ICAPS 2010 Tutorial

Planning and Scheduling for Traffic Control

Scott Sanner

Outline

- Motivation
- History
- Fundamentals
- Simulation
- Control
 - Single Intersection
 - Multiple Intersection
- Future

Motivation

More Motivation

Unreal Motivation

Traffic Impacts Everyone

• Not a problem I have to motivate

- Economically, impact of better control is in billions of \$\$\$ for large cities!
- Real & unsolved problem
 - Multidimensional state (integer / continuous)
 - Multidimensional concurrent actions
 - Stochastic
 - Building a high fidelity model is difficult

Theory vs. Practice

Max Flow (Q Theory Idealized Wave speed (w) low (q) Models major phenomena Free flow speed (0,) Good analytical techniques Jam Density (k_i) Critical Density (k,) Density (k) Flow Density Relationship **Need a stronger connection!** Practice - Every case is different - Control is principled but over-constrained Manually tuned

Integrating into the Food-chain

- Important to understand what exists theoretically

 Entire field devoted to transportation research
- And how your research can integrate practically
 - Billions of \$\$\$ in **legacy** infrastructure
 - Hardware is limited (e.g., **1970's** era)
 - But still more integrated than you think
 - Systems are **safety verified**
 - Difficult and expensive to replace
 - Figure out where to fit in for lowest cost

Tutorial Objectives

- Main tutorial objective
 - Understand major areas of traffic research
 - Understand basic theory and practice
- At the end of this tutorial you should know....
 - The fundamental diagram of traffic flow
 - How to dissipate shockwaves in your arteries
 - The importance of platoons
 - Main differences between SCOOT and SCATS

ICAPS 2010 Tutorial

Traffic Control: History

Scott Sanner

Minimalist Research Timeline

Signalized Control Timeline

SCATS

- Sydney Coordinated Adaptive Traffic
 System
- Stopline detectors
- Coordinated decentralized control

SCOOT

- Split, Cycle, & Offset Optimization Technique
- Centralized controller
 Some predictive feedforward control
 - Loops after intersection
 - No need to predict turn probabilities
 - Optimize lights before they arrive

ICAPS 2010 Tutorial

Traffic Control: Fundamentals

Scott Sanner

Fundamental Diagram of Traffic Flow

Terminology

- Signal, e.g.,
- Signal Group
- Phase
- Turns
 - Protected Turn
 - Filter Turn
 - unprotected

Terminology Illustration: Azalient Commuter

Phase Plans

- Each intersection has one or more phase plans
 - Time percentage of cycle time is phase split
 - Some absolute or variable times

ICAPS 2010 Tutorial

Traffic Control: Simulation

Scott Sanner

Types of Simulation

- Macrosimulation
 - Model aggregate properties of traffic
 - Average flow, density, velocity of cells
- Microsimulation
 - Model individual cars
 - Typically cellullar automata
- Nanosimulation
 - Model people (inside & outside of cars)

Human Factors in Microsimulation

- Microsimulation often involves driver choice:
 - Filter turns
 - Turns into flowing traffic
 - Lane merges
 - Lane changes
- Theories such as gap acceptance theory
 - Attempt to explain driver choices
 - e.g., gap size willing to accept on filter turn \propto 1/time
- See Ch. 3 of Traffic-Flow Theory, Henry Lieu

Microsimulation Turn Models

Two ways to model turns:

- 1. Turn probabilities at each intersection
- 2. Frequencies in origin-destination (OD) matrix (routes predetermined for each OD pair)

Which is better?

Car may go in loops for 1, more realistic to choose 2!

Microsimulation

- Nagle-Schreckenberg
 - Cellular Automata Model
 - nominally each cell is 7.5m in length

Simplest model that reproduces realistic traffic behavior

Image and description from: http://www.thp.uni-koeln.de/~as/Mypage/traffic.html

Car Following in Microsimulation

- Nagel-Schreckenberg
- 4 Rules
 - Acceleration: $v_i := \min(v_i + 1, v_{max})$
 - Safety Distance: $v_i := \min(v_i, d)$
 - Randomization: prob p: $v_i := v_i - 1$
 - Driving: $x_i' = x_i + v_i$

Configuration at time t:

Image and description from: http://www.thp.uni-koeln.de/~as/Mypage/traffic.html

Car Following Microsimulation

- Continuous traffic flow example:
 - Upper plot is space/time diagram
 - Lower plot is actual traffic

Image and description from: http://www.thp.uni-koeln.de/~as/Mypage/simulation.html

An Even Better Microsimulator

Traffic Jam without Bottleneck

Experimental evidence for the physical mechanism of forming a jam

Yuki Sugiyama, Minoru Fukui, Macoto Kikuchi, Katsuya Hasebe, Akihiro Nakayama, Katsuhiro Nishinari, Shin-ichi Tadaki and Satoshi Yukawa

Movie 1

http://news.sciencemag.org/sciencenow/2008/03/28-01.html

Mathematical Society of Trail

Shockwaves

• Low density traffic meets high density traffic...

