Instructions for MIE457F Project 2:
A Data Mining System

Checkpoint Due: Oct. 27, 2003, midnight
Final Submaission: Nov. 3, 2003, midnight

Questions to Scott Sanner

ssanner@cs.toronto.edu

1 Overview

The purpose of this programming project is to have you modify and implement
parts of a data mining system that interacts with an actual database in real-time
while working in a structured Java programming environment.

This project makes use of a DMQL [1] inspired language that we will dub
DMQL-457. Rather than being a pure subset of DMQL, this query language has
been simplified and altered slightly to facilitate implementation. Nonetheless,
upon completion of this project, you will have built a non-trivial and reasonably
efficient data mining system that will work with any database system and many
Star-structured data schemas.

For this project, you will be provided with a working command shell interface,
a DMQL-parser, and an implementation of the basic system architecture. Your
task will be to complete the following three items:

1. Checkpoint Requirement: Implement the backend JDBC/SQL database queries
to populate a data cube according to the specifications of a DMQL command.

2. Final Submission Requirement: Implement the basic roll-up/drill-down op-
erations (add/drop attribute only) for a data cube according to the specifi-
cation of a DMQL command.

3. Final Submission Requirement: Modify a data mining algorithm to use the
information gain metric for induction of classification rules according to the
specification of a DMQL command.

The programming portion of this project should not be too difficult but it
will require working knowledge of a number of Java topics including package
structure, the JavaDoc utility, the Java Foundation Classes (JFC) — especially
java.lang and java.util.

Of primary importance for this project is an understanding of efficient data
cube implementation using the java.util classes.! This document will cover the
details of this implementation but it is assumed that the student has a working
knowledge of the java.util classes.

! Populating and working with the data cube is the main focus of this project!

2 Background reading

In order to understand the content of this document, you should first understand
the lecture slides for weeks 5, 6 and 8 on the topics of data and knowledge
mining [2].

Additional helpful material can be found in Han et al. [3]. This is a reasonably
comprehensive reference for the data mining content covered in this course.

3 Getting started

All of the information to compile, run the code, and view the documentation
for this project is described in the README file in the root directory of the
project.

To get started with the project, download the archive from the following
webpage (right click and Save As from a web browser):

http://www.cs.toronto.edu/"ssanner/Projects/index.html

To unpack the archive into a subdirectory, use a Windows compression /decompression
utility such as WinZip. Or, from the UNIX command line, you can type:

tar —xvzf P2.tar.gz

From this point, open a command prompt (UNIX: any shell, WINDOWS:
Start->MIE Software->gams) and change into the Project! subdirectory. On a
Windows system, use the command type README or on a UNIX system, use the
command cat README to view the README file.

The README file should have all of the information required to compile,
run the command-line interface, and access the JavaDoc documentation in the
javadoc subdirectory. The I TEXversion of this file along with its corresponding
compiled ps and pdf versions is in the docs subdirectory.

Note: A useful text editor for Windows is TextPad (Start->TextPad). For
UNIX, useful text editors are emacs, zemacs, vi, and pico.

4 Existing code structure

Before starting to modify the current data mining system, it is first important
to understand its structure.

4.1 Package structure

The package structure for this project is given in Figure 1. Details of the pack-
ages and the classes within them can best be explored through the JavaDoc
documentation. However, a quick overview of each package is given below.

[root]

comshell dm
dm.db dm.dmgql dm.datacube dm.mine
» DBInterface » Token »DataCube » ClassProc
» TokenStream »Domain »DecTreeClassProc

»DMQLCommand »DCComp
(and subclasses)

Fig. 1. Package structure and major classes for the MIE457F Project 2: Data Mining.

[root] This is the root of the dm and comshell packages and is the default
package if no package is named. As in most projects, the root package simply
exists to provide a top level of organization for all of the subpackages. It contains
no classes.

comshell This is an auxiliary package that provides support for a command
line interface. Other packages such as ir will extend the ComShell class in the
comshell package in order to implement their own command shell.

dm This is the root of the dm (i.e. Data Mining) package. This package con-
tains one class DMShell that extends a ComShell class in order to provide a
customized command line interface for this project. The command shell makes
calls to the subpackages of this package in order to implement the DMShell
commands.

dm.db This package contains one class, DBInterface, which encapsulates all
interaction with an underlying database. One only need to provide a driver
name, database name, and this class will take care of processing any SQL query
and returning the java.SQL.ResultSet object containing the table for the query
result.

dm.dmgql This package contains all classes required to parse DMQL-457 com-
mands. The allowable DMQL-457 commands for this project are outlined in
figure 2.

