass traversal through the d-DNNF
described below.

Initialize ur(n) to 0 anddr(n) to -∞ (least possible value) for
all n. Traverse the d-DNNF so that children are visited before par-
ents and for every leaf node, setur(n) to 1 if n is a negated health
variable and0 otherwise; for every or node, setur(n) to the min-
imum of the values ofur of its children; for every and node set
ur(n) to the sum of the values ofur of its children.

Now traverse the d-DNNF so that parents are visited before chil-
dren and setdr for the root node to the valuek; for every or node,
remove every childp of n for whichur(p) > dr(n) and for every
remaining childv setdr(v) to dr(n) if dr(n) > dr(v); for every
child p of every and node, lettp be the sum of the values ofur of
all the other children and setdr(p) to the valuetp if tp > dr(p).



sis (Siddiqi & Huang 2007). The basic idea is that the com-
pilation of the system model into d-DNNF will be more ef-
ficient and scalable when the number of system components
is reduced. This can be achieved by abstraction, where sub-
systems, known as cones in the case of circuits, are treated
as single components. An example of a cone is depicted in
Figure 1, and for space constraints we refer the reader to
(Siddiqi & Huang 2007) for a formal definition of cones.
When cones are abstracted in this way, we only need a sin-
gle health variable and failure probability for the entire cone,
significantly reducing the size of the CNF encoding and the
difficulty of compilation. Once a cone is identified as faulty
in the top-level diagnosis, it can then be compiled and diag-
nosed, in a recursive fashion.

Siddiqi & Huang (2007), however, only deal with the task
of computing all diagnoses, which does not involve proba-
bilities or measurement selection. In our case, several ad-
ditional intricacies are worth mentioning, particularly in the
computation of prior failure probabilities for the cones and
the way measurement points are selected, as outlined below.

Prior Failure Probabilities for Cones. When a cone is
treated as a single gate, it is necessary to compute its prior
probability of failure as a whole, given the prior probabilities
of gates and cones inside it. The method we use is to com-
pute the probability of the cone outputting a wrong value by
creating two copiesφ1 andφ2 of the cone, in CNF, whereφ1

models only the healthy behavior of the cone (without health
variables), andφ2 includes the faulty behavior as well (i.e.,
the full encoding described in Section 4.1). The outputs of
bothφ1 andφ2 are collected into an XOR-gateX. We then
compute the probabilityPr(X = 1), which gives the prob-
ability of the outputs ofφ1 andφ2 being different. We com-
pute this probability by compiling the entire encoding into
d-DNNF and evaluating it underX = 1.

Note that this procedure itself is also hierarchical, per-
formed bottom-up with the probabilities for the inner cones
computed before those for the cones containing them.

Measurement Point Selection.When diagnosing a cone,
it is generally important to have full knowledge of the val-
ues of its inputs, before a final diagnosis is concluded. A
diagnosis of a cone concluded with only partial knowledge
of its inputs may never be part of any valid global diagnosis.
The reason is that the diagnosis of the cone assumes that the
unknown inputs can take either value, while in reality their
values may become fixed when wires in other parts of the
circuit are measured.

To avoid this situation while retaining the effectiveness
of the heuristic, we modify the measurement point selection
as follows when diagnosing a cone. After selecting a gate
with the highest probability of failure, we consider the wires
of that gateplusthe inputs of the cone, and measure the one
with the highest entropy. We do not conclude a diagnosis for
the cone until values of all its inputs become known (through
measurement or deduction), except when the health of all the
gates in the cone has been determined without knowing all
the inputs to the cone (it is possible to identify a faulty gate,
and with strong fault models also a healthy gate, without
knowing all its inputs).

We omit a formal description of the detailed hierarchi-

size system
single- fault double-fault triple-fault
cost time cost time cost time

13
GDE 3.6 2.0 3.8 1.81 4.0 1.9
SDC 3.7 0.01 3.3 0.01 2.8 0.01

14
GDE 3.5 6.66 3.3 15.1 3.0 14
SDC 4.0 0.01 3.2 0.01 2.7 0.01

15
GDE 3.4 111 3.5 88 4.3 299
SDC 4.0 0.01 3.4 0.01 3.7 0.01

16
GDE 3.3 398 3.5 556 3.2 509
SDC 3.6 0.01 3.4 0.01 2.8 0.01

17
GDE 3.7 2876 4.6 4103 4.5 2067
SDC 4.0 0.01 4.0 0.01 4.0 0.01

Table 1:Comparison with GDE.

cal sequential diagnosis algorithm for space constraints,and
proceed now to describe a thorough empirical evaluation of
the new sequential diagnosis algorithms.

6 Experimental Results
We have implemented a new diagnostic system, which we
refer to as SDC, that supports both the baseline and the hi-
erarchical approach described in Section 5. The d-DNNF
compilation is done using a publicly available d-DNNF
compiler (Darwiche 2004; 2005). All experiments were con-
ducted, using ISCAS-85 benchmark circuits, on a cluster of
32 computers consisting of two types of (comparable) CPUs,
Intel Core Duo 2.4 GHz and AMD Athlon 64 X2 Dual Core
Processor 4600+, both with 4 GB of RAM running Linux.
A time limit of 24 hours was imposed on each test case.

