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In a Nutshell

• Description Logics (DLs):
– Decidable fragment of first-order logic (FOL)

– Widely used for ontology modeling
– Caveat: Some ontology-oriented 

applications need FOL expressiveness!

• Problem: How to reason with DL+FOL?
– DL reasoners efficient, but limited
– FOL theorem provers sound and complete, 

but inefficient for DLs (Tsarkov et al.)
– Can we combine both approaches?
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Outline

• Background & Motivation
– State-of-the-art for DL & FOL reasoning

• (Ordered) Theory Resolution 101
• Reasoning with DL-FOL

– Overview, difficulties with theory res.
– (Partial) narrow theory res. & strategies
– Soundness and completeness

• Experimental Results (proof-of-concept)

• Conclusions and Future Work
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• DL is a concept-oriented logic
– Widely used for ontology modeling
– Decidable fragment of FOL

DL/FOL Correspondence I

Employee ≡ Person 6
∃hasJob.PaidPosition

∀x. Employee(x) ≡ Person(x)  
∧ ∃y. hasJob(x,y) ∧

PaidPosition(y)

An employee is 
a person who 
has a job that is 
a paid position

CEO b Employee∀x. CEO(x) ⇒ Employee(x)All CEOs are 
employees

DLFOLEnglish
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• But not all ontological concepts or 
axioms are expressible in DL:

• How to augment DLs with FOL expr.?

DL/FOL Correspondence II

Not obvious due to 
use of vars:

∀x. CompetentCEO (x) ≡
CEO(x) ∧ ∃y. hasJob(x,y) 

∧ ∃z. requiresSkill(y,z)
∧ hasSkill(x,z)

A Competent-
CEO is a CEO 
who has some 
skill required for 
their job

DLFOLEnglish

x
y

z
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Extensions of DL

• Horn/Datalog Extensions of DL:
– CARIN: DL+Horn Rules (Halevy and Rousset)
– AL-LOG: DL(ALC)+Datalog (Donini et al.)
– On Semantic Web:

• Languages: SWRL and RuleML
• Reasoners: DL Programs (Grosof et al.),

Production Rule Systems (Golbreich),
DL(SHIQ)+Disj. Datalog (Motik et al.)
…

• Full FOL Extensions of DL (DL-FOL)
– On Semantic Web:

• Languages: FOL-SWRL, FOL-RuleML, OWL-S + SWSO
• Reasoners: Theorem Proving?  Hybrid?  
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Reasoning with DL-FOL

• Why not use a theorem prover for DL-FOL?
– Comparison of Vampire to FaCT++: (Tsarkov et al.)

• Vampire took more time & proved fewer queries
– But DL reasoners alone cannot handle full FOL
– Can we combine theorem proving and DL inf.?

• Krypton: Augment FO res. with DL inference
– Given: B b C, A(x) ∨ B(x), ¬C(y) ∨ D(y)
– Infer: A(x) ∨ D(x)

• Drawback of Krypton:
– No conditions for removing theory axioms from KB
– Important for efficiency, soundness/completeness

(Why? b/c B and ¬C are unsat)
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Generalizing to Theory Res.

• Theory Resolution generalized Krypton 
ideas for arbitrary theories 
– Any theory allowed: DL, (in)equality, intervals, …
– Allowed axioms of theory to be removed from KB
– Gave conditions for soundness and completeness

• But no follow-on work appears to address 
theory resolution for an expressive DL:
– What does it take to meet soundness and 

completeness conditions of theory resolution?
– This is the question we want to answer.

• First, let’s review resolution and the 
(Ordered) Theory Resolution calculus…
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• Binary Resolution Rule

• Factoring Rule

First-order Resolution

P(3)∨Q(f(x)) R(y)∨¬Q(y)

P(3) ∨ R(f(x))

Example application:Rule:

P(z) ∨ Q(3) ∨ Q(z)

P(3) ∨ Q(3)

Example application:

σ =MGU(L1,…,Ln)   
for {L1,…,Ln} ⊆ C

Rule:
C

Cσ

C1 … C2

{C1σ-L1σ}∪{C2 σ-L2σ}
σ =MGU(L1,L2)   
for L1⊆ C1,L2⊆ C2
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Theory Resolution

• Theory Resolution (Stickel)
– Resolve over sets of unsatisfiable subclauses, e.g.,

• Given: A ∨ x < y, B ∨ y < z, C ∨ z < x
• Infer: A ∨ B ∨ C

– Remove axioms of theory from KB and use theory-
specific decision procedure to determine unsat!

• Two refinements of theory resolution:
– Narrow: Resolve over one literal per clause 
– Partial: Can resolve with residue “conditions”

• Given: A ∨ x < y, B ∨ y < z
• Infer: A ∨ B ∨ x < z

– x < z is a valid residue if {¬(x < z), x < y, y < z} is unsat
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Ordered Theory Resolution

• Ordered Theory Resolution (Baumgartner)
– Uses literal ordering restrictions to reduce search
– Lifts from ground to non-ground case
– How to refute non-ground literals?

