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‘ In a Nutshell

~ e Description Legies (DLs):
— Decildable fragment of first-order logic (FoL)
“ — Widely used for ontology modeling

— Caveat: Seme ontelegy-oeriented
~ applications need EOL expressiveness!

o Problem: How to reason with DL+EFOL?

I. — DL reasoners efficient, but limited

— FOL theorem provers sound and complete,
pbut Inefficient for DLs (Tsarkov et al.)

— Can we combine both approaches??
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s Background & Metivvation
— State-of-the-art for DL & FOL reasoning
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— Overview, difficulties with theory res.
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1 s Conclusions and Euture Work
g




X

~ DL/FOL Correspondence |
<

‘ — Widely used for entology modeling
~ — Decidable fragment of FOL

<~ s DL IS a concept-oriented logic
<

English FOL DL

All CEOs are Vx, CEO(X) = Employee(x) | CEO = Employee
employees

An employeeiis | Vx. Employee(x) = Person(x) | Employee = Person [

a pPersen who A gy, hasdob(X,y) A dhasJob.PaidPosition
has a job that is PaidPosition(y)
a pald pesition
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~ DL/FOL Correspondence Il
<

‘ s Buit not all eontelegical concepts or
axioms are expressible in DL:

English FOL DL

A Competent- VX. CompetentCEO (X)) = Nofii obvious due 1o
CEO is a CEO CEO(Xx) » dy. hasJiob(x,y) | use of vars:

whier has some » dz. requiresSkill(y,z)
skilll required for A hasSkill(x,z)
thelrjeh

‘ - How to augment DLs with FOL expr.?

> § ;
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‘ Extensions of DL

~ Hoern/Dataleg Extensions off DL:

— CARIN: DL+Horn Rules (Halevy and Rousset)
— AL-LOG: DLL(ALC)*Dataleg (Denini et al.)
— On Semanitic Welb:

s [ anguages: SWRL and RuleMIt

o Reasoners: DL Programs (Grosof et al.),

Production Rule Systems (Golbreich),
DL(SHIQ)+Dis). Datalegl (Moetik et al.)

<I. e FUllf FOL Extensions off DL (DL-FOL)

— On Semanitic Welb:
» Languages: FOL-SWRL, FOL-RuleML, OWL-S + SWSO
o Reasoners: Theorem Proving? Hybrid?

6
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~ Reasoning with DL-EOL

<
<

‘ e Why not use a theorem prever foer DL-FOL?

— Comparison of Vampire to FaCTl++: (Tisarkov et al.)
‘ s \/ampire toek mere time & proved fewer queries
~ — But DL reasoners alone cannet handle fulll FOL
4 — Can we combine theoerem proving and DL 1nif.?

‘- Krypton: Augment EO res. with DL inference
— Given: BE=C, A(x)V B(x), —C(y) V. D(y)
— Infer: A(X) \V/ D(X) (Why? b/c B and —C are unsat)

e Drawback ofi Krypton:
— No conditions for removing theory axioms from KB
— Important for efficiency, soundness/completeness




X

~ Generalizing to Theory Res.
|

‘ e [heory Resoelution generalized Krypton
ideas for arbitrary theories
— Any theory allowed: DL, (In)eguality, mtervals, ...
— Allowed axioms ofi theory to be removed from KB
— Gave conditions for soundness and completeness

e But no fellew-en woerk appears to address
theory resolution for an expressive DL:

— What does It take to meet soundness and
completeness conditions of theory resolution?

— This iIs the question we want to answer.

s Eirst, let’s review resoelution and the
(Ordered) Theory Resolution calculus...
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~ First-order Resolution

‘ s Binary Resolution Rule

‘I Rule: Example applicaiion:

o =MGU(L,L,) PEIVAT(X)) Riy)v=Qly)
{C,o- Llcs}u{C2 o-L,c} for Lic Ciloc G P(3) v/ R(f(x))

4 = . Factoring Rule

. Rule; Exampleapplication:
< P(Z) Vv Q(3) vV Q(Z)
P(3) v Q(3)
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~ Theory Resolution

<
<

‘ = Theory Resolution (Stickel)

— Resolve over sets of unsatisfiable subclauses, e.g.,
= Given: Avx<y Bvy<z Cvz<x
e |nfer: AvBvC

— Remove axioms of theory from KB and use theory-
Specific decision procedure to determine unsat!

s [wWo refinements ofi theory resoelution:
— Narrew: Resolve over ene literal per clause

— Partial: Can resolve with residue “conditions”
= Given: Avx<y, Bvy<z
e Infer: AvBvxc<z

- x <z Is a valid residue if {—(x< z), x <Yy, Yy <z} Is unsat
10
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‘ Ordered Theory Resolution
<

~ e Ordered TTheory Resolution (Baumgartner)

— Uses literal ordering restrictions to reduce search

‘ — Lifts from ground to non-ground case
— How to refute non-ground literals?