Calculation of Shockwave Speed

- Law of conservation of cars:
 - "Cars can neither be created nor destroyed"
- Traffic flows in/out of shockwave at rate:

$$\begin{aligned} q_{enter} &= k_u (v_u - u) \\ q_{exit} &= k_d (v_d - u) \\ q_{exit} &= q_{exit} \Rightarrow u = \frac{k_d v_d - k_u v_u}{k_d - k_u} = \frac{q_d - q_u}{k_d - k_u} = \frac{\Delta q}{\Delta k} \end{aligned}$$

Theory of Shockwaves

Determine shockwave speed \boldsymbol{u} from diagram:

Theory of Shockwaves

Determine shockwave speed u from diagram:

Theory of Shockwaves

Determine shockwave speed u from diagram:

Macro Simulation

- Cell Transition Model
 - Model aggregate properties of traffic
 - Average flow, density, velocity over segments

- Nonlinear difference equation transition model
- Recreates shockwave phenomena

Carlos F. Daganzo, 1994. "The Cell Transmission Model: Network Traffic' <u>http://www.path.berkeley.edu/path/publications/pdf/PWP/94/PWP-94-12.pdf</u>

Simulation Software

- Quadstone Paramics (microsimulation)
 - Largest market share
 - Industrial strength
 - Expensive
- Azalient Commuter (micro- and nano-simulation)
 - Relatively recent startup
 - Intuitive 3D GUI
 - Java API for external control and evaluation
 - More economical for academia

Azalient Commuter

ICAPS 2010 Tutorial

Traffic Control: Single & Multi-intersection

Scott Sanner

Optimization Objective

- Can minimize
 - Delays,
 - Stops,
 - Fuel consumption,
 - Emission of pollutants,
 - Accidents
- Here we focus on delays in car-seconds (and implicitly stops, fuel, emissions)

Coordinated Control

- Unconstrained policy space (state \rightarrow action) is large / ∞ !
- One intersection: multidimensional state and action
 - Changing demand observations & predictions
 - Demand-based protected turns & walk signals
 - Min/max cycle, phase, & intergreen times

Coordinated Intersections: multidimensional action

- 10x10 grid = 100 intersections
- Simplest model: 2 decisions per intersection (NS or EW)
- $\Rightarrow 2^{100}$ decisions

Delay vs. Optimal Cycle Times

• Use maximum best cycle time of any phase

Optimal Cycle Times vs. Flow

• Light traffic

- Short cycle times
- Minimize delay for individual cars
- Heavy traffic
 - Long cycle times
 - Maximize steady-state flow

Single Intersection Control

• Given cycle time, what is best phase split?

Problems with Local Control

- Upstream or downstream intersections
 - Downstream queue saturated (s_i decreases)
 - In-flow of cars q_i is not uniformly distributed!

- Cars tend to "clump" into platoons
 - Due to discharge from upstream queues
- Best throughput with good platoon management
 - Careful timing needed

Multi-intersection Control

• Optimize phase offsets for platoon throughput:

Master/Slave Offset Control

- Fix timing offsets from critical intersections
 - Allows platoons to pass in dominant flow direction

Multi-intersection Control in Practice

- Split, Cycle, Offset Optimization (SCOOT, SCATS)
 - Decide on married intersections
 - Decide on intersection offsets
 - Based on dominant flow direction
 - Decide on phase splits [for end of phase!

- w.r.t. offset constraints
- Practical, but highly constrained
 - Room for more fine-grained optimization

ICAPS 2010 Tutorial

Traffic Control: Future

Scott Sanner

The Future of Traffic Control

- Priority (bus) control
 - Change objective to minimize delay in person-seconds
- Ramp metering & variable speed limits
 - Shockwave / density control
- Real-time selfish routing
- Better sensors
 Cameras
- Better road topology...

Topology and Traffic I: Braess's Paradox

- Adding network capacity can reduce flow if
 - Local route choices based on observed flow

http://en.wikipedia.org/wiki/Braess%27s paradox#How rare is Braess.27s paradox.3F

Topology and Traffic II

http://en.wikipedia.org/wiki/Roundabout_intersection#Turbo_roundabouts

Topology and Traffic III

• Magic Roundabouts

http://en.wikipedia.org/wiki/Magic Roundabout %28Swindon%29

ICAPS 2010 Tutorial

Traffic Control: Conclusions

Scott Sanner

Advice

- Room for improvement in Traffic Control
 - State-of-the-art is principled, but ad-hoc
 - Could use better planning & scheduling
- If your traffic work draws on traditional AI P&S

 Publish in ICAPS, AAAI, IJCAI, …
- If you really think you're onto something
 Go for a journal visible to traffic field...

Transportation Research is a journal-oriented field

Publish in a Journal (bold top-rated)

- Transportation Research (TR)
 - TR Part A: Policy and Practice
 - TR Part B: Methodological
 - TR Part C: Emerging Technologies
 - TR Part D: Transport and Environment
 - TR Part E: Logistics and Transportation Review
 - TR Part F: Traffic Psychology and Behaviour
- Transportation Science
- Journal of Transport Economics and Policy
- Environment and Planning
- Transportation

Find a Research Collaborator

- Transport Research Laboratory (TRL)
 - Independent consultancy (500+ employees)
- University College London (UCL)
 - Center for Transport Studies
- UC Berkeley
 - Institute of Transportation Studies
- University of Minnesota
 - Center for Transportation Studies
- University of Texas, Austin
 - Center for Transportation Research
- University of Michigan
 - Transportation Research Institute
- National ICT Australia (NICTA)
 - STaR Project

Thank you! Questions?