Online Feature Discovery
in Relational Reinforcement Learning

Scott Sanner
University of Toronto
Overview

1. **Use well-known techniques:**
 - Monte Carlo RL (i.e., $TD(\lambda = 1)$)
 - Naïve Bayes classifier
 - Locally-weighted regression
 - Apriori data mining algorithm

2. **Combine them in a novel way that...**
 - Is space/time efficient for large relational state spaces
 - Achieves encouraging empirical results in game domains
 (TicTacToe, Othello, Backgammon)
RRL: Advantages and Challenges

- RRL is a natural representation/learning paradigm:
 - Describe state using relational features: \(\{At(O, 1, 1), At(X, 2, 3)\} \)
 - Admits compact descriptions:
 * Closed-world assumption (CWA): If not inferred true, assume false
 * Quantifiers/Connectives: \(\exists p, r. At(p, r, 1) \land At(p, r, 2) \land At(p, r, 3) \)

- But, benefits are not without drawbacks:
 - Very large ground relational state space:
 40 ground atoms = \(2^{40} \) states
 - Need robust learning for sparse data:
 few samples per state \(\implies \) high variance
 - Must focus on time/space efficient approximations
RRL: Addressing these Challenges

- General solution difficult, focus on restricted setting:
 - Goal-oriented tasks (e.g., planning, games w/ stationary opp.)
 - Indefinite horizon, undiscounted MDP domains
 - Single terminal reward of success/failure

- Value function \Rightarrow probability of success

- Allows us to address previous RRL challenges:
 - Very large state spaces: Naïve Bayes repr. of value function
 - Robust learning: Augment with high-freq. joint features (Apriori alg.)
 - Efficient approximation: Use ML estimate of value fun. (closed-form)
Theoretic Preliminaries

- Under a fixed policy π, MDP reduces to a Markov chain:

- Undiscounted, only non-zero reward is on success trans.

- Value function is prob. of reaching success in ∞ limit:

$$V_\pi(s) = E_\pi[\sum_{t=0}^{\infty} r^t | S^{t=0} = s] = P(S^{t=\infty} = success | S^{t=0} = s, \pi)$$
Relational State Representation

• \(\{R_1, \ldots, R_i\} \): Set of relations used to describe a state

• \(\{A_1, \ldots, A_j\} \): Set of relation attribute types
 – **TicTacToe**: \(At(Mark, Pos, Pos) \); \(Mark = \{X, O\}, Pos = \{1, 2, 3\} \)
 – **18 ground atoms**: \(\{At(X, 1, 1), At(X, 1, 2), \ldots, At(O, 3, 2), At(O, 3, 3)\} \)
 – \(2^{18} \) possible truth assignments = 262,144 states

• \(F = \{F_1, \ldots, F_n\} \): Ground rel. atoms (boolean features)

• \(f = \{f_1, \ldots, f_p, \overline{f}_{p+1}, \ldots, \overline{f}_n\} \): Feature truth assignment
 – Order true/positive features first, false/negative features last
 – Represent state \(f \) as \(\{f_1, \ldots, f_p\} \), make CWA
 – **Space efficient** because typically \(p \ll n \)
Value Function Representation

- Computational and representational issues aside:
 - Let W be a boolean variable denoting eventual win/success
 - Optimal value function under a fixed policy is $P(W|F_1,\ldots,F_n)$
 - Learning = direct estimate of $P(W|F_1,\ldots,F_n)$ from trial data

- Unfortunately, $P(W|F_1,\ldots,F_n)$ is intractably large... so approximate it with a naïve Bayes net, e.g.,

- ML parameters are just observed frequencies
Efficient Policy Evaluation

- Still many features, need to eval policy efficiently:
 - Focus on policy evaluation via after-state analysis
 - Policy eval. is just choice of highest valued after-state
 - This is state that maximizes log winning odds \(\log\left(\frac{P(w|f)}{P(w|\bar{f})}\right) \)

\[
\log \frac{P(w|f)}{P(w|\bar{f})} = \log \frac{P(w)}{P(\bar{w})} + \sum_{i=1}^{p} \log \frac{P(f_i|w)}{P(f_i|\bar{w})} + \sum_{i=p+1}^{n} \log \frac{P(f_i|w)}{P(f_i|\bar{w})}
\]

Let \(C = \log \frac{P(w)}{P(\bar{w})} + \sum_{i=1}^{n} \log \frac{P(f_i|w)}{P(f_i|\bar{w})} \) (common to all states)

\[
\log \frac{P(w|f)}{P(w|\bar{f})} = C + \sum_{i=1}^{p} \left(\log \frac{P(f_i|w)}{P(f_i|\bar{w})} - \log \frac{P(f_i|w)}{P(f_i|\bar{w})} \right)
\]

- Find best after-state by looking at only positive features!
Exploiting Relational Structure

- **Example:** Predicting feature odds given nearby features...

