Approximate Linear Programming for First-order MDPs

Scott Sanner
University of Toronto

Craig Boutilier
University of Toronto
Outline

1. Background for factored MDPs (ALP and constraint gen)
2. Background for first-order MDPs (FOMDPs)
3. Approximate linear programming (ALP) for FOMDPs
 - Backup operators
 - First-order factored max (FOMax)
 - First-order constraint generation (FOCG)
4. Experimental results
5. Conclusions and future work
Factored MDPs

- Factored representation of MDPs:

Transition DBN:

CPT for $P(S_3'|S_2, S_3, S_4)$:

Reward $R(S_1, S_2, S_3)$

- Bellman backup for factored MDPs:

$$V^{t+1}(s_1, \ldots, s_n) = R(s_1, \ldots, s_n) + \gamma \max_a \sum_{s_1' \ldots s_n'} \left[\prod_{i=1}^{n} P(s_i'|\text{Parents}(s_i'), a) \right] V^t(s_1', \ldots, s_n')$$
Approx. LP for Factored MDPs

• Approximate \(V(s_1, \ldots, s_n) \) with basis functions:

\[
V(s_1, \ldots, s_n) = w_1 B_1(s_x, \ldots, s_y) + \cdots + w_k B_k(s_z, \ldots, s_w)
\]

• Define backup operator:

\[
B^a(B_i)(s_x, \ldots, s_y) = \sum_{s'_x \ldots s'_y} \left[\prod_{i=1}^{n} P(s'_i|Par(s'_i), a) \right] B_i(s'_x, \ldots, s'_y)
\]

• Solve for approx. optimal value function using LP:

Variables: \(w_1, \ldots, w_k \)

Minimize:

\[
\sum_{s_1, \ldots, s_n} \sum_{i=1}^{k} w_i B_i(s_x, \ldots, s_y)
\]

Subject to:

\[
0 \geq R(\cdots) + \gamma \sum_{i=1}^{k} w_i B^a(B_i)(\cdots) - \sum_{i=1}^{k} w_i B_i(\cdots) ; \forall a, s
\]
Constraint Generation

• Constraints are of the form:

\[0 \geq F(s_x, \ldots, s_y) + \cdots + F(s_z, \ldots, s_w); \forall a, s \]

\[\geq \max_{s_1 \ldots s_n} (F(s_x, \ldots, s_y) + \cdots + F(s_z, \ldots, s_w)); \forall a \]

• Can find max efficiently in cost network!

• So use this to iteratively solve LP:

1. Initialize LP with \(\vec{w} = \vec{0} \) and empty constraint set

2. For all \(a \in A \), find maximally violated constraint \(c_a \) using cost network max, and add \(c_a \) to LP constraint set

3. Solve LP, if solution \(\vec{w} \) not within tolerance, goto step 2
Situation Calculus

- **Deterministic actions:** $upS(e), downS(e), openS(e)$
- **Situations:** $S_0, \ do(upS(e), S_0), \ do(openS(e), do(upS(e), S_0))$
- **Fluents:** $OnE(p, e, s), PAt(p, f, s), EAt(e, f, s)$, **but not** $Dst(p, f)$
- **Successor-state axioms ($\Phi_F(\vec{x}, a, s)$) for fluents F:**
 \[
 PAt(p, f, do(a, s)) \equiv \\
 (\exists e \ EAt(e, f, s) \land OnE(p, e, s) \land Dst(p, f) \land a = openS(e)) \lor \\
 PAt(p, f, s) \land \\
 \neg(\exists e \ EAt(e, f, s) \land \neg Dst(p, f) \land a = openS(e))
 \]
- **Regression:** $Regr(F(\vec{x}, do(a, s))) = \Phi_F(\vec{x}, a, s)$
 \[
 Regr(\neg \psi) = \neg Regr(\psi), \ Regr((\exists x) \psi) = (\exists x) Regr(\psi) \\
 Regr(\psi_1 \land \psi_2) = Regr(\psi_1) \land Regr(\psi_2)
 \]
Stochastic Actions in SitCalc

• Stochastic actions decompose into deterministic Nature’s choice actions (usually success/failure):

\[
\text{prob}(\text{open}S(e), \text{open}(e), s) = 0.9
\]
\[
\text{prob}(\text{open}F(e), \text{open}(e), s) = 0.1
\]

• Use case notation to specify probability distribution:

\[
p\text{Case}(n_j(x), A(x), s) = \text{case}[\phi_1^j(x, s), p_1^j; \cdots ; \phi_n^j(x, s), p_n^j]
\]

