An Ordered Theory Resolution Calculus for First-order Extensions of Description Logic

Scott Sanner (ssanner@cs. toronto. edu) Sheila McIlraith (sheila@cs. toronto. edu) University of Toronto

In a Nutshell

- Description Logics (DLs):
 - Decidable fragment of first-order logic (FOL)
 - Widely used for ontology modeling
 - Caveat: Some ontology-oriented applications need FOL expressiveness!
- Problem: How to reason with DL+FOL?
 - DL reasoners efficient, but limited
 - FOL theorem provers sound and complete, but inefficient for DLs (Tsarkov *et al.*)
 - <u>Can we combine both approaches?</u>

Outline

- Background & Motivation

 State-of-the-art for DL & FOL reasoning
- (Ordered) Theory Resolution 101
- Reasoning with DL-FOL
 - Overview, difficulties with theory res.
 - (Partial) narrow theory res. & strategies
 - Soundness and completeness
- Experimental Results (proof-of-concept)
- Conclusions and Future Work

DL/FOL Correspondence I

DL is a concept-oriented logic

 Widely used for ontology modeling
 Decidable fragment of FOL

English	FOL	DL
All CEOs are employees	$\forall x. CEO(x) \Rightarrow Employee(x)$	$CEO \sqsubseteq Employee$
An employee is a person who has a job that is a paid position	∀x. Employee(x) = Person(x) ∧ ∃y. hasJob(x,y) ∧ PaidPosition(y)	Employee = Person ⊓ ∃hasJob.PaidPosition

DL/FOL Correspondence II

 But not all ontological concepts or axioms are expressible in DL:

English	FOL	DL
A Competent- CEO is a CEO who has some skill required for their job	<pre>∀x. CompetentCEO (x) = CEO(x) ∧ ∃y. hasJob(x,y)</pre>	Not obvious due to use of vars: x

• How to augment DLs with FOL expr.?

Extensions of DL

Horn/Datalog Extensions of DL:

- CARIN: DL+Horn Rules (Halevy and Rousset)
- AL-LOG: DL(ALC)+Datalog (Donini et al.)
- On Semantic Web:
 - Languages: SWRL and RuleML
 - Reasoners: DL Programs (Grosof *et al.*), Production Rule Systems (Golbreich), DL(SHIQ)+Disj. Datalog (Motik *et al.*)

Full FOL Extensions of DL (DL-FOL)

- On Semantic Web:
 - Languages: FOL-SWRL, FOL-RuleML, OWL-S + SWSO
 - Reasoners: Theorem Proving? Hybrid?

Reasoning with DL-FOL

Why not use a theorem prover for DL-FOL?

- Comparison of Vampire to FaCT++: (Tsarkov et al.)
 - Vampire took more time & proved fewer queries
- But DL reasoners alone cannot handle full FOL
- Can we combine theorem proving and DL inf.?
- Krypton: Augment FO res. with DL inference - Given: $B \sqsubseteq C$, $A(x) \lor B(x)$, $\neg C(y) \lor D(y)$
 - Infer: $A(x) \lor D(x)$ (Why? b/c B and $\neg C$ are unsat)
- Drawback of Krypton:
 - No conditions for removing theory axioms from KB
 - Important for efficiency, soundness/completeness

Generalizing to Theory Res.

- Theory Resolution generalized Krypton ideas for arbitrary theories
 - Any theory allowed: DL, (in)equality, intervals, ...
 - Allowed axioms of theory to be removed from KB
 - Gave conditions for soundness and completeness
- But no follow-on work appears to address theory resolution for an *expressive DL*:
 - What does it take to meet soundness and completeness conditions of theory resolution?
 - This is the question we want to answer.
- First, let's review resolution and the (Ordered) Theory Resolution calculus...