DMQL-Command ::= { Def-Dimension | Def-Cube | Drop-Dim |
Add-Dim | Display-Cube | Find-Rules }*

Def-Dimension ::= define dimension (Dim-Name)

from (DB-Table)

as (Table-Key) { , (Table-Col) }*
Def-Cube ::= define cube (Cube-Name)

from (DB-Table)

with dimensions { Table-Key) for { Dim-Name)

{, (Table-Key) for (Dim-Name) }"
having content { Table-Col)

Drop-Dim = drop (Dim-Name) from (Cube-Name)
Add-Dim == add (Dim-Name) to { Cube-Name)
Display-Cube ::= display (Cube-Name)

[with width (Cell-Width)]
[using { sum | min | max | avg |
| count-all | count-val (Value) }]
Find-Rules = find classification rules for { Cube-Name)
related to (Dim-Name) { , (Dim-Name) }*
with support threshold (Support-Threshold) ,
confidence threshold { Conf-Threshold)

Fig. 2. BNF Syntax for the DMQL-457 language. Note that the syntax uses [] for
optional items, { } for grouping, * for 0 or more repetitions, + for 1 or more repetitions,
and () for user specified terms. Also note that a parser for this DMQL syntax is already
provided. The semantics of this language is explained in detail in section dm.dmgl,
however, the basic semantics should be reasonably apparent from the syntax.

Each of the basic commands in this grammar is represented by a subclass of
java.dm.DMQL Command. These subclasses are all internal classes of java.dm.DMQL
and thus are prefixed by DMQL. These subclasses follow:>

e DMQL.DefineDim: This command class represents the definition of a data
cube dimension as a multiattribute table with a single key and any number
of attributes relating to that key (all from the same table).?

o DMQL.DefineCube: This command class represents a data cube definition.
It relies on the fact that all required dimensions have already been defined
(otherwise this operation cannot be completed). It’s main purpose is to gen-
erate a SQL query on the database backend to populate the internal data
cube data structure.

? Although these class names do not exactly match the grammar, the translation
should be readily apparent.

3 Single attribute dimension keys are a restriction of the DMQL-457 language but this
is just a restriction on the key — the dimension itself can be multiattribute. However,
this restriction could be relaxed without too much difficulty. The restriction that
a dimension come from only one table is simply a constraint of Star-structured
database schemas.

e DMQL.Display: This command represents a display request for a data cube
using one of the specified aggregation functions (in the event that the data
cube has multiple entries per cube cell, perhaps resulting from a roll-up).*

e DMQL.AddDropDim: This command represents a request to add or drop a
dimension from a specified data cube.

e DMQL.FindClassRule: This command represents a request to find classifi-
cation rules for a data cube.?

Note that instances of these DMQLCommand subclasses are generated by
the command-line interface dm.DMShell in response to dmgl-query commands
and passed to dm.datacube. Domain where they are actually processed. This code
has already been written.

dm.datacube This package contains an implementation of the data cube (i.e.
DataCube) data structure along with a supporting class (i.e. Domain) for main-
taining dimension and data cube information for a given database domain.

dm.mine This package contains the basic interface for all find classification
rulequeries (i.e., in ClassProc) along with a simple implementation based on the
Gini metric (i.e., in DecTreeClassProc).

4.2 Compilation and Makefiles

How you compile the project will depend on what system you are using. UNIX
offers a useful built-in utility for compiling projects called the Make utility which
is described below.

o If you are using UNIX Makefiles (optional): In every package directory there
is a corresponding Makefile (of the same name) that describes how to compile
or process all of the files in that directory. For the most part, you should
only need to modify this file to add additional classes or subpackages to be
compiled. These are defined by the PACKAGES and CLASSES variables in
the Makefile and you simply need to add the appropriate entry whenever you
add o subpackage or class to a package.

4 If the data cube contains only one datum per set of dimension attributes, aggregation
functions such as sum, min, or max will clearly have no effect on the data displayed.

% Since the data cube has only one value item, it is assumed that the goal is to classify
this value. Additionally, since we are not handling the capability to aggregate over
ranges, this classification rule only makes sense with values that represent classes.
That is, it would make sense to call this query if a data cube contained values
representing a type of food purchase (i.e., fast-food, eat-in, fine-dining) but it would
not make sense for a data cube containing the amount of the purchase (i.e. otherwise
we'd be classifying someone who spent 10 dollars and someone who spend 11 dollars
differently). We would want to aggregate over value ranges to handle this latter case
better, but this is beyond the scope of this course project. It indicates the possible
dimensions to include in the rules and a support and confidence threshold hold that
must hold for any returned rule.

