Practical Linear-value Approximation Techniques for First-order MDPs

Scott Sanner & Craig Boutilier

University of Toronto

UAI 2006
Why Solve First-order MDPs?

- Relational desc. of (prob) planning domain in (P)PDDL:

```
(:action load-box-on-truck-in-city
  :parameters (?b - box ?t - truck ?c - city)
  :precondition (and (BIn ?b ?c) (TIn ?t ?c))
  :effect (and (On ?b ?t) (not (BIn ?b ?c)))
```

Box World:

- Can solve a ground MDP for each domain instantiation:
 - 3 trucks: ![Trucks]
 - 2 planes: ![Planes]
 - 4 boxes: ![Boxes]

- Or solve first-order MDP for all domain inst. at once!
 - Lift PPDDL MDP specification to first-order (FOMDP)
 - Soln makes value distinctions for all dom. instantiations!
Background / Talk Outline

1) Symbolic DP for first-order MDPs (BRP, 2001)
 - Defines FOMDP / operators / value iteration
 - Requires FO simplification for compactness 😞

2) First-order approx. linear prog. (SB, 2005)
 - Approximate value with linear comb. of basis funs.
 - No simplification → project onto weight space 😊

3) Many practical questions remaining (SB, 2006)
 - Other algorithms – first-order API?
 - Where do basis functions come from?
 - How to efficiently handle universal rewards?
 - Optimizations for scalability?
FOMDP Foundation: SitCalc

- **Deterministic Actions:** $loadS(b,t)$, $unloadS(b,t)$, ...
- **Situations:** S_0, $do(loadS(b,t), S_0)$, ...
- **Fluents:** $BIn(b,c,s)$, $TIn(t,c,s)$, $On(b,t,s)$

Successor-state axioms (SSAs) for each fluent \mathcal{F}:
- Describe how action affects fluent (like det. FO-DBN)
- **Ex:** $BIn(b,c,do(a,s)) \equiv$

 1. $Bin(b,c,s)$ AND $a \neq loadS(b,t)$
 OR 2. for some t: $a = unloadS(b,t)$ AND $TIn(t,c,s)$

- **Regression Operator:** $Regr(\varphi) = \varphi'$
 - Takes a formula φ describing a *post-action* state
 - Uses SSAs to build φ' describing *pre-action* state
 - Crucial for backing up value fun to produce Q-fun!
FOMDP Case Representation

- **Case:** Assign value to first-order state abstraction
 - E.g., can express reward in *BoxWorld* FOMDP as…

\[
\text{rCase}(s) = \begin{array}{c|c}
\forall b,c. \text{Dest}(b,c) \Rightarrow B\text{In}(b,c,s) & 1 \\
\neg \forall b,c. \text{Dest}(b,c) \Rightarrow B\text{In}(b,c,s) & 0
\end{array}
\]

- **Operators:** Define unary, binary case operations
 - E.g., can take “cross-sum” \oplus (or \otimes, \ominus) of two cases…

\[
\begin{array}{c|c}
\exists x. A(x) & 10 \\
\neg \exists x. A(x) & 20
\end{array} \oplus \begin{array}{c|c}
\exists y. A(y) \land B(y) & 3 \\
\neg \exists y. A(y) \land B(y) & 4
\end{array} = \begin{array}{c|c}
\exists x. A(x) \land \exists y. A(y) \land B(y) & 13 \\
\exists x. A(x) \land \neg \exists y. A(y) \land B(y) & 14 \\
\neg \exists x. A(x) \land \exists y. A(y) \land B(y) & 23 \\
\neg \exists x. A(x) \land \neg \exists y. A(y) \land B(y) & 24
\end{array}
\]