First-order Resolution

Binary Resolution Rule

Rule:

Example application:

 $\frac{C_1 \dots C_2}{\{C_1 \sigma - L_1 \sigma\} \cup \{C_2 \sigma - L_2 \sigma\}} \sigma = MGU(L_1, L_2) \qquad \frac{P(3) \vee Q(f(x)) R(y) \vee \neg Q(y)}{for L_1 \subseteq C_1, L_2 \subseteq C_2}$

Factoring Rule

Rule:

$$\frac{C}{C\sigma} \sigma = MGU(L_1, ..., L_n)$$
for $\{L_1, ..., L_n\} \subseteq C$

Example application: $P(z) \lor Q(3) \lor Q(z)$ $P(3) \lor Q(3)$

Theory Resolution

Theory Resolution (Stickel)

- Resolve over sets of unsatisfiable subclauses, e.g.,
 - Given: $A \lor x \lt y, B \lor y \lt z, C \lor z \lt x$
 - Infer: $A \lor B \lor C$
- Remove axioms of theory from KB and use theoryspecific decision procedure to determine unsat!

Two refinements of theory resolution:

- Narrow: Resolve over one literal per clause
- Partial: Can resolve with residue "conditions"
 - Given: A < x < y, B < y < z
 - Infer: $A \lor B \lor x \lt z$
- x < z is a valid residue if $\{\neg(x < z), x < \gamma, \gamma < z\}$ is unsat

Ordered Theory Resolution

- Ordered Theory Resolution (Baumgartner)
 - Uses literal ordering restrictions to reduce search
 - Lifts from ground to non-ground case
 - How to refute non-ground literals?
- Theory Refuting Substitutions
 - W/ theory T, unifiers of literals L may not be unique
 - Let theory T = { $\forall x. A(x) \Rightarrow B(x), \forall x. A(f(g(x))) \Rightarrow B(x)$ }
 - Let literals $L = \{A(w), \neg B(z)\}$
 - Then CSR_T(L) = { {w/z}, {w/f(g(z))} }
 - <u>Generalize to complete set of *T-refuters*: CSR_T(L)</u>
 - Require *decision procedure* for Find-CSR_T(L)
 - If Find-CSR_T(L) correct & complete (i.e., all found) for T then ordered theory res. is sound & complete

Ordered Theory Res. Rules

Ordered Factoring

Cσ

If (1) σ is the most general syntactic unifier for some $\{L_1, \dots, L_n\} \subseteq C$, and (2) $L_1 \sigma$ is maximal in $C \sigma$

If (1) $\sigma \in CSR_{T}(\{L_{1},...,L_{n}\})$ for

Ordered Narrow Theory Resolution

Rule:

Rule:

 $\begin{array}{c} \mathcal{C}_{1} \dots \mathcal{C}_{n} \\ \hline \{\mathcal{C}_{1}\sigma - L_{1}\sigma\} \cup \dots \cup \{\mathcal{C}_{n}\sigma - L_{n}\sigma\} \\ \hline \{\mathcal{C}_{n}\sigma - L_{n}\sigma\} \\ \hline \mathcal{C}_{n}\sigma - \mathcal{L}_{n}\sigma\} \end{array} \text{ some } L_{1} \in \mathcal{C}_{1}, \dots, L_{n} \in \mathcal{C}_{n}, \text{ and} \\ \hline (2) L_{i}\sigma \text{ is maximal in } \mathcal{C}_{i}\sigma \text{ (for } i = 1 \dots n) \end{array}$

Note: "maximal" is w.r.t. literal ordering

Outline

- Background & Motivation

 State-of-the-art for DL & FOL reasoning
- (Ordered) Theory Resolution 101
- Reasoning with DL-FOL
 - Overview, difficulties with theory res.
 - (Partial) narrow theory res. & strategies
 - Soundness and completeness
- Experimental Results (proof-of-concept)
- Conclusions and Future Work

Example DL(SHI)-FOL KB w/ Query S(c,f(c))

Refutation
 <u>L</u> found... query proved!

DL, DL', and FOL Concepts

- DL-FOL KB axioms sorted into theories
- All recognizable <u>SHI DL</u> concepts and constructors sorted into DL/DL' theories:

Constructor	DL	DL'	FOL
Atomic Concept	A	A	
Top Concept	Т	Т	
Bottom Concept	<u></u>	\perp	
Negation	$\neg C$	$\neg C$	
Conjunction	C⊓D	CUD	
Disjunction	C⊔D	CLD	

DL, DL', and FOL Roles

- DL roles/restrictions redundant in DL, FOL
- R*/A* are newly gen. role/concept names

