
Learning Community-based Preferences via

Dirichlet Process Mixtures of Gaussian Processes

1 Approximation of the Community Utilities

The posterior of the utility (latent) functions f given all the preferences is:

p(f |c,D,θ) =
1

Z
p(D|f , c,θ)p(f |c) (1)

Since the likelihood is factorized we can take advantage of sequential approx-
imation methods such as Expectation Propagation (EP). EP approximates the
posterior p(f |c,D,θ) by a tractable distribution q(f |c). EP assumes that each
likelihood term p(xi � xj |fui , fuj , cu = c,Kx) can be approximated by a distri-
bution q(fui , f

u
j |cu = c,Kx) such that the approximated posterior q(f |c) factor-

izes over q(fui , f
u
j |cu). Then EP iteratively approximates each q(fui , f

u
j |cu) in

turn by dividing it out from the approximated posterior q(f |c) (obtaining the
cavity distribution), multiplying in the true likelihood p(xi � xj |fui , fuj , cu,Kx),
and projecting the result back to its factorized form by matching its moments
to an updated q(fui , f

u
j |cu).

This overall procedure is motivated by the aim to minimize the KL−divergence
between the true posterior p(f |D, c,K) and its approximation q(f |c).

In the preference learning case we detailed earlier, we can approximate the
posterior with a Gaussian:

q(f |c) =
∏
c

1

Z̃c

∏
u∈U

p(f |cu = c)
∏

{{i,j}|xi�xj∈Du}

q(fu
i , f

u
j |cu = c)

= N (f ;µc,Σc). (2)

where µc and Σc denote the mean and covariance of the Gaussian distribution
for the community user u belongs to corresponding to θcu . We are interested
in locally approximating each likelihood term as:

p(xi � xj |fu
i , f

u
j , cu) ≈ q(fu

i , f
u
j |cu) (3)

= Z̃u
i,jN (fu

i , f
u
j ; µ̃c

u,[i,j], Σ̃
c
u,[i,j]),

where N (fui , f
u
j ; µ̃cu,[i,j], Σ̃

c
u,[i,j]) denotes the local two-dimensional Gaussian

over [fui , f
u
j ]> with mean µ̃cu,[i,j] and covariance Σ̃c

u,[i,j] corresponding to items
i and j.
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Hence we can approximate the posterior in Equation 2 with the following
parameters:

µcu,[i,j] = Σc
u,[i,j]Σ̃

c−1
u,[i,j]µ̃

c
u,[i,j] (4)

Σc−1
u,[i,j] = (Kc−1

u,[i,j] + Σ̃c−1
u,[i,j]). (5)

This means that in order to determine the parameters of our approximate
posterior, we need to compute estimates of the local parameters µ̃c and Σ̃c. To
show these updates, we need to define additional distributions: (a) the cavity
distribution which we will denote with the backslash symbol “\” and (b) the
unnormalized marginal posterior, which we will denote with the hat symbol “ ˆ
”.

Here we only show how to compute the parameters necessary to estimate
the posterior. We iterate through the following steps:

1. Update the cavity distribution: The cavity distribution q\(f
u
i , f

u
j |cu =

c) results from multiplying the prior by all the local approximate likelihood
terms except q(fui , f

u
j |cu = c) and marginalizing all latent dimensions except

fui and fuj . This is done in practice simply by removing the current approximate
likelihood term from the approximate posterior. Hence we obtain:

q\(f
u
i , f

u
j |cu) = N (fu

i , f
u
j ;µc

\u,[i,j],Σ
c
\u,[i,j]) (6)

µc
\u,[i,j] = Σc

\u,[i,j](Σ
c
u,[i,j]

−1µc
u,[i,j] − Σ̃c−1

u,[i,j]µ̃c
u,[i,j]) (7)

Σc
\u,[i,j] = (Σc−1

u,[i,j] − Σ̃c−1

u,[i,j])
−1. (8)

2. Update the unnormalized marginal posterior: This results from
finding the unnormalized Gaussian that best approximates the product of the
cavity distribution and the exact likelihood:

q̂(fu
i , f

u
j |cu) ≈ p(xi � xj |fu

i , f
u
j |cu)q\(f

u
i , f

u
j |cu = c) (9)

q̂(fu
i , f

u
j |cu) = Ẑ−1N (fu

i , f
u
j ; µ̂c

u,[i,j], Σ̂
c

u,[i,j]) with (10)

Ẑ = Φ(ri,j) (11)

µ̂c
u,[i,j] = µc

\u,[i,j] + Σc
\u,[i,j]wu,[i,j] (12)

Σ̂
c

u,[i,j] = Σc
\u,[i,j] (13)

−Σc
\u,[i,j](wu,[i,j]w

>
u,[i,j]r̂i,jwu,[i,j]11

>)Σc
\u,[i,j],

where

wu,[i,j] =
N (ri,j)

Φ(ri,j)(α2 + tr(Σc
\u,[i,j]12))

11,

ri,j =
µc
\u,[i,j]11

α2 + tr(Σc
\u,[i,j]12)

r̂i,j =
ri,j

α2 + tr(Σc
\u,[i,j]12)

and 11 =

[
1
−1

]
, 12 =

[
1 −1
−1 1

]
. (14)
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3. Update the local factor approximation: by performing moment
matching, we can calculate the corresponding parameters in q(fui , f

u
j |cu = c)

as:

µ̃c
u,[i,j] = Σ̃c

u,[i,j](Σ̂
c−1
u,[i,j]µ̂

c
u,[i,j] − Σc−1

\u,[i,j]
µc
\u,[i,j])

Σ̃
c
u,[i,j] = (Σ̂c−1

u,[i,j] − Σc−1
\u,[i,j]

)−1. (15)

At each iteration once we have local factor parameters µ̃c and Σ̃c , we can
compute the parameters of the full posterior approximation using 3. We iterate
through all the factors and update the local approximations sequentially.

