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Abstract

We examine linear regression problems where some fea-
tures may only be observable at a cost (e.g., in medical
domains where features may correspond to diagnostic tests
that take time and costs money). This can be important in
the context of data mining, in order to obtain the best pre-
dictions from the data on a limited cost budget. We define
a parsimonious linear regression objective criterion that
jointly minimizes prediction error and feature cost. We mod-
ify least angle regression algorithms commonly used for
sparse linear regression to produce the ParLiR algorithm,
which not only provides an efficient and parsimonious so-
lution as we demonstrate empirically, but it also provides
formal guarantees that we prove theoretically.

1 Introduction

Linear regression models are some of the most widely
used and well-studied models for regression. However,
standard linear regression models often assume that all fea-
tures can be evaluated without difficulty, while in many real-
world regression scenarios this assumption does not hold.
For example, in a medical domain where the objective is to
regress the risk-level of a patient for some condition (quan-
tified as a real-valued variable), features used in linear re-
gression may correspond to the results of various diagnostic
tests. Yet clearly, it may be impossible in a medical setting
to evaluate all possible tests. A related problem may occur
in a financial setting where a regression model of a stock
price or the risk-level of a potential debtor often requires
evaluating features corresponding to information-gathering
actions that incur time and monetary costs. Clearly there is
no benefit in reducing error by using more features if the
financial advantage gained by obtaining more accurate pre-
dictions does not outweigh the financial cost of doing so.

These and related problems associated with the difficulty
of evaluating features in a regression model can be formal-
ized more precisely with the notion of feature costs. Assum-

ing that prediction error and feature costs can be measured
in commensurable units, we can reformulate our linear re-
gression problem w.r.t. a parsimonious1 objective criterion
which jointly minimizes both prediction error and feature
cost.

We examine efficient approximations to the parsimo-
nious linear regression optimization problem. We are able
to provide a modified least angle regression approach for
parsimonious linear regression called ParLiR that encour-
ages sparsity in the feature weights in a manner proportional
to the feature cost. ParLiR runs in a time linear in the num-
ber of features and the amount of data, thus producing a
tractable algorithm in contrast to direct optimization of the
original objective criterion. As an empirical validation, we
demonstrate the behavior of ParLiR on a number of UCI
data-sets and show that ParLiR provides an efficient and
parsimonious solution in comparison to other cost-aware
linear regression approaches. We prove the important re-
sult that ParLiR ensures that every feature used in the re-
gression reduces the error by at least its cost, thus proving
parsimony. Additionally, in the special case where all fea-
tures are orthogonal, we provide an