- **Idea:** Locally weighted regression in n-D feature attr. space
 - Take Euclidean metric of user-defined attribute distances
 - Compute odds of target feat. as weighted combination of “nearby” feats.

- **Advantages:** Generalization, reduced storage, fast lookup
Training Example

- On each trial, apply policy π for current value function:

<table>
<thead>
<tr>
<th>Before Move</th>
<th>State Description</th>
<th>After Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1, Turn X</td>
<td>${}$</td>
<td>X</td>
</tr>
<tr>
<td>State 2, Turn O</td>
<td>${\text{At}(X,2,2)}$</td>
<td>X</td>
</tr>
<tr>
<td>State 6, Turn O</td>
<td>${\text{At}(X,2,2), \text{At}(O,1,3), \text{At}(X,3,3), \text{At}(O,1,1), \text{At}(X,1,2)}$</td>
<td>O</td>
</tr>
<tr>
<td>State 7, Turn X</td>
<td>${\text{At}(X,2,2), \text{At}(O,1,3), \text{At}(X,3,3), \text{At}(O,1,1), \text{At}(X,1,2), \text{At}(O,3,1)}$</td>
<td>O</td>
</tr>
</tbody>
</table>

Outcome: X Wins, O Loses

- End of trial: Update win/loss counts for $P(W)$, $P(F_i|W)$ CPTs
Learning Structure

- Linear expressiveness of naïve Bayes often inadequate
- Join nodes to learn nonlinear structure, e.g.,

\[\Delta l^*(\theta | D) = C + M \cdot I(F_a, F_b | W) \quad (M \text{ is number of samples}) \]
- But for \(n \) features, must keep track of \(O(n^2) \) calculations

- Max-likelihood join maximizes mutual cond. entropy:

- Instead, use Apriori to mine features w/ freq. > threshold
 - Efficient; maximizes ~VOI; frequent joint features \(\implies \) low variance
Empirical Results

- Evaluation of Described RRL Approach:
 - **Domains**: TicTacToe (18 gf), Othello (13,200), Backgammon (786,816)
 - **Opponent**: TicTacToe (opt.), Othello (interm.), Backgammon (pubeval)
 - **Structure Learning**: None; Apriori w/ 2 freq. thresh. → cap at 2000
 - **Training**: 5000 games vs. opp. in < 20 min, < 3Mb on 1 GhZ PIII

<table>
<thead>
<tr>
<th>Structure Learning</th>
<th>Win/Draw %</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>28.3 %</td>
<td>Tic-Tac-Toe</td>
</tr>
<tr>
<td>Apriori (Freq=1)</td>
<td>100.0 %</td>
<td></td>
</tr>
<tr>
<td>Apriori (Freq=50)</td>
<td>45.8 %</td>
<td></td>
</tr>
</tbody>
</table>

None	61.3 %	Othello
Apriori (Freq=1)	49.4 %	
Apriori (Freq=50)	99.1 %	

None	46.5 %	Backgammon
Apriori (Freq=1)	45.4 %	
Apriori (Freq=50)	51.5 %	
Future Work I

- **Better feature discovery:**
 - Directly mine frequent and informative features (e.g., LargeBayes)

- **Avoiding local minima:**
 - Only exploration due to “optimistic” priors, better explore/exploit?
 - Policy constantly changing \(\rightarrow\) value shift; use param decay?
 - Switch to a more direct policy gradient method?

- **POMDPs/PSRs:**
 - Relational representation often an abstraction \(\rightarrow\) state aliasing
 - Features may just be observations on actual state!
 - Optimal evaluation may require representation of history or future
Future Work II

- **Relational Bayes net structure learning:**
 - Probabilistic Relational Models: Retain efficient policy evaluation?

- **First-order feature discovery:**
 - Nodes can be general first-order formulae:

 - How to generate structure: (n)FOIL? What about feature overlap?
 - MRF or Factor Graph? How to est. parameters efficiently? Δ-rule?