<
<

e Theory Refuting Substitutions
— W/ theory T, unifiers of literals L may not be unique
= Let theory T = { Vx. A(X) = B(X), Vx. A(f(g(x))) = B(x) }
I e Let literals L = { A(w), —=B(2) }
. e Then CSR(L) = { w/z}, {w/f(g(2))} }
4 — Generalize to complete set of T-refuters: CSR(LL)

— Reqguire decision procedure for Find-CSR- (L)

— If Eind-CSR+(L) correct & complete (i.e., all found)
for T then ordered theory res. Is sound & complete

11




X

~ Ordered Theory Res. Rules
|

‘ s Ordered Factoring

Rule; I (1) o Isthe mest general
“ i Syntacticiunitier for some
< {,..L};eC and

Co

(2L ismaximal in Co

s Ordered Narrew TTheory Reselution

<

I Rule: If (1) o € CSR({L,,...,L}) for
C ..C, somel; e Gy, ..., L. e C., and
4 (2L o iIsmaximal in Coi (iior

~ {Co- Loy U ... U{C, 0- Lo} i=1..n)

{‘ Note: “maximal™ is w.r.t. literal erdering
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~ Theory Res. with DILL-FOL

<
<

~ e Example DL(SHI)-FOL KB w/ Queny S(c,f(c))

. DL-FOL KB

{RC S, R(x,f(x)),
—S(c.f(c)) }

L= R(X/ (%)),
—5(c,fi(c)) } FOL

Theory

{ R(x,f(x)),
—S(c,f(c)) }

{‘ e Refutation | found... guery proved!
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‘ DL, DL’, and FOL Concepts
<

‘ o DL-FOL KB axioms sorted Into theories

e All recognizable SHI DIL concepts and
constructors sorted into DL/DL” theories:

Constructor DL D) I FOL

Atomic A A
Concepit

Top Concept

Bottem
Concept

Negation

Conjunction

Disjunction
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~ DL, DL’, and FOL Roles
<

‘ s DL roles/restrictions redundant in DL, FOL
.« R*/A* are newly gen. role/concept names

Constructor DL DL’ FOL
Atomic Role R R
Inverse Role R* V¥, R y) =R (Y, %)
Transitive R* Vx,y,z. R*(x,y)

Role A R*(y,z) = R*(x,z)
Exists A* Vx. A*(x) =
Restriction Av.R (X y) A C(Y)
Value A Vx. A*(x) =
Restriction Vy.R(x,y) = C(y)

Role Filler A* VX, A*(x)= R(x,c)
Restriction
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~ DL, DL’, and FOL Axioms
<

e DL /FOL axioms go In respective theories
e Negated guery always goees In EOL theory

Constructor DL DL FOL
Concept Inclusion

Conecept Eguivalence

Role Inclusion

Rele Equivalence

Concept Assertion

Role Assertion
FOL Axiom ©

Query o
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~ DL-FOL Theory Sorting Ex.
<

o GIven DL-FOL KB:
« I MSOD = Male 11 ZhasChild=.Doctor }

J‘ e DI Componeni:

{ R* = hasChild~, A* = 3R>*.Doctor,
MSOD = Male [i] A* }
< e DI_.° Component:
I. { MSOD = Male 17 A* }
< e FOL Component:
~ { Vx y. R*(x,y) = hasChild(y,x),
1 VX, A%(x) = dy.R*(x.,y) » Doctor(y)}
T
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~ Difficulties ofi Eind-CSRy, (L)
<

s Why have we defined a DL & DIL* theory?

Let’'s analyze theory T-refuters when [T=DL

— All Find-CSR+ (L) procedures must return same
T-refuters... just use resolution here

Example:

— Given DL-EOL Components:
DL: { 3S.VR.A = B} FOL: {83w. S(cw) A (Vz. R(w,z) = A(z)),
—B(c) }
— L= {—B(c), S(c,d), —R(d,z) }
— CSR{(L)= { {z/f(c,d)} } €— CSR.(L) for T=DL contains fn symboll

Theorem: Even If literal set L contains no
function symboels, when T=DL, CSR (L) may
conitain arbitrarily large function symbols.

19
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~ Algorithm for Eind-CSR,, (L)
<

‘ o Solution: Let T=DL" iInstead of I=DIL

T-refuters for DL’ are limited to standard MGUs
of literals L

Why?' Because source of function symbols has
pbeen removed from DL and put 1n EOL.