• Theory Refuting Substitutions
– W/ theory T, unifiers of literals L may not be unique

• Let theory T = { ∀x. A(x) ⇒ B(x) , ∀x. A(f(g(x))) ⇒ B(x) }
• Let literals L = { A(w), ¬B(z) }
• Then CSRT(L) = { {w/z}, {w/f(g(z))} }

– Generalize to complete set of T-refuters: CSRT(L)
– Require decision procedure for Find-CSRT(L)
– If Find-CSRT(L) correct & complete (i.e., all found) 

for T then ordered theory res. is sound & complete
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• Ordered Factoring

• Ordered Narrow Theory Resolution

Ordered Theory Res. Rules

C

Cσ

If (1) σ is the most general 
syntactic unifier for some 
{L1,…,Ln} ⊆ C, and 
(2) L1σ is maximal in Cσ

Rule:

If (1) σ ∈ CSRT({L1,…,Ln}) for 
some L1 ∈ C1, …, Ln ∈ Cn, and 
(2) Liσ is maximal in Ciσ (for 
i=1…n)

C1 … Cn

{C1σ- L1σ} ∪ … ∪ {Cn σ- Lnσ}

Rule:

Note: “maximal” is w.r.t. literal ordering
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• Example DL(SHI)-FOL KB w/ Query S(c,f(c))

Theory Res. with DL-FOL

DL / DL’ 
Theory
{R b S}

FOL 
Theory

{ R(x,f(x)),
¬S(c,f(c)) }

DL-FOL KB
{R b S, R(x,f(x)),

¬S(c,f(c)) }

L={ R(x,f(x)),
¬S(c,f(c)) }

CSRDL(L)
={x/c} ⊥

• Refutation ⊥ found… query proved!
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DL, DL’, and FOL Concepts

C7DC7DDisjunction
C6DC6DConjunction
¬C¬CNegation

ΩΩBottom 
Concept

ººTop Concept

AAAtomic 
Concept

FOLDL’DLConstructor

• DL-FOL KB axioms sorted into theories
• All recognizable SHI DL concepts and 

constructors sorted into DL/DL’ theories:
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DL, DL’, and FOL Roles

∀x. A*(x) ≡ R(x,c)A*A*Role Filler 
Restriction

∀x. A*(x) ≡
∀y.R(x,y) ⇒ C(y)

A*A*, A*≡∀R.CValue 
Restriction

∀x. A*(x) ≡
∃y.R(x,y) ∧ C(y)

A*A*, A*≡∃R.CExists 
Restriction

∀x,y,z. R*(x,y) 
∧ R*(y,z) ⇒ R*(x,z)

R*R*, R*≡R+Transitive 
Role

∀x,y. R(x,y) ≡ R*(y,x)R*R*, R*≡R—Inverse Role
RRAtomic Role

FOLDL’DLConstructor

• DL roles/restrictions redundant in DL, FOL
• R*/A* are newly gen. role/concept names
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DL, DL’, and FOL Axioms

¬ϕQuery ϕ
ϕFOL Axiom ϕ
R(a,b)Role Assertion
C(a)Concept Assertion

R≡SR≡SRole Equivalence
RbSRbSRole Inclusion
C≡DC≡DConcept Equivalence
CbDCbDConcept Inclusion

FOLDL’DLConstructor

• DL / FOL axioms go in respective theories
• Negated query always goes in FOL theory
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DL-FOL Theory Sorting Ex.

• Given DL-FOL KB:
{ MSOD ≡ Male 6 ∃hasChild—.Doctor }

• DL Component:
{ R* ≡ hasChild—, A* ≡ ∃R*.Doctor, 
MSOD ≡ Male 6 A* }

• DL’ Component:
{ MSOD ≡ Male 6 A* }

• FOL Component:
{ ∀x,y. R*(x,y) ≡ hasChild(y,x),

∀x. A*(x) ≡ ∃y.R*(x,y) ∧ Doctor(y) }
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Difficulties of Find-CSRDL(L)

• Why have we defined a DL & DL’ theory?
• Let’s analyze theory T-refuters when T=DL

– All Find-CSRT(L) procedures must return same 
T-refuters… just use resolution here

• Example: 
– Given DL-FOL Components:

DL: { ∃S.∀R.A b B } FOL: {∃w. S(c,w) ∧ (∀z. R(w,z) ⇒ A(z)), 
¬B(c) }

– L= {¬B(c), S(c,d), ¬R(d,z) }   
– CSRT(L)= { {z/f(c,d)} }

• Theorem: Even if literal set L contains no 
function symbols, when T=DL, CSRT(L) may 
contain arbitrarily large function symbols.