2 Inferring Community Membership

In our Gibbs sampler, given f , we now wish to sample c – the community
memberships for all users. Assuming that our blocked Gibbs sampler has already
provided us with a sample of f for some fixed c∗ sampled on the previous
iteration, we now wish to sample each new cu in turn for the current iteration
provided that we can define p(cu|c\u, f ,D, λ, α).

While we could sample f from p(f |c∗,D, λ, α) to compute p(cu|c\u, f ,D, λ, α),
this seems inefficient given that we can derive the full posterior p(f |c∗,D, λ, α)
in closed-form given our previously discussed Gaussian Process inference ma-
chinery. So instead we propose to compute Ep(f |c∗,D,λ,α)[p(cu|c\u, f ,D, λ, α)].1

Now we derive an efficiently computable closed-form for sampling cu where
we abbreviate the previous expectation to the shorter form Ef |c∗ [p(cu|c\u, f ,D, λ, α)]:

Ef |c∗ [p(cu|c\u, f ,D, λ, α)] ∝ Ef |c∗

[ ∫
p(cu, c\u︸ ︷︷ ︸

c

, f ,π|D, λ, α)dπ

]
(16)

=

∫
Ef |c∗

[ ∏
u∈U

[ ∏
(i,j)∈Du

p(xi � xj |f cui , f cuj , α)

]
︸ ︷︷ ︸

p(Du|f ,cu,α)

p(cu|π)

]
p(π|λ)dπ (17)

∝ Ef |c∗ [p(Du|f , cu, α)]

∫
p(c|π)p(π|λ)dπ︸ ︷︷ ︸

p(c|λ) ∝ p(cu|c\u,λ)

(18)

∝

∫ p(Du|f , cu, α)︸ ︷︷ ︸
Likelihood

p(f |c∗,D, λ, α)︸ ︷︷ ︸
Gaussian Process

]df

 p(cu|c\u, λ)︸ ︷︷ ︸
Dirichlet Process

(19)

In this derivation, we note the proportionalities can be introduced anytime
a rewrite induces a constant normalizer that is independent of cu since this can

1Of course, one can always sample f and avoid this expectation if preferred, but we con-
jecture that using the expectation will induce a lower-variance Gibbs sampling process with
faster convergence.
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be absorbed into the global normalizer. Since cu is discrete, the normalization
can be easily computed on demand when required.

In (16), we rewrote the conditional in terms of the full joint since the nor-
malizer required to obtain the LHS is p(c\u, f ,π|D, λ, α), which is independent
of cu.

In (17), we expanded the full joint into its definition from our graphical
model in Figure 1 of the main paper.

In (18), we removed the product for u′ ∈ U \ {u} since the likelihood of
each user u′’s preferences only depend on cu′ and hence these likelihoods are a
constant w.r.t. cu for u 6= u′. We also note that the expectation over f only
applies to terms involving f and likewise the integral over π only applies to
terms involving π.

In (19), we expanded the definition of the expectation and replaced p(c|λ)
with p(cu|c\u, λ) since the latter only has a normalizer p(c\u|λ) which is inde-
pendent of cu.

Thus in (19) we arrive at a closed-form computation that is straightforward
to compute. In the square brackets, we need only use our GP posterior f |c∗ to
compute the product of the probabilities of each of user u’s preferences xi �
xj ∈ Du. This is defined in Sections 3.2–3.4 in the paper and leaves us only
to compute p(cu = c|c\u, λ) as is standard in Gibbs sampling for Dirichlet
processes:

1. If c is an active community (∃cu ∈ c\u s.t. cu = c), then

p(cu = c|c\u, λ) =

∑
u′ 6=u I[cu′ = c]

N − 1 + λ
(20)

where N is the number of non-empty communities.

2. Else c is a new community so

p(cu = c|c\u, λ) =
λ

N − 1 + λ
(21)

Hence all quantities required to sample cu have now been defined permitting
sampling of each cu in turn to complete the community process sampling portion
of the Gibbs sampling inference for our model. And the result is intuitive: a
user u is more likely to join a community which provides a higher likelihood on
its preference data Du. Additionally, this sampling process displays the well-
known “rich-get-richer” effect of Dirichlet Processes since communities with
more members have a higher probability of being selected.

In practice, classes c ∈ C that have no assignment in c after all c have been
sampled can be “garbage collected” meaning that in practice the size of actively
maintained communities (for which Gaussian Process utilities must be learned)
can never exceed the size of |c|, i.e., the number of users |U |. While this number
may still be large, tuning the concentration λ → 0 encourages fewer (sparse)
communities with a larger number of members.

4


	Approximation of the Community Utilities
	Inferring Community Membership