• Restate more complex version of above example:

\[
p\text{Case}(\text{open}S(e), \text{open}(e), s) = \text{case}[\neg\text{old}(e), 0.9; \text{old}(e), 0.7]
\]
\[
p\text{Case}(\text{open}F(e), \text{open}(e), s) = \text{case}[\neg\text{old}(e), 0.1; \text{old}(e), 0.3]
\]
First-order MDPs (FOMDPs)

• Represent reward and value functions using cases:

$$rCase(s) = \text{case} [\forall p, f \text{ PAt}(p, f, s) \supset Dst(p, f), 10 ; -", 0]$$

• Define operations \(\{\oplus, \otimes, \ominus\}\) on cases:

- $\psi_1 : v_1$
- $\neg\psi_1 : v_2$

- $\psi_2 : v_3$
- $\neg\psi_2 : v_4$

\[\oplus \]

\[\psi_1 \land \psi_2 : v_1 + v_3 \]
\[\psi_1 \land \neg\psi_2 : v_1 + v_4 \]
\[\neg\psi_1 \land \psi_2 : v_2 + v_3 \]
\[\neg\psi_1 \land \neg\psi_2 : v_2 + v_4 \]

• Define first-order decision-theoretic regression:

$$FODTR(vCase(s), A(\vec{x})) = \gamma \left[\oplus_j \{ pCase(n_j(\vec{x}), s) \otimes \text{Regr}(vCase(do(n_j(\vec{x}), s))\} \right]$$
Symbolic Dynamic Programming for FOMDPS

• Define a free-variable backup operator $B^A(\vec{x})$:

\[B^A(\vec{x}) (v\text{Case}(s)) = r\text{Case}(s) \oplus \gamma \text{FODTR}(v\text{Case}(s), A(\vec{x})) \]

• Define a quantified backup operator B^A:

\[B^A(v\text{Case}(s)) = r\text{Case}(s) \oplus \gamma \exists \vec{x} \text{FODTR}(v\text{Case}(s), A(\vec{x})) \]

• Now can generalize Bellman equation for FOMDPS:

\[v\text{Case}^{t+1}(s) = \max_A \gamma \cdot B^A(v\text{Case}^{t+1}(s)) \]
Approximate LP for FOMDPs I

- **Represent $vCase(s)$ as sum of weighted basis functions:**

\[
vCase(s) = \bigoplus_{i=1}^{k} w_i \cdot bCase_i(s)
\]

- **Redefine free-variable backup operator** $B^A(\vec{x})$:

\[
B^A(\vec{x})(\bigoplus_i w_i \cdot bCase_i(s)) = rCase(s) \oplus (\bigoplus_i w_i \ FODTR(bCase_i(s), A(\vec{x})))
\]

- **Redefine quantified backup operator** B^A where F are basis functions affected by action, N are not affected:

\[
B^A(\bigoplus_i w_i \cdot bCase_i(s)) = rCase(s) \oplus (\bigoplus_{i \in N} w_i \ bCase_i(s))
\oplus \exists \vec{x} \left(\bigoplus_{i \in F} w_i \ FODTR(bCase_i(s), A(\vec{x})) \right)
\]

Not all fluents affected by action, so retains additivity!
Backup Operator Example

- Given reward and basis function case representation:
 \[r_{\text{Case}}(s) = \text{case}[\forall p, f \ PAt(p, f, s) \supset Dst(p, f) : 10 ; \neg " : 0] \]
 \[v_{\text{Case}}(s) = w_1 \cdot \text{case}[\exists p, f \ PAt(p, f, s) \wedge \neg Dst(p, f) : 1 ; \neg " : 0] \oplus \]
 \[w_2 \cdot \text{case}[\exists p, f, e \ Dst(p, f) \wedge OnE(p, f, s) \wedge EAt(e, f, s), 1 ; \neg " , 0] \]

- Apply \(B_{\text{down}}(x) \) to obtain backup with free variable:
 \[B_{\text{down}}(x)(v_{\text{Case}}(s)) = \text{case}[\forall p, f \ PAt(p, f, s) \supset Dst(p, f) : 10 ; \neg " : 0] \oplus \]
 \[\gamma w_1 \cdot \text{case}[\exists p, f \ PAt(p, f, s) \wedge \neg Dst(p, f) : 1 ; \neg " : 0] \oplus \]
 \[\gamma w_2 \cdot \text{case}[\exists p, f, e \ Dst(p, f) \wedge OnE(p, f, s) \wedge \]
 \[((EAt(e, f, s) \wedge e \neq x) \lor (EAt(e, fa(f), s) \wedge e = x)) : 1 ; \neg " : 0] \]