- Must remove inconsistent elements (i.e., red bar ————)
FOMDP Actions and FODTR

- SitCalc is deterministic, how to handle probabilities?
 - User’s stochastic actions: load(b,t)
 - Nature’s deterministic choice: loadS(b,t), loadF(b,t)
 - Probability distribution over Nature’s choice:

\[
P(\text{loadS}(b,t) \mid \text{load}(b,t)) = \begin{array}{c|c}
\text{snow}(s) & .1 \\
\neg \text{snow}(s) & .5 \\
\end{array}
\]

\[
P(\text{loadF}(b,t) \mid \text{load}(b,t)) = 1 \oplus P(\text{loadS}(b,t) \mid \text{load}(b,t))
\]

- First-order decision-theoretic regression (FODTR):
 - Given value fun \(v\text{Case}(s) \) and user action, produces first-order description of “Q-fun” (modulo reward)

\[
\text{“Q-Fun”} = \text{FODTR}[v\text{Case}(s), \text{load}(b,t)] = \text{Regr}[v\text{Case}(\text{after loadS...})] \otimes P(\text{loadS...} \mid \text{load...})
\oplus \text{Regr}[v\text{Case}(\text{after loadF...})] \otimes P(\text{loadF...} \mid \text{load...})
\]
FOMDP Backup Operators

In fact, there are 3 types of “Q-funs”/backup operators:

1) \(B^{A[x]}[\text{vCase}(s)] = r\text{Case}(s) \oplus \gamma \cdot \text{FODTR}[\text{vCase}(s)] \)

Let \(B^{\text{load}(b,t)}[\text{vCase}(s)] = \)

\[
\begin{array}{c|c}
\phi(b,t) & .9 \\
\neg \phi(b,t) & 0 \\
\end{array}
\]

Think of as \(Q(A(x),s) \), note the free vars!

2) \(B^A[\text{vCase}(s)] = \exists x. B^{A(x)}[\text{vCase}(s)] \) (action abstraction!)

\(B^{\text{load}}[\text{vCase}(s)] = \)

\[
\begin{array}{c|c}
\exists b,t. \phi(b,t) & .9 \\
\exists b,t. \neg \phi(b,t) & 0 \\
\end{array}
\]

Think of as \(\sim Q(A,s) \), no free vars but now overlap!

3) \(B^{A_{\text{max}}}[\text{vCase}(s)] = \max(B^A[\text{vCase}(s)]) \)

\(B^{\text{load}_{\text{max}}}[\text{vCase}(s)] = \)

\[
\begin{array}{c|c}
\exists b,t. \phi(b,t) & .9 \\
\neg(\exists b,t. \phi(b,t)) \land \exists b,t. \neg \phi(b,t) & 0 \\
\end{array}
\]

Think of as \(Q(A,s) \), \textit{no} free vars and \textit{no} overlap!
First-order Approx. Linear Prog. (FOALP)

- Represent value fn as linear comb. of k basis fns:

\[v_{\text{Case}}(s) = w_1 \oplus \cdots \oplus w_k \]

\begin{align*}
\exists b, c & \text{ BIn}(b, c, s) & 1 \\
\neg \exists b, c & \text{ BIn}(b, c, s) & 0 \\
\exists t, c & \text{ TIn}(t, c, s) & 1 \\
\neg \exists t, c & \text{ TIn}(t, c, s) & 0
\end{align*}

- Reduces MDP solution to finding good weights…

generalize approx. LP used by (van Roy, GKP, SP):

<table>
<thead>
<tr>
<th>Vars: (w_i; \ i \leq k)</th>
</tr>
</thead>
</table>

Minimize:

\[\sum_s \sum_{i=1..k} w_i \cdot \text{bCase}_i(s) \]

Subject to:

\[0 \geq B_{\text{max}} \left[\bigoplus_{i=1..k} w_i \cdot \text{bCase}_i(s) \right] \]

\[\ominus \bigoplus_{i=1..k} w_i \cdot \text{bCase}_i(s); \quad \forall a \in A, s \]

- FOALP issues resolved in (SB, 2005):

 - \(\infty \) sum in objective: We give principled approximation
 - \(\infty \) constraints: Only finite set of distinct constraints, solve exactly & efficiently w/ constraint gen. (SP)
First-order Approx. Policy Iter. (FOAPI)