The diagnostic system is given a faulty circuit where some
gates give incorrect outputs. The inputs and outputs of the
circuit are observed, and actual values of its wires are used
to simulate the results of taking measurements. We use
Pr(okX = 1) = 0.9 for all gatesX of the circuit. Note
that such cases, where all gates fail with equal probability,
are conceivably harder to solve as the diagnoses will tend to
be less differentiable. Then, for each gate, the two output
values are given equal probability when the gate is faulty.
Again, this will tend to make the cases harder to solve due
to the high degree of uncertainty.

For each circuit and fault cardinality, we report the cost
(number of measurements taken) and time (in seconds) to
locate the faults, averaged over all test cases used.

6.1 Comparison with GDE
We used the publicly available version of GDE (Forbus
& de Kleer 1993) for the comparison, downloadable from
http://www.qrg.northwestern.edu/BPS/readme.html.

It uses ATCON, a constraint language developed using the
LISP programming language, to represent diagnostic prob-
lem cases. A detailed account of this language is available
in (Forbus & de Kleer 1993). Further, it employs an interac-
tive user interface that proposes measurement points with
their respective costs and lets the user enter outcomes of
measurements.

For the purpose of comparison we translated our prob-
lem descriptions to the language accepted by GDE, and also



circuit systemmin single-fault double-fault five-fault
cost time cost time cost time

c432 RAND
no 92.5 16.0 93.3 16.2 101.8 22.4

(160 gates)

yes 4.6 11.3 34.5 11.7 86.5 12.8

SDC
no 6.7 11.7 6.3 12.2 8.8 12.8
yes 4.3 11 5.0 11.5 8.7 11.8

c499 RAND
no 110.0 0.6 106.5 0.6 124.0 0.7

(202 gates)

yes 5.4 0.2 18.8 0.2 87.5 0.6

SDC
no 6.5 0.2 4.4 0.2 6.8 0.2
yes 4.7 0.2 3.2 0.2 6.4 0.3

c880 RAND
no 220.3 1.5 232.5 1.4 268.2 1.5

(383 gates)

yes 5.4 0.2 43.8 0.3 185.2 1.0

SDC
no 10.5 0.2 9.3 0.3 15.5 0.4
yes 5.5 0.2 6.6 0.2 13.8 0.4

c1355 RAND
no 328.5 3.6 334.5 3.3 371.7 3.6

(546 gates)

yes 7.4 0.4 51.3 1.0 278.0 2.5

SDC
no 33.8 1.0 15.0 0.6 16.7 0.6
yes 8.0 0.5 10.0 0.5 15.5 0.5

c1908 RAND
no 448.0 19395780.0 17137689.0 30134

(880 gates)

yes 8.6 14052 16.7 13686 3.0 6613

SDC
no 63.6 14375 70.0 13281 61.2 24971
yes 7.8 10954 17.5 17533 60.2 42974

Table 2:Results on larger benchmarks.

modified GDE to automatically read in the measurement
outcomes from the input problem description. We also com-
piled the LISP code to machine dependent binary code using
the native C compiler to improve run-time performance.

GDE quickly ran out of memory even on the smalles cir-
cuit (c432) in ISCAS-85. We observed that theAssumption
Based Truth Maintenance System(Forbus & de Kleer 1993),
used by GDE as a reasoning system to generate minimal di-
agnoses, actually generated exponentially many sets of as-
sumptions (about values of system variables, called environ-
ments) before running out of memory.5

To enable a useful comparison, we extracted a set of small
subcircuits from the ISCAS-85 circuits:50 circuits of size
13, 14, 15 and16, and10 circuits of size17. For each circuit
we randomly generated5 single-fault,5 double-fault and5
triple-fault scenarios, and one test case (input/output vector)
for each fault scenario.

Table 1 summarizes the comparison between GDE and
SDC on these benchmarks, where the first column shows the
size the circuit. It is clear that the running time of GDE in-
creases by roughly an order of magnitude with an increase of
just one gate in the circuit size, manifesting the exponential
complexity of the algorithm. SDC performs as well as GDE
in terms of diagnostic cost, and solves every case instantly
while GDE takes up to more than an hour.

6.2 Larger Benchmarks
To evaluate the performance of SDC on the larger ISCAS-
85 circuits, we have again conducted three sets of exper-
iments, this time involving single, double, and five faults,

5Results in (de Kleer, Raiman, & Shirley 1992) were obtained
by using a simple reasoning system which assumes a single fault,
in which case the number of diagnoses is bounded by the number
of gates.

respectively. For single faults, we simulated the equal prior
probability of faults by generatingn fault scenarios for each
circuit, wheren equals the number of gates in the circuit:
Each scenario contains a different faulty gate. We then ran-
domly generated25 test cases for each of thesen scenarios.
Doing the same for double- and five-fault scenarios would
not be practical due to the large number of combinations, so
for each circuit we simply generated 1000 random scenarios
with the given fault cardinality and a random test case for
each scenario. For the largest circuits, c1908 and c2670, we
only generated 10 fault scenarios under each fault cardinal-
ity and one test case for each fault scenario.