For compilation on either platform, refer to the README file in the root
directory (Project!) for more information.

4.3 Using JavaDoc documentation

There is a reasonable amount of code already in this project and the JavaDoc
documentation will be your most effective tool for getting a high-level overview
of the package and class structure. JavaDoc documentation uses a web browser
interface and allows you to click on any package, class, or method to explore it
further.

For information on building JavaDoc documentation, refer to the README
file in the root directory (Projectl). This explains how to build and view the
code documentation for this project.

4.4 Running the command-line interface

The command-line interface as implemented in the class DMShell in the ir pack-
age provides a powerful way to interact with the data mining system. The user
simply issues commands for indexing documents or URLs and viewing/querying
the current index. Furthermore, the user can save commands to a script file
and execute this automatically from the command-line or even the UNIX/DOS
prompt.

An example script (similar to test.dmsh) follows:

// A sample DMShell script

echo on

setenv DB-NAME "h:/Project2/StarSchemaEx.mdb"
new-domain MyDomain

timer start

// Define some dimensions

dmql-query "define dimension DimTime from TimeData as TimeKey"
dmgl-query "define dimension DimLoc from LocData as LocKey"
dmgl-query "define dimension DimAge from AgeData as AgeKey"

// Define a data cube
dmgl-query "define cube MyCube from MainData
with dimensions Time for DimTime,
Loc for DimLoc,
CustAge for DimAge
having content FoodType"

// Roll-up on the location dimension
dmgl-query "drop dimension DimLoc from MyCube"

// Display the rolled-up cube without any aggregation function

dmgl-query "display MyCube with width 12"

// Drill down on the location dimension
dmgl-query "add dimension DimLoc to MyCube"

// Now display counts for fine-dining (assuming ID=2)...
dmgl-query "display MyCube with width 12 using count-val 2"

// Try out a rule-learning algorithm...
dmgl-query "find classification rules for MyCube
related to DimYear, DimLoc, DimAge
with support threshold 0.10,
confidence threshold 0.65"

timer stop
echo off

return

When applied to a small database, the output from the above script may
look like:

> [dmgl-query "define dimension DimAge from AgeData as AgeID, AgeDesc'"]
Processing Dimension Query:
* DMQL.DefineDim
- Dim: DimAge
- Table: AgeData
- Key: AgeID
- Cols: [AgeDesc]
DMQL command successfully executed.
> [
> [// Define a data cube]
> [dmgl-query "define cube MyCube from MainData with dimensions ...

Processing Cube Query:

* DMQL.DefineCube
- Name: MyCube

- Table: MainData
- Keys: [Year, Location, CustAgel
- Dims: [DimYear, DimLoc, DimAgel
ValCol: FoodType

DMQL command successfully executed.
> [dmgl-query "drop DimLoc from MyCube"]
Processing Display Query:
* DMQL.AddDropDim
- Fun: drop
- Dim: DimLoc
- Cube: MyCube
DMQL command successfully executed.
> [dmgl-query "display MyCube with width 12"]
Processing Display Query:
* DMQL.Display
- Cube: MyCube

- Ag-fun: none (0)
- Params: []

DimYe\DimAge | [Teens] [20°s] [30’s] [40°s]
_____________ +___
1999 | [3, 4] [1] - ~

2000 | ~ [5] - -

2001 | - - - [2, 2, 1]
2002 |~ - - -

DMQL command successfully executed.
> [dmgl-query "add DimYear to MyCube"]
Processing Display Query:
* DMQL.AddDropDim
= Fun: add

- Dim: DimYear
- Cube: MyCube

DMQL command successfully executed.
> [dmgl-query "display MyCube with width 12 using count-val 2"]
Processing Display Query:
* DMQL.Display
- Cube: MyCube
- Ag-fun: count-val (6)
- Params: [2]
* DimYear=1999:
DimLo\DimAg [Teens] [20°s] [30°s] [40°s]
[Canada, Tor
[Canada, 0Ott
[USA, New Yo
* DimYear=2000:
DimLo\DimAg [Teens] [20°s] [30’s] [40°s]
[Canada, Tor
[Canada, Ott
[USA, New Yo
* DimYear=2001:
DimLo\DimAg [Teens] [20°s] [30’s] [40°s]
[Canada, Tor
[Canada, 0Ott
[USA, New Yo
* DimYear=2002:
[Teens] [20°s] [307s] [40°s]
[Canada, Tor
[Canada, Ott
[USA, New Yo

DMQL command successfully executed.