Constructor	DL	DL'	FOL
Atomic Role	R	R	
Inverse Role	R*, R*≡R	R*	$\forall x, y. \ R(x, y) \equiv R^{\star}(y, x)$
Transitive Role	R*, R*≡R⁺	R*	$\forall x, y, z. \ R^{\star}(x, y) \\ \land \ R^{\star}(y, z) \Rightarrow R^{\star}(x, z)$
Exists Restriction	A*, A*≡∃R.C	A*	$\forall x. \ A^*(x) \equiv \\ \exists y. R(x, y) \land C(y)$
Value Restriction	<i>A</i> *, <i>A</i> *≡∀R. <i>C</i>	A*	$ \forall x. \ A^{\star}(x) \equiv \\ \forall y. R(x, y) \Rightarrow C(y) $
Role Filler Restriction	A*	A*	$\forall x. \ A^*(x) \equiv R(x,c)$

DL, DL', and FOL Axioms

- DL / FOL axioms go in respective theories
- Negated query always goes in FOL theory

Constructor	DL	DL'	FOL
Concept Inclusion	C⊑D	C⊑D	
Concept Equivalence	C≡D	C≡D	
Role Inclusion	R⊑S	R⊑S	
Role Equivalence	R≡S	R≡S	
Concept Assertion			С(а)
Role Assertion			R(a,b)
FOL Axiom φ			φ
Query ϕ			φ

DL-FOL Theory Sorting Ex.

 Given DL-FOL KB: { MSOD = Male □ ∃hasChild⁻.Doctor }

- DL Component:

 { R* = hasChild⁻, A* = ∃R*.Doctor, MSOD = Male □ A* }
- **DL' Component:** { MSOD = Male $\sqcap A^*$ }

 FOL Component:

 {∀x,y. R*(x,y) ≡ hasChild(y,x), ∀x. A*(x) ≡ ∃y.R*(x,y) ∧ Doctor(y)}

Difficulties of Find-CSR_{DL}(L)

- Why have we defined a DL & DL' theory?
- Let's analyze theory T-refuters when T=DL
 - All Find-CSR_T(L) procedures must return same T-refuters... just use resolution here
- Example:
 - Given DL-FOL Components: DL: { $\exists S. \forall R.A \sqsubseteq B$ } FOL: { $\exists w. S(c,w) \land (\forall z. R(w,z) \Rightarrow A(z)), \neg B(c)$ }
 - L= { $\neg B(c), S(c,d), \neg R(d,z)$ }
 - $CSR_T(L) = \{ \{ z/f(c,d) \} \} \leftarrow CSR_T(L) \text{ for } T=DL \text{ contains fn symbol!}$
- Theorem: Even if literal set L contains no function symbols, when <u>T=DL</u>, CSR_T(L) may contain arbitrarily large function symbols.

Algorithm for Find-CSR_{DL'}(L)

- Solution: Let <u>T=DL'</u> instead of <u>T=DL</u>
 - T-refuters for DL' are limited to standard MGUs of literals L
 - Why? Because source of function symbols has been removed from DL and put in FOL.
- This suggests a Find-CSR_{DL'}(L) algorithm:
 - 1. Return MGUs for all syntactically complementary literals
 - 2. Return MGUs of all dyadic literals that are unsatisfiable w.r.t. role hierarchy
 - 3. Return MGUs of all monadic literals that are unsatisfiable using the DL reasoner

Soundness and Completeness

- Find-CSR_{DL}(L) clearly correct:
 - Easy to verify all substitutions lead to unsat of L
- Find-CSR_{DL}(L) completeness a little harder:
 - Can consider (1) monadic, (2) dyadic, and
 (3) standard non-theory syntactic complementary
 - No interaction b/w axioms of (1), (2)
 - DL handles (1), transitive closure of role hierarchy covers (2), and (3) is just standard res.
- Proves soundness/completeness of Theory Resolution using Find-CSR_{DL}(L) for DL'+FOL
- DL only adds redundancy to DL', thereby retaining completeness for full DL+FOL

Partial Narrow Theory Res.

