Symbolic Dynamic Programming for Continuous State and Action MDPs

Zahra Zamani
Scott Sanner
Cheng Fang
Continuous State and Action MDPs: e.g., Inventory Control

- **Continuous state and actions**
 - **State:** inventory quantities
 - **Action:** how much of each item to reorder

- **Inventory closed-form optimal policy?**
 - Scarf’s solution (1958) for 1D inventory

This work: optimal closed-form policies for multivariate continuous state and action MDPs

First optimal policies for multi-item inventory control on 50+ years!
Where do we start?

Previous Work on Continuous State and Discrete Actions
Hybrid State, Discrete Action MDPs

- Hybrid discrete / continuous state
 \[(\vec{b}, \vec{x}) = (b_1, \ldots, b_n, x_1, \ldots, x_m) \in \{0, 1\}^n \times \mathbb{R}^m\]

- Discrete action set \(a \in \mathcal{A}\)

- DBN factored transition model
 \[P(\vec{b'}, \vec{x'}|\vec{b}, \vec{x}, a) = \left(\prod_{i=1}^n P(b'_i|\vec{b}, \vec{x}, a) \right) \left(\prod_{j=1}^m P(x'_j|\vec{b}, \vec{b'}, \vec{x}, a) \right)\]

- Arbitrary action-dependent reward
 \[R_a(\vec{b}, \vec{x}) = x_1^2 + x_1 x_2\]
Value Iteration for Hybrid MDPs

- Value of policy in state is expected sum of rewards
- Want optimal value $V^{h,*}$ over horizons $h \in 0..H$
 - Implicitly provides optimal horizon-dependent policy
- Compute inductively via Value Iteration for $h \in 0..H$
 - Regression step:
 \[
 Q_a^{h+1}(\vec{b}, \vec{x}) = R_a(\vec{b}, \vec{x}) + \gamma \cdot \sum_{\vec{b}'} \int_{\vec{x}'} \left(\prod_{i=1}^{n} P(b'_i | \vec{b}, \vec{x}, a) \prod_{j=1}^{m} P(x'_j | \vec{b}, \vec{b}', \vec{x}, a) \right) V^h(\vec{b'}, \vec{x'}) d\vec{x'} \]
 - Maximization step:
 \[
 V_{h+1} = \max_{a \in A} Q_a^{h+1}(\vec{b}, \vec{x})
 \]
Exact Solutions to Hybrid MDPs: Domain

- **2-D Navigation**

- **State:** \((x, y) \in \mathbb{R}^2\)

- **Actions:**
 - move-x-2
 - \(x' = x + 2\)
 - \(y' = y\)
 - move-y-2
 - \(x' = x\)
 - \(y' = y + 2\)

- **Reward:**
 - \(R(x, y) = I[(x > 5) \land (x < 10) \land (y > 2) \land (y < 5)]\)

Assumptions:
1. Continuous transitions are deterministic and linear
2. Discrete transitions can be stochastic
3. Reward is **piecewise rectilinear**

Boyan & Littman NIPS-01 extended to n-D by Feng et al, UAI-04
Exact Solutions to Hybrid MDPs: Regression

- Continuous regression is just translation of “pieces”
Exact Solutions to Hybrid MDPs: Maximization

• Q-value maximization yields piecewise rectilinear solution

\[
\begin{align*}
\max_a Q(a,x,y) &= 1 \\
\text{(Orange area)} \\
\max_a Q(a,x,y) &= 0 \\
\text{(Gray area)}
\end{align*}
\]
Previous Work Limitations I

- Exact regression when transitions nonlinear?

Action move-nonlin:

- $x' = x^3 y + y^2$
- $y' = y \times \log(x^2 y)$

How to compute boundary in closed-form?
Previous Work Limitations II

• $\max(\ldots)$ when reward/value arbitrary piecewise?

\[V(x, y) = \begin{cases} 1 \\
0 \end{cases} \]

Closed-form representation for max?
A solution to previous limitations:

Symbolic Dynamic Programming (SDP)

n.b., motivated by SDP from Boutilier et al (IJCAI-01) but here continuous instead of relational
Piecewise Functions (Cases)

\[z = f(x, y) = \begin{cases}
(x > 3) \land (y \cdot x) : & x + y \\
(x \cdot 3) \lor (y > x) : & x^2 + xy^3
\end{cases} \]
Case Operations: \oplus, \otimes

$$\begin{cases}
\phi_1 : f_1
\oplus
\psi_1 : g_1 \\
\phi_2 : f_2
\oplus
\psi_2 : g_2
\end{cases} = ?$$
Case Operations: \oplus, \otimes

\[
\begin{align*}
\phi_1 : f_1 & \quad \oplus \quad \psi_1 : g_1 \\
\phi_2 : f_2 & \quad \otimes \quad \psi_2 : g_2
\end{align*}
\]