- Need an explicit representation of a policy:
 - $\pi_{\text{Case}}(s) = \max(\cup_{i=1..m} B_i^a [v_{\text{Case}}(s)])$
 - Each case partition should retain mapping to A_i

- Now separate partitions in A_i-specific policies:
 - $\pi_{\text{Case}_{A_i}}(s) = \{ \text{part} \in \pi_{\text{Case}}(s) \text{ s.t. part} \rightarrow A_i \}$
 - Specifies states where policy would apply A_i

- FOAPI: Direct generalization of GKP (exact objective!)
 - Start w/ $w_i^0 = 0, \pi_{\text{Case}}^0(s)$; iterate LP soln until $\pi^{j+1} = \pi^j$:

Vars: $w_i^{(j+1)}; i \leq k$

Minimize: $\phi^{(j+1)}$

Subject to: $\phi^{(j+1)} \geq | \pi_{\text{Case}_{a}}(s) \oplus B_{a_{\text{max}}}(\oplus_{i=1..k} w_i^{(j+1)} \cdot b_{\text{Case}_{i}}(s))$
 $\oplus \oplus_{i=1..k} w_i^{(j+1)} \cdot b_{\text{Case}_{i}}(s) |; \forall a \in A, s$

- Use cgen; if converges, obtain bounds on policy (GKP)!
Generating Basis Functions

- **Where do basis functions come from?**
 - Major question for automation!
 - Huge candidate space if systematically building basis functions for all first-order formulae

- **Idea (GT, 2004):** Regressions from goal make good candidate basis functions!
 - Given initial basis function for reward: \(\exists b. \text{Bin}(b,P,s) \)
 - Regr w/ unload: \(\exists b. \text{Bin}(b,P,s) \lor (\exists b^*, t^*. \text{In}(t^*, P, s) \land \text{On}(b^*, t^*, s)) \)

- Render basis *disjoint* from parents, will use later

- **Iteratively solve FOMDP**
 - Retain all basis functions with wgt. > threshold \(\tau \)
 - Generate new basis fns from retained set
Problems w/ Universal Reward

- Universal rewards are difficult for FOMDPs, e.g.
 - Given reward:

 \[
 r\text{Case}(s) = \begin{cases}
 \forall b,c. \text{Dest}(b,c) \Rightarrow \text{BIn}(b,c,s) & 1 \\
 \neg" & 0
 \end{cases}
 \]

 - Exact n-stage-to-go value function has form:

 \[
 v\text{Case}^n(s) = \begin{cases}
 \forall b,c. \text{Dest}(b,c) \Rightarrow \text{BIn}(b,c,s) & 1 \\
 1\text{ box not at dest} & \gamma \\
 \ldots & \ldots \\
 n-1\text{ boxes not at dest} & \gamma^{n-1}
 \end{cases}
 \]

 - Exact value function has infinitely many values!
 - Cannot compactly represent such structure with piecewise-constant case approximation of value fn
Additive Goal Decomposition

- Solution for universal rewards:

 \[\forall b,c. \text{Dest}(b,c) \Rightarrow \text{BIn}(b,c,s) \]

 Solve FOMDP for: \(\text{BIn}(b^*,c^*,s) \)

 Given solution, gen. Q-funs \(Q(A,s)_{b^*,c^*}(s) \) for \(\forall a \in A \)

- At run-time: Given concrete domain, e.g.

 - Instantiation: \(\{ \text{Dest}(b_1,c_1), \text{Dest}(b_2,c_2), \text{Dest}(b_3,c_3) \} \)

 - Let overall \(Q(A,s) = Q(A,s)_{b_1,c_1}(s) + Q(A,s)_{b_2,c_2}(s) + Q(A,s)_{b_3,c_3}(s) \) for \(\forall a \in A \)

 - To execute policy: select action that maximizes sum of values across all Q-funs, i.e., \(Q(A,s) \)

 - Only heuristic: works in many, but not all cases
Optimizations

- Exploiting disjointness in basis functions:
 - Worst case for set \mathcal{B} of basis functions: must examine $2^{|\mathcal{B}|}$ case partitions in constraint generation.
 - But for any pairwise disjoint set \mathcal{B}' of basis functions, need examine only $|\mathcal{B}'|$ case partitions in cgen.
 - Basis generation enforces disjointness b/w child/parent!