> [dmgl-query "find classification rules for MyCube related to ...
Processing FindClassRule Query:

* DMQL.FindClassRules
- Cube: MyCube
- Dims: [DimYear, DimLoc, DimAge]
- Support: 0.1
- Confid: 0.65
- ClassAlg: class dm.mine.GiniDTClassProc

The following rules met the query requirements:

* Rule: DimYear=1999 ~ DimAge=[20’s] => FoodType=1

- Support: 0.1429

- Confidence: 1

* Rule: DimYear=2001 ~ DimLoc=[Canada, Ottawa] => FoodType=2
- Support: 0.4286

- Confidence: 0.6667
* Rule: DimYear=2001 => FoodType=2
- Support: 0.4286
- Confidence: 0.6667

DMQL command successfully executed.

For full directions on running the command shell, see the README file in
the root directory of the project.

5 Your tasks

Following is an outline of the specific tasks you need to perform for this project.
5.1 Checkpoint Requirement: Data-cube and backend JDBC/SQL
implementation

For the first checkpoint you will be required to implement the following method
in dm.datacube.Domain that takes a DefineCube DMQL query and populates a
data cube using backend JDBC/SQL calls to a database:

public boolean processDefineCube(DMQL.DefineCube com) ;

Here are some pointers that may help you with this implementation (the
following topics will be covered in more detail during tutorial):

e To populate the DataCube, you need to generate a SQL query that popu-
lates the Dimension data (perhaps doing a join on the table specified by the
DefineCube query in order to cut down on unused dimension keys). Addi-
tionally, you need to generate a SQL query that loads the main Star Schema
data into the DataCube according to the DefineCube command.

e Note that the DefineDim commands that have been previously executed are
cached in the _hmDimName2DefineDim field of Domain.

e Building the SQL queries is relatively straightforward and can be done sim-
ply by processing the DefineDim and DefineCube command objects and
appending an appropriate SQL String (using the + operator) fragment for
every element of these commands.®

e Querying the database is simple and can be done exactly as demonstrated
in lab. For convenience, a database interface class similar to that used in
lab (i.e., dm.db.DBInterface) is provided as a member of Domain. Domain
automatically takes care of connecting to the database according to the
command shell parameters, all you will likely need to do is call the query(...)
method on the DBInterface object to perform a SQL query and obtain the
results as a java.sql. ResultSet.

e Once you have performed the query and have the results in a ResultSet, ex-
tract the content row-by-row and put it into the data cube. See the database
query example from lab for how to access the contents of a ResultSet. (Or
look at the PrintResultSet method in dm.db.DBInterface).

e As an example of loading the Dimension and Domain data, a few examples
loading dummy data into these objects have been provided as the current
implementation of processDefineCube(...).

Once you have completed this task, verify that your implementation works
for a few sample databases and queries and submit the checkpoint as described
at the end of this document.

5.2 Final Submission Requirement: Implement data cube
roll-up/drill-down

For this task, you will need to implement the basic roll-up/drill-down procedure
for data cubes. There are many ways to do this, but for reasons that can make
our rule-induction algorithm very efficient, we actually want a lossless scheme for
roll-ups. That is, when we drop a dimension, we want to treat all entries in the
DataCube as equal when they share the same value for all other dimensions, but
otherwise retain them in the DataCube. Then, we can efficiently drill-down (for
this project — just add dimensions) without having to requery the database.”

6 See the class dm.dmgl. DMQL to view the five different command objects and their
field structure.

” Note that rolling up still allows us to aggregate over dimensions — we simply have
to do the aggregation dynamically as we access the data since we didn’t actually

The easiest way to perform drill-downs and roll-ups is to modify the DC-
Comp member for the sorted DataCube array to ignore certain dimensions when
comparing. This can be done through a simple method call to the DCComgp.

To implement the add and drop dimension commands, you simply need to
modify the appropriate methods in Domain and DataCube to connect the com-
mand interface for AddDropDim to the implementation of the command. See the
comments in these files for direct pointers to the places requiring modification.

To verify that this task is working, the display queries should not reflect the
changes made by the add and drop commands.

5.3 Final Submission Requirement: Data mining algorithm
modification

Now that we have define procedures for obtaining data cubes, our final task will
be to perform efficient data mining with these data cubes.

An example of a decision tree classification rule generator using the Gini
metric is defined in dm.mine. GiniD T ClassProc. For this task, you will want to
implement the information gain metric instead of the Gini metric.