$= \begin{cases}
\phi_1 \land \psi_1 : f_1 + g_1 \\
\phi_1 \land \psi_2 : f_1 + g_2 \\
\phi_2 \land \psi_1 : f_2 + g_1 \\
\phi_2 \land \psi_2 : f_2 + g_2
\end{cases}$

- Similarly for \otimes
 - Expressions trivially closed under $+$, \times

- What about max?
 - $\text{max}(f_1, g_1)$ not pure arithmetic expression 😞
Case Operations: max

\[
\max \left(\left\{ \begin{array}{c}
\phi_1 : f_1 \\
\phi_2 : f_2
\end{array} \right\}, \left\{ \begin{array}{c}
\psi_1 : g_1 \\
\psi_2 : g_2
\end{array} \right\} \right) = ?
\]
Case Operations: max

\[
\text{max} \left(\left\{ \phi_1 : f_1, \phi_2 : f_2 \right\}, \left\{ \psi_1 : g_1, \psi_2 : g_2 \right\} \right) = \left\{ \begin{array}{l}
\phi_1 \land \psi_1 \land f_1 > g_1 : f_1 \\
\phi_1 \land \psi_1 \land f_1 \cdot g_1 : g_1 \\
\phi_1 \land \psi_2 \land f_1 > g_2 : f_1 \\
\phi_1 \land \psi_2 \land f_1 \cdot g_2 : g_2 \\
\phi_2 \land \psi_1 \land f_2 > g_1 : f_2 \\
\phi_2 \land \psi_1 \land f_2 \cdot g_1 : g_1 \\
\phi_2 \land \psi_2 \land f_2 > g_2 : f_2 \\
\phi_2 \land \psi_2 \land f_2 \cdot g_2 : g_2
\end{array} \right. \\
\text{Key point: still in case form!} \\
\text{Size blowup? We’ll get to that…}
\]
Symbolic Dynamic Programming

• In a nutshell
 – $R(\cdot), P(\cdot | \cdot)$ defined as case statements
 – Value iteration uses case operations
 • \oplus, \otimes, \max
 – If all VI operations maintain case, then
 • $V^h(\cdot)$ is in case form for all horizons h!

• Almost there: we still need to define \int_x
SDP Regression Step

- Continuous variables x_j

 $- \int_{x} \delta[x - y] f(x) dx = f(y)$ triggers symbolic substitution

- e.g., $\int_{x'_j} \delta[x'_j - g(\bar{x})] V' dx'_j = V'\{x'_j / g(\bar{x})\}$

\[
\int_{x'_1} \delta[x'_1 - (x_1^2 + 1)] \left(\begin{array}{l}
 x'_1 < 2 : x'_1 \\
 x'_1 \geq 2 : x'_1^2
\end{array} \right) dx'_1 = \left\{ \begin{array}{l}
 x_1^2 + 1 < 2 : x_1^2 + 1 \\
 x_1^2 + 1 \geq 2 : (x_1^2 + 1)^2
\end{array} \right.
\]

- If g is case: need conditional substitution

 • see Sanner et al (UAI 2011)
That’s Discrete Action SDP!

- Value Iteration for $h \in 0..H$

 - Regression step:

 $$Q_{a}^{h+1}(\vec{b}, \vec{x}) = R_a(\vec{b}, \vec{x}) + \gamma \cdot$$

 $$\sum_{\vec{b'}} \int_{\vec{x}'} \left(\prod_{i=1}^{n} P(b'_i | \vec{b}, \vec{x}, a) \prod_{j=1}^{m} P(x'_j | \vec{b}, \vec{b'}, \vec{x}, a) \right) V^h(\vec{b'}, \vec{x'}) d\vec{x'}$$

 - Maximization step:

 $$V_{h+1} = \max_{a \in A} Q_{a}^{h+1}(\vec{b}, \vec{x})$$
Continuous Actions

- Inventory control
 - Reorder based on stock, future demand
 - Action: \(a(\Delta); \Delta \in \mathbb{R}^{|a|} \)

- Need \(\max_{\Delta} \) in Bellman backup

\[
V_{h+1} = \max_{a \in A} \max_{\Delta} Q_{a}^{h+1}(b, \bar{x}, \Delta)
\]

- How to compute?
Max-out: $\max_x f(x)$

- How to compute for case?

\[
\begin{aligned}
\max_x & \quad \begin{cases}
\phi_1: & f_1 \\
\vdots: & \vdots \\
\phi_k: & f_k
\end{cases} \\
= & \max_x \max_{i=1\ldots k} \phi_i \cdot f_i \\
= & \max_{i=1\ldots k} \max_x \phi_i \cdot f_i
\end{aligned}
\]