CSRT(L) for T=DL contains fn symbol!
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Algorithm for Find-CSRDL’(L) 

• Solution: Let T=DL’ instead of T=DL
– T-refuters for DL’ are limited to standard MGUs 

of literals L
– Why?  Because source of function symbols has 

been removed from DL and put in FOL.

• This suggests a Find-CSRDL’(L) algorithm:
1. Return MGUs for all syntactically 

complementary literals
2. Return MGUs of all dyadic literals that are 

unsatisfiable w.r.t. role hierarchy 
3. Return MGUs of all monadic literals that are 

unsatisfiable using the DL reasoner 
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Soundness and Completeness

• Find-CSRDL’(L) clearly correct:
– Easy to verify all substitutions lead to unsat of L

• Find-CSRDL’(L) completeness a little harder:
– Can consider (1) monadic, (2) dyadic, and 

(3) standard non-theory syntactic complementary
– No interaction b/w axioms of (1), (2)
– DL handles (1), transitive closure of role 

hierarchy covers (2), and (3) is just standard res.
• Proves soundness/completeness of Theory 

Resolution using Find-CSRDL’(L) for DL’+FOL
• DL only adds redundancy to DL’, thereby 

retaining completeness for full DL+FOL
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Partial Narrow Theory Res.

• Problem with narrow (N) OTRC: non-binary 
resolution of k clauses is difficult
– May have to select literals 

from all k clauses!
– Combinatorially explosive 

number of resolutions
– Must systematically try all 

combos for completeness 

• Prefer to do binary resolution if possible…

• Suggests partial narrow (PN) OTRC

FOL Component
{L1,1, L1,2, L1,3}

{L2,1, L2,2}
…

{Lk,1, Lk,2, Lk,3}
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• Partial Narrow Ordered Theory Resolution

• Creates a compound residue literal
• If L1 6 L2 is unsat. then remove literal
• Else L1 6 L2 may be refuted in another res.

• PN-OTRC is sound and complete
• Have to give residue literals proper prec.
• Then easy to show can simulate N-OTRC

Partial Narrow OTRC

If (1) σ ∈ MGU({L1,…,L2})
(term-only MGU) for some 
L1 ∈ C1, L2 ∈ C2, and (2) Liσ
is maximal in Ciσ (for i=1,2)

C1, C2

{C1σ- L1σ} ∪ {C2 σ- L2σ} ∪(L1 6 L2) σ

Rule:
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Age-Weight Strategy

• Problem: Lots of residue!
• Introduce age-weight strategy (Otter)

– At every step, choose a clause to resolve with all 
others (incl. self)

– Keep two clause queues
• A FIFO queue that orders clauses by age
• A priority queue that orders clauses by weight

– For every a + w clauses chosen, select a from age 
queue and w from weight queue

• Complete for a > 0

• Assign clause weight corresponding to 
residue size – avoid large residue!



25

Ordering Heuristics

• Can also exploit DL taxonomy 
structure in literal ordering:
– Prefer-Shallow: Prioritize literals near top 

of DL taxonomy
– Prefer-Deep: Prioritize literals near 

bottom of DL taxonomy

• Intuition: Deeper in taxonomy, fewer 
and more specific inferences
– Prefer-Deep focuses on hardest to refute 

literals first… should be more efficient
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Experimental Results

• Spatial Subset of OpenCyc KB

2.48625/25DL-FOL 
(Hyperres-OTR*, 
Prefer-Deep)
*Incomplete?

7.314725/25DL-FOL (PN-OTR, 
Prefer-Deep)

7.334625/25DL-FOL (PN-OTR, 
Prefer-Shallow)

----5/25DL-FOL (FOL 
Translation only)

9.4476325/25SPASS v2.1

9.660325/25Otter v3.3

10.513725/25Vampire v8

Avg. Resolution 
Proof Length

Avg. Clauses 
Generated

#SuccessesReasoner
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Summary & Conclusions

• Theory resolution for the DL(SHI) + FOL:
– Identified potential caveats and worked around 

them in the theory definition, inf. rules, & 
strategies

– Proved soundness and completeness
– Empirically: yielded shorter res. proof lengths than 

non-theory res.
– Promising approach for further research

• Pro: Leverage efficiency of DL reasoners in 
first-order inference

• Con: Currently relies heavily on heuristics to 
guide search
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Future Work

• Augment factoring with theory implication 
to avoid retention of tautologies?

• Use decidable res. proc. for DL? (Motik et al.)
– Will yield complex T-refuters at no extra cost!
– Allows full separation of DL, FOL KBs
– Should extend to equality and SHIQ/SHOIQ 

(cardinality restrictions!)

• Ordered theory resolution w/ selection?
– Selection functions are a powerful saturation 

technique – carefully select literals to prevent 
resolution inferences

– Retains completeness with forward/backward 
subsumption deletion – generalize to theory res.?