As the version of GDE available to us is unable to han-
dle these circuits, in order to provide a systematic reference
point for comparison we have implemented a random strat-
egy where a random order of measurement points is gen-
erated for each circuit and used for all the test cases. This
strategy also uses the d-DNNF to check whether the stop-
ping criteria have been met.

Table 2 shows the comparison between the random strat-
egy and SDC (using the baseline approach). For both sys-
tems we ran the same set of experiments with and without
pruning the d-DNNF (using the known fault cardinality as
described in Section 5.1). The third column (“min”, for
“minimization”) of table indicates whether this was done.
For c1908, out of the 10 test cases, only 5 could be solved
for single-fault, 4 for double-fault, and 4 for five-fault. None
of the test cases for c2670 could be solved. All failures
occurred during the compilation phase, and hence affected
both the random strategy and SDC.

It is clear from Table 2 that the diagnostic cost is sig-
nificantly lower with SDC than with the random strategy
whether or not pruning has been used. It is also interest-
ing to note that pruning significantly reduces the diagnostic
cost for the random strategy, but has much less effect with
SDC. As discussed earlier (and confirmed by a separate set
of experiments which we omit), the combination of failure
probabilities and wire entropies appears to achieve a simi-
lar effect to pruning. There are several cases (c1355 single-
fault, c1908 single-fault, and c1908 double-fault), however,
where the pruning provides substantial further improvement
for SDC. Finally, one surprising exception is seen in the case
of c1908 five-fault, where the random strategy with pruning
did remarkably well and SDC did remarkably poorly. While
the former is likely due to luck (only 10 cases were used
here), the latter suggests room for further improvement with
the heuristic of SDC.

6.3 Hierarchical Method
We now report, in Table 3, the results of repeating the same
experiments with SDC using the hierarchical approach.

Most notably, the running time significantly reduces for
c1908, the largest that could be handled by SDC using the
baseline approach, and we are now able to handle c2670
(solving 27 of the 30 cases between the three categories) as
well as 11 more cases for c1908.

In terms of diagnostic cost, it can be seen that in most
cases the hierarchical approach is either comparable to or
better than the baseline approach, except in the case of c432.



circuit min
single- fault double-fault five-fault
cost time cost time cost time

c432 no 15.3 0.4 15.3 0.4 20.3 0.6
(64 cones) yes 4.5 0.3 9.8 0.3 19.8 0.4
c499 no 7.0 0.2 5.6 0.1 9.1 0.2

(90 cones) yes 4.6 0.1 3.9 0.1 8.3 0.1
c880 no 9.1 0.1 9.9 0.2 16.4 0.2

(177 cones) yes 5.6 0.1 7.6 0.1 15.5 0.2
c1355 no 8.0 0.2 7.5 0.2 11.4 0.3

(162 cones) yes 5.8 0.2 6.0 0.2 11.0 0.2
c1908 no 20.6 400 25.6 542 33.0 883

(374 cones) yes 6.2 339 17.5 439 33.6 572
c2670 no 18.2 514 17.8 299 22.7 199

(580 cones) yes 10.4 426 8.8 201 22.2 149

Table 3:Results of hierarchical approach.

Note that pruning helps further reduce the diagnostic cost to
various degrees as with the baseline approach. As mentioned
earlier, in practice choosing the appropriatek for pruning
may be nontrivial, suggesting an interesting topic for future
work.

7 Conclusion and Related and Future Work
We have presented a new system, called SDC, for sequential
diagnosis that significantly advances the state of the art by
solving, for the first time, a set of nontrivial multiple-fault
diagnostic cases on large benchmark circuits. On the small
benchmarks that can be solved by the previous GDE system,
SDC also exhibits much higher efficiency and comparable
performance in terms of diagnostic cost.

A recent line of related work is (Flesch, Lucas, & van der
Weide 2007), where the authors propose a new framework
to integrate probabilistic reasoning into model-based diag-
nosis. The framework is based upon the notion ofcon-
flict measure, which originated as a tool for the detection
of conflicts between an observation and a given Bayesian
network (Jensen 2001). When a system is modeled as a
Bayesian network for diagnostic reasoning, it is possible to
use this conflict measure to differentiate between diagnoses
according to their degree of consistency with a given set
of observations. This work, however, does not address the
problem of locating actual faults by taking measurements.

Based on the GDE framework, de Kleer (2007) studies the
sensitivity of diagnostic cost to what is called theǫ-policy,
which is the policy that quantifies how the posterior prob-
abilities of diagnoses are to be estimated when GDE com-
putes its heuristic. In our case, probabilities of diagnoses
are not required at all, and the other probabilities that are
required can all be computed exactly by evaluating and dif-
ferentiating the d-DNNF. Nevertheless, our algorithm can be
sensitive to the initial probabilistic model given and sensitiv-
ity analysis in this regard may lead to interesting findings.

Other topics for future work include extensions to cases
where measurements have varying costs, and the feasibility
of finding optimal measurement selection policies.
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