- Just \max_x case partitions, case-max results!
Example of Partition Max-out

\[\max_x [\phi_1] \cdot f_1 \]

Consider function \(-\infty\) when constraints do not hold

\[\phi_1 := [x > -1] \land [x > y - 1] \land [x \cdot z] \land [x \cdot y + 1] \land [y > 0] \]

\[f_1 := x^2 - xy \]

\[\max_{x \in \{LB, UB, Der0\}} f_1 \]

What constraints here?
- those independent of \(x\)
- pairwise \(UB > Der0 > LB\)

But how to evaluate?

Now an unconstrained max!
Max-out Case Operation

- \(\max_x \text{case}(x) \)
 - Reduced to partition max
 \(\ldots \max \) w.r.t. critical points

 - LB, UB
 - Der0\(_x\)

 - \(\max(\text{case}(x/LB), \text{case}(x/UB), \text{case}(x/\text{Der0}_x)) \)

- Can even track substitutions through max to recover function of maximizing assignments!

See UAI 2011 paper for efficient substitutions into cases
Case \rightarrow XADD

SDP needs an efficient data structure for

- compact, minimal case representation
- efficient case operations
XADDs

• Extended ADD representation of case statements

\[
V = \left\{ \begin{array}{ll}
 x_1 + k > 100 \land x_2 + k > 100 : & 0 \\
 x_1 + k > 100 \land x_2 + k \cdot 100 : & x_2 \\
 x_1 + k \cdot 100 \land x_2 + k > 100 : & x_1 \\
 x_1 + x_2 + k > 100 \land x_1 + k \cdot 100 \land x_2 + k \cdot 100 \land x_2 > x_1 : & x_2 \\
 x_1 + x_2 + k > 100 \land x_1 + k \cdot 100 \land x_2 + k \cdot 100 \land x_2 \cdot x_1 : & x_1 \\
 x_1 + x_2 + k \cdot 100 : & x_1 + x_2 \\
 \end{array} \right.
\]
XADD Maximization

\[\max(\begin{array}{c} y > 0 \\ y \\ x > 0 \end{array} , \begin{array}{c} x > 0 \\ y \\ x \end{array}) = \begin{array}{c} y > 0 \\ x > 0 \\ x > 0 \end{array} \]

May introduce new decision tests
Maintaining XADD Orderings I

- Max may get variables out of order

Decision ordering (root→leaf)

\[
\text{max}(y > 0, x > 0) = \begin{cases}
 y > 0 & \text{if } y > 0 \\
 x > y & \text{if } x > y \\
 x > 0 & \text{if } x > 0
\end{cases}
\]

Newly introduced node is out of order!
Maintaining XADD Orderings II

• Substitution may get vars out of order

Decision ordering (root→leaf):

• $x > y$
• $y > 0$
• $x > z$

Substituted nodes are now out of order!
Correcting XADD Ordering

• Obtain *ordered* XADD from *unordered* XADD
 – key idea: binary operations maintain orderings

\[
\begin{align*}
z & \text{ is out of order} \\
\text{result will have } z \text{ in order!}
\end{align*}
\]

Inductively assume ID₁ and ID₀ are ordered.

All operands ordered, so applying \(\otimes, \oplus \) produces ordered result!
XADD Pruning

If linear, can detect with feasibility checker of LP solver & prune

Similar to Penberthy & Weld, AAAI-94
Empirical Results
Illustrative Example

\[V^0(x) \]

\[V^1(x) \]

\[V^2(x) \]

Symbolic Value (Symbolic Policy: y=…)

-96 + 20 \cdot x - x \cdot x \cdot x (y = -10)

4 (y = -x)

-96 + 20 \cdot x - x \cdot x \cdot x (y = 10)
Reservoir Control

• Value Functions \textit{(vs level in each reservoir)}

• Policy
 \textit{(time to hold drain vs. reservoir levels)
Open Problems

• Nonlinear constraints
 – Optimal solutions for restricted cases e.g., quadratic, multilinear

• Bounded (interval) approximation
 – This XADD has > 1000 nodes!
Conclusions

• Key novel insights over Sanner et al (UAI 2011):
 – Introduced continuous actions
 – Showed how to compute $\max_x f(x)$ in closed form
 – All operations remains closed for value iteration

• Need compact case, efficient operations
 – Case \rightarrow Extended ADD (XADD)
 – Extend to handle $\max_x f(x)$

• First exact, closed-form solutions to subset of n-D continuous state-action MDPs
 First exact policies for continuous variant of multivariate inventory control… unsolved for 50+ years!