- Problem with narrow (N) OTRC: non-binary resolution of k clauses is difficult
 - May have to select literals from all k clauses!
 - Combinatorially explosive number of resolutions
 - Must systematically try all combos for completeness

FOL Component $\{L_{1,1}, L_{1,2}, L_{1,3}\}$ $\{L_{2,1}, L_{2,2}\}$ $\{L_{k,1}, L_{k,2}, L_{k,3}\}$

- Prefer to do binary resolution if possible...
- Suggests partial narrow (PN) OTRC

Partial Narrow OTRC

Partial Narrow Ordered Theory Resolution

Rule:

 C_{1}, C_{2} $\{\mathcal{C}_{1}\sigma - \mathsf{L}_{1}\sigma\} \cup \{\mathcal{C}_{2}\sigma - \mathsf{L}_{2}\sigma\} \cup (\mathsf{L}_{1} \sqcap \mathsf{L}_{2})\sigma \quad \mathsf{L}_{1} \in \mathcal{C}_{1}, \, \mathsf{L}_{2} \in \mathcal{C}_{2}, \, \text{and} \, (2) \, \mathsf{L}_{j}\sigma\}$

If (1) $\sigma \in MGU(\{L_1, \dots, L_2\})$ (term-only MGU) for some is maximal in $C_i \sigma$ (for i=1,2)

- Creates a compound residue literal
 - If $L_1 \sqcap L_2$ is unsat. then remove literal
 - Else $L_1 \sqcap L_2$ may be refuted in another res.
- PN-OTRC is sound and complete
 - Have to give residue literals proper prec.
 - Then easy to show can simulate N-OTRC

Age-Weight Strategy

- Problem: Lots of residue!
- Introduce age-weight strategy (Otter)
 - At every step, choose a clause to resolve with all others (incl. self)
 - Keep two clause queues
 - A FIFO queue that orders clauses by age
 - A priority queue that orders clauses by weight
 - For every a + w clauses chosen, select a from age queue and w from weight queue
 - Complete for a > 0
- Assign clause weight corresponding to residue size – avoid large residue!

Ordering Heuristics

 Can also exploit DL taxonomy structure in literal ordering:

- Prefer-Shallow: Prioritize literals near top of DL taxonomy
- Prefer-Deep: Prioritize literals near bottom of DL taxonomy
- Intuition: Deeper in taxonomy, fewer and more specific inferences

- Prefer-Deep focuses on hardest to refute literals first... should be more efficient

Outline

- Background & Motivation

 State-of-the-art for DL & FOL reasoning
- (Ordered) Theory Resolution 101
- Reasoning with DL-FOL
 - Overview, difficulties with theory res.
 - (Partial) narrow theory res. & strategies
 - Soundness and completeness
- Experimental Results (proof-of-concept)
- Conclusions and Future Work

Experimental Results

Spatial Subset of OpenCyc KB

Reasoner	#Successes	Avg. Clauses Generated	Avg. Resolution Proof Length
Vampire v8	25/25	137	10.5
Otter v3.3	25/25	603	9.6
SPASS v2.1	25/25	4763	9.4
DL-FOL (FOL Translation only)	5/25		
DL-FOL (PN-OTR, Prefer-Shallow)	25/25	346	7.3
DL-FOL (PN-OTR, Prefer-Deep)	25/25	147	7.3
DL-FOL (Hyperres-OTR*, Prefer-Deep) *Incomplete?	25/25	86	2.4

Summary & Conclusions

- Theory resolution for the DL(SHI) + FOL:
 - Identified potential caveats and worked around them in the theory definition, inf. rules, & strategies
 - Proved soundness and completeness
 - Empirically: yielded shorter res. proof lengths than non-theory res.
 - Promising approach for further research
- Pro: Leverage efficiency of DL reasoners in first-order inference
- Con: Currently relies heavily on heuristics to guide search

Future Work

- Augment factoring with theory implication to avoid retention of tautologies?
- Use decidable res. proc. for DL? (Motik et al.)
 - Will yield complex T-refuters at no extra cost!
 - Allows full separation of DL, FOL KBs
 - Should extend to equality and SHIQ/SHOIQ (cardinality restrictions!)

Ordered theory resolution w/ selection?

 Selection functions are a powerful saturation technique – carefully select literals to prevent resolution inferences

- Retains completeness with forward/backward subsumption deletion – generalize to theory res.?