This suggests a Eind-CSR;, (L) algorithm:

Return MGUSs for all syntactically
complementary. literals

Return MGUSs of all dyadic literals that are
unsatisfiable w.r.t. rele hierarchy

Return MGUs of all monadic literals that are
unsatisfiable using the DL reasoner
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~ Soundness and Completeness
|

Eind-CSRy, (L) clearly correct:
— Easy to verify all substitutions lead to unsat of L

Eind-CSR, (L) completeness a little harder:

— Can consider (1) moenadic, (2) dyadic, and
(8) standard nen-theory syntactic complementary

— No interaction b/w axioms of (1), (2)

— DL handles (1), transitive clesure of role
hierarchy covers (2), and (3) IS just standard res.

Proves soundness/completeness off Theory.

Reselution using Eind-CSR, (L) for DL*+EOL

DL enly adds redundancy te DL’, thereby
retaining completeness for fullf DL+EOL
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~ Partial Narrow Theory Res.
<

‘ s Proeblem with narrew (N) OTRC: nen-binary.
resolution off k clauses Is difficult

— May have to select literals FOL Component
from all k clauses! -
. - - {Ll,lr L1,2/ I'1,3}
— Combinaterially explosive
number of resolutions {Lz 1,55}

— Must systematically try all
combos for completeness (P O

 Prefer to do binary reselution Iff pessikle...

1‘ = Suggests partial narrow (PN) OTRC
N
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~ Partial Narrow OTRC
<

~ s Partial Narrew Ordered! TTheory Resolution

Rule; Ii1(1) 6 € MGUHL,,...L.})
€y G (term:=only M GU)ifor some

Lye C,L,e C,,and (2) Lo
oo C o 1€ C, L€ G i
{€io- Lo} UGy 0- Loy UL TTLz) o ismaximal in C.o (fior i=1,2)

Creates a compound residue literal
< o IfL,F1L, Is unsat. then remoyve literal
I. o Else L, 1L, may be refuted in another res.
< s PNFOTRC Is sound and complete
e Have to give residue literals proper prec.

e [Then easy to show can simulate N-OTRC "
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~ Age-Weight Strategy
<

‘ o Problem: Lots of residue!

Introduce age-weilght strategy (Otter)

— At every step, choose a clause to resolve with all
others (Iincl. self)

— Keep two clause gueues
= A EIEO queue that erders clauses by age
s A priority queue that erders clauses by weighit

— For every a + w clauses chosen, select a from age
gueue and w frem weight gueue

o Complete fora > 0
s Assign clause welghit corresponding to
residue size — avold large residue!
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~ Ordering Heuristics
<

s Can also exploit DL taxenemy/
| structure in literal ordering:

‘ — Prefer-Shallow: Prientize literals near top
) off DL taxenoemy/

— Prefer-Deep: Prioritize literals near
peitteom off DL taxenoemy.

I. e |nturtion: Deeper In taxonomy, iewer;
and moere specific Inferences

— Prefer-Deep focuses on hardest to refute
literals first... should be more efficient

<
<
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~ Experimental Results

‘ Spatial Subset of OpenCyc KB

Reasoner #Successes Avg. Clauses Avg. Resolution
Generated Proof Length

\Vampire v8 25]25 137 10.5

Otter v3.3 25]25 6]0)<) 9.6

SPASS v2.1 25]25 4763 o4

DILL-EOL (FOILL 5125
Transiation enly)

DIL-EOL (PN-OTR; | 25/25
Prefer-Shallow)

DLE-FOL (PN-OTR; | 25/25
Prefer-Deep)

DL-FOILC 25/25
(Hyperres-OnR=>,
Prefer-Deep)
*Incomplete?
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~ Summary & Conclusions

~ e [heory resolution for the DL(SHI) + EOL:

ldentified potentiall caveats and worked around
them In the theory definition, Inf. rules, &
strategies

Proved soundness and completeness

Empirically: yielded shorter res. proof lengths than
nen-theory res.

— Promising approeach for further research

I. = Pro: Leverage efficiency of DL reasoners in
first-order Inference

e Con: Currently relies heavily on heuristics to

guide search
28
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~ Future Work

‘ e Augmeni factoring with theory implication
to avold retention of tautelogies?

“ e Use decidable res. proc. for DL? (Motik et al.)
— Wil yield complex T-refuters at no extra cost!
— Alloews full separation ofi DL, FOL KBs

— Should extend to equality and SHIQ/SHOIQ
(cardinality restrictions!)

e Ordered theory resolution w/ selection?

— Selection functiens are a powerful saturation
technigque — carefully select literals te prevenit
resolution inferences

— Retains completeness with ferward/backward
subsumption deletion — generalize to theory res.’?2