- Quantify and maximize over all possible actions to obtain \(B_{\text{down}} \):
 \[B_{\text{down}}(v_{\text{Case}}(s)) = \text{case}[\forall p, f \ PAt(p, f, s) \supset Dst(p, f) : 10 ; \neg " : 0] \oplus \]
 \[\gamma w_1 \cdot \text{case}[\exists p, f \ PAt(p, f, s) \wedge \neg Dst(p, f) : 1 ; \neg " : 0] \oplus \]
 \[\gamma w_2 \cdot \text{case}[\exists x, p, f, e \ Dst(p, f) \wedge OnE(p, f, s) \wedge \]
 \[((EAt(e, f, s) \wedge e \neq x) \lor (EAt(e, fa(f), s) \wedge e = x)) : 1 ; \neg " \wedge \exists x \forall p, f, e \neg Dst(p, f) \lor \neg OnE(p, f, s) \lor \]
 \[(\neg EAt(e, f, s) \lor e = x) \land \]
 \[(\neg EAt(e, fa(f), s) \lor e \neq x)) : 0] \]
Approximate LP for FOMDPs II

- Generalize approximate LP from propositional case:

 \[
 \text{Variables: } w_i \; ; \; \forall i \leq k
 \]

 \[
 \text{Minimize: } \sum_s \sum_{i=1}^k w_i \cdot \text{Case}_i(s)
 \]

 \[
 \text{Subject to: } 0 \geq B^A(\bigoplus_{i=1}^k w_i \cdot \text{Case}_i(s)) \ominus
 \]

 \[
 (\bigoplus_{i=1}^k w_i \cdot \text{Case}_i(s)) \; ; \; \forall A, s
 \]

- Objective ill-defined (infinite), need to redefine:

 \[
 \sum_s \sum_{i=1}^k w_i \cdot \text{Case}_i(s) = \sum_{i=1}^k w_i \sum_s \text{Case}_i(s)
 \]

 \[
 \sim \sum_{i=1}^k w_i \sum_{(\phi_j,t_j) \in \text{Case}_i} \frac{t_j}{|\text{Case}_i|}
 \]

Preserves intent of original approx. LP formulation!
Constraint Generation II

- Constraints are of the form:

\[0 \geq case_1(s) \oplus \cdots \oplus case_j(s); \forall A, s \]

\[\geq \max_s (case_1(s) \oplus \cdots \oplus case_j(s)); \forall A \]

- Infinite situations \(s \) so \(\max_s \) appears to be impossible.

- But only finite number of constant-valued partitions of \(s \)!

- Suggests a generalization of propositional cost network \(\max \) and constraint generation.
First-order Factored Max Algorithm

1. Convert the FOL formulae in each case partition to a set of CNF clauses.

2. For each relation $R \in R_1 \ldots R_n$ (under given ordering):

 (a) Remove all case statements in c containing R and store \oplus in tmp.

 (b) Do the following for each partition in tmp:

 - Resolve all clauses on relation R, afterward remove remaining clauses containing R (ordered resolution).
 - If a resolvent of \emptyset exists in this partition, remove this partition from tmp and continue.
 - Remove dominated partitions whose clauses are a superset of another partition with greater value.

 (c) Insert tmp back into c.

3. Return max of partitions remaining in c.
FO Constraint Gen. Algorithm

1. Initialize the weights: $w_i = 0$; $\forall i \leq k$

2. Initialize the LP constraint set: $C = \emptyset$

3. Initialize $C_{new} = \emptyset$

4. For each constraint inequality:

 (a) Calculate $\varphi = \arg \max_s \oplus_i \text{case}_i(s)$ using FOMAX.

 (b) If $eval(\varphi) \geq tol$, let c encode $0 \geq \oplus_i \text{case}_i(\varphi)$.

 (c) $C_{new} = C_{new} \cup \{c\}$

5. If $C_{new} = \emptyset$, terminate with w_i as the solution to this LP.

6. $C = C \cup C_{new}$

7. Re-solve the LP with updated constraints C, goto step 3.
FOALP Error Bounds

- Based on Schuurmans and Patrascu (2001), we can also compute error bounds that *apply equally to all domains*:

\[
\max_s vCase^*(s) \ominus vCase_{\pi_{greedy}}(\oplus_i w_i \cdot bCase_i)(s)
\leq \frac{\gamma}{1 - \gamma} \max_A \min_s \left[(\oplus_i w_i \cdot bCase_i(s)) \ominus B^A (\oplus_i w_i \cdot bCase_i(s))\right]
\]

\[
\leq \frac{\gamma}{1 - \gamma} \min_A \max_s \left[(\oplus_i w_i \cdot bCase_i(s)) \ominus B^A (\oplus_i w_i \cdot bCase_i(s))\right]
\]

- Final inequality can be efficiently computed via FOMax!
Experimental Results I

- Applied FOALP with FOCG to Elevator domain:

- Augmented with VIPs (V), Attended (A), Groups (Color)
Experimental Results II

• Elevator domain used additive reward criteria:

\[+2 : \forall p, f \ PAt(p, f, s) \supset Dst(p, f)\]
\[+2 : \forall p, f \ VIP(p) \land PAt(p, f, s) \supset Dst(p, f)\]
\[+4 : \forall p, e \ OnE(p, e, s) \land Attended(p) \supset \exists p_2 \ OnE(p_2, e, s)\]
\[+2 : \forall p, f \ Dst(p, f) \land \neg PAt(p, f, s) \supset \exists e \ On(p, e, s)\]
\[+2 : \forall p, f \ VIP(p) \land Dst(p, f) \land \neg PAt(p, f, s)\]
\[\supset \exists e \ OnE(p, e, s)\]
\[+8 : \forall p_1, p_2, g_1, g_2, e \ OnE(p_1, e, s) \land OnE(p_2, e, s)\]
\[\land p_1 \neq p_2 \land Group(p_1, g_1) \land Group(p_2, g_2) \supset g_1 = g_2\]

• Also made basis functions for each of these formulae.

• Ran FOALP using 1-6 basis functions in given order.
Experimental Results III

- Implementation based on Vampire/CPLEX (5m - 2h)
- Eval accum., discounted reward @ step 50 for 5,10,15 floor domains and arrivals distributed according to $N(0.1, 0.35)$
- Compare to myopic/heuristic policies (avg 100 trials):

<table>
<thead>
<tr>
<th>Policy</th>
<th>5 Floors</th>
<th>10 Floors</th>
<th>15 Floors</th>
<th>Max Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ No Heuristics: Always Pickup }, { No Attended Conflict (A) }</td>
<td>116 ± 28</td>
<td>106 ± 27</td>
<td>105 ± 28</td>
<td>N/A</td>
</tr>
<tr>
<td>{ Prioritize VIP (V) }, { V,A }</td>
<td>115 ± 30</td>
<td>108 ± 30</td>
<td>107 ± 28</td>
<td>N/A</td>
</tr>
<tr>
<td>{ No Group Conflict (G) }, { A,G }</td>
<td>125 ± 24</td>
<td>119 ± 21</td>
<td>114 ± 20</td>
<td>N/A</td>
</tr>
<tr>
<td>{ V,G }, { V,A,G }</td>
<td>119 ± 30</td>
<td>114 ± 24</td>
<td>115 ± 23</td>
<td>N/A</td>
</tr>
<tr>
<td>Myopic 1-step Lookahead</td>
<td>118 ± 10</td>
<td>119 ± 9</td>
<td>120 ± 13</td>
<td>N/A</td>
</tr>
<tr>
<td>Myopic 2-step Lookahead</td>
<td>123 ± 12</td>
<td>122 ± 5</td>
<td>120 ± 12</td>
<td>N/A</td>
</tr>
<tr>
<td>FOALP { 1 & 2 Basis Functions }</td>
<td>133 ± 31</td>
<td>114 ± 32</td>
<td>112 ± 23</td>
<td>177</td>
</tr>
<tr>
<td>FOALP { 3 & 4 Basis Functions }</td>
<td>148 ± 26</td>
<td>129 ± 23</td>
<td>117 ± 23</td>
<td>159</td>
</tr>
<tr>
<td>FOALP { 5 Basis Functions }</td>
<td>147 ± 26</td>
<td>126 ± 17</td>
<td>120 ± 17</td>
<td>146</td>
</tr>
<tr>
<td>FOALP { 6 Basis Functions }</td>
<td>154 ± 25</td>
<td>130 ± 19</td>
<td>125 ± 19</td>
<td>92</td>
</tr>
</tbody>
</table>
Related Work

- SDP and ReBel require *difficult FOL simplification*
- Both ALP for Rel MDP (Guestrin *et al*, 2003) and Approx. Policy Iteration (Fern *et al*, 2003) require *domain sampling*
- Approx. Policy Iteration (Fern *et al*, 2003) and Gretton and Thiebaux (2004) use *inductive methods requiring substantial simulation*
- Guestrin *et al* (2003) provide *PAC-bounds under assumption that prob. of domain falls off exponentially with size*; ... in contrast, FOALP bounds *apply equally to all domains*
Conclusions and Future Work

● Conclusions:
 – FOALP is an efficient approx. LP technique that exploits first-order structure without grounding
 – Implemented with highly optimized off-the-shelf software
 – Error bounds apply equally to all domains
 – Empirical results promising, but need more comparison

● Future work:
 – Is uniform weighting the best approach?
 – Can we dynamically reweight based on Bellman error?