The information I of a set S of data (where each element has m possible
classifications, C ...C,,) is given by:®

m
8Si . 8S:
I(8) = — T log == 1
©=-3 (G5 oels)
The information gain Gain of splitting a set S on dimension d with n possible
values is given by:?

. _ —~$S1 i
Gain(S,d) = I(S) <; 5 I(S)) (2)

For this task, you will probably want to use dm.mine.GiniDTClassProc as
a template for implementing the decision tree algorithm using information gain
as a splitting metric as opposed to Gini.

This will require you to make your own implementation of interface dm.mine.
ClassificationProc in a class that should be called dm.mine.InfoGainDTClassProc.
Note that the current implementation of dm.mine.GiniDTClassProc already
takes into account the support and confidence thresholds!® specified by the FInd-

collapse it. However, if we ensure that the DCComp for dropped dimensions always
places these dimensions last in the ordering, then we ensure that all “identical” data
from the perspective of the roll-up is contiguous!

8 45, is the number of elements in set S having class C;. #S is the total count of objects
in the set S.

® We use $%=" to denote the subset of S having dimension d restricted to a value
tel...n.

10 The support for a rule is simply the fraction of total transaction elements that satisfy
a rule and the confidence is simply the fraction of transaction elements satisfying
the antecedent that also satisfy the consequent.

ClassRules command. These thresholds are provided in order to avoid generating
rules that are of little use to the user and you will want to ensure that all mined
rules satisfy these thresholds.

Note that the current implementation of dm.mine. GiniDTClassProc is very
inefficient in many places and can be optimized considerably. Since efficiency will
be a factor in the project grade, it is advised that you attempt to optimize the
code for time/memory efficiency when producing the information gain version
of the decision tree classification procedure.

Upon completion of this final task, you should test out your mining algorithm
on a few example databases to test that everything is working correctly and to
experiment with data mining!

6 Submission and marking

6.1 Turning in your project

The checkpoint due date for this project is Oct. 27, 2003 at midnight. The
final submission due date for this project is Nov. 3, 2003 at midnight. To turn
in the project, use either a tar or zip utility such as WinZip to compress
the Projectl directory along with its subdirectories and email this
single compressed file to Scott Sanner at ssanner@cs.toronto.edu. You
will be sent notification within 24 hours that the project has been received and
that it can be successfully decompressed.

In the event that there are any complications with the submission process
(e.g., a corrupted file), we will request to view the directories you are submitting
to verify that no file has been modified past the due date/time. Thus, you must
ensure that you have a copy of the code on your local H drive on the
ECF machines (so we know that the timestamp is valid) and you
must not modify it beyond the due date (otherwise the timestamp
will indicate this and we will not be able to accept your project).

6.2 Evaluation

Your program will be evaluated using some command-line scripts that we de-
velop. These will simply be more complex versions of the example script test.dmsh
and example database StarSchemaFz.mdb given in the root directory of the
project.

Evaluation will be based on the following criteria:

Completness — Have you completed all of the requirements?

Clarity — Is your code well-structured and understandable?

Commenting — Do you have general as well as JavaDoc-specific comments?
Correctness — Are there any errors which lead to incorrect program behavior?
Efficiency — How efficient is your implementation for queries on very large
indices? How long does it take to process a query?

Cup W

6.3 Extra credit

For extra credit, you may consider the following project enhancements:

1.

Implement better display methods. You can either enhance the text dis-
p play

play with additional features or use a simple Java graph-drawing package to
graphically display multidimensional data.

. Implement a concept hiearchy and allow roll-up/drill-down over this hierar-

chy rather than restricting these operations to simple dimension add/drops
as is currently done.

Modify the code to handle multiattribute dimension keys.

Modify the code to handle multiattribute data cube content values.
Extend the data cube content value to types other than the Integer type
implemented here.

Allow aggregation over ranges for both dimension and value data.

Allow for continuous domains and discretization for both dimension and
value data.

Implement additional aggregation functions for the display query.

Test other decision tree induction metrics.

. Implement additional rule induction algorithms (e.g., the APRIORI algo-

rithm).

References

. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining query

language for relational databases. In: SIGMOD’96 Workshop on Research Issues in
Data Mining and Knowledge Discovery (DMKD’96), Montreal, Canada (1996)

. Fox, M.S.: Lecture Slides, Weeks 5, 6, and 8: Data and Knowledge Mining. On-line:

http://www.mie.utoronto.ca/courses/mie457f/ (2003)
Han, J., , Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2001)