- Exploiting implicit max in constraint generation:
 - In constraints, substitute $0 \geq B^a_{\max}$... with $0 \geq B^a$...

- Removing internal redundancy/inconsistency w/ BDDs:
 - Given: $(\exists x \ A(x)) \land (\exists x \ A(x)) \land (\exists x \ A(x) \land B(x))$

<table>
<thead>
<tr>
<th>Prop Var</th>
<th>FOL Mapping</th>
<th>Impl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$\exists x \ A(x) \land B(x)$</td>
<td>$a \Rightarrow b$</td>
</tr>
<tr>
<td>b</td>
<td>$\exists x \ A(x)$</td>
<td>$\neg b \Rightarrow \neg a$</td>
</tr>
</tbody>
</table>

$\exists x \ A(x) \land B(x)$
Empirical Results: Runtime

- Offline solution times for BoxWorld & BlocksWorld:
 - Without optimizations, cannot get past iteration 2 (> 36000 sec.)
 - BoxWorld: Policies simple, fewer constraints for FOAPI
 - BlocksWorld: Policies complex (lots of equality)
Empirical Results: Performance

- Evaluated cumulative reward on ICAPS 2004 Prob. Planning Comp. BoxWorld (bx) and BlocksWorld (bw):

<table>
<thead>
<tr>
<th>Problem</th>
<th>Prob. Planning System</th>
<th>FO-Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G2</td>
<td>P</td>
</tr>
<tr>
<td>bx c10 b5</td>
<td>438</td>
<td>184</td>
</tr>
<tr>
<td>bx c10 b10</td>
<td>376</td>
<td>0</td>
</tr>
<tr>
<td>bx c10 b15</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>bw b5</td>
<td>495</td>
<td>494</td>
</tr>
<tr>
<td>bw b11</td>
<td>479</td>
<td>466</td>
</tr>
<tr>
<td>bw b15</td>
<td>468</td>
<td>397</td>
</tr>
<tr>
<td>bw b18</td>
<td>352</td>
<td>–</td>
</tr>
<tr>
<td>bw b21</td>
<td>286</td>
<td>–</td>
</tr>
</tbody>
</table>

G2: temp. logic w/ control knowledge; P: RTDP-based
J1: human-coded policy; J2: inductive FO policy iter.; J3: deterministic FF-replanner
Related Work

- **Direct value iteration:**
 - ReBel algorithm for RMDPs (KvOdR, 2004)
 - FOVIA algorithm for fluent calculus (KS, 2005)
 - First-order decision diagrams (JKW, 2006)
 - → all disallow \forall quant., e.g., universal cond. effects

- **Sampling and/or inductive techniques:**
 - Approx. linear programming for RMDPs (GKGK, 2003)
 - Inductive policy selection using FO regression (GT, 2004)
 - Approximate policy iteration (FYG, 2004)
 - → sampled domain instantiations do not ensure generalization across all possible worlds
 - → nonetheless, these methods have worked well empirically
Conclusions and Future Work

- **Conclusions:**
 - Developed *domain-independent* linear-value approximation techniques / optimization for FOMDPs
 - Encouraging empirical results on ICAPS 2004 IPPC
 - 2nd place in ICAPS 2006 IPPC by # problems solved

- **Future work:**
 - Goal decomposition for complex ∀ rewards
 - (∀b,c. Dest(b,c) ⇒ BIn(b,c,s)) ∨ ∃b.Bin(b,Paris,s)
 - Online search to “patch-up” decomposition error
 - E.g., additive decomposition is inadequate to solve some difficult problems in BlocksWorld
 - More expressive rewards
 - Σ_b (∀c. Dest(b,c) ⇒ BIn(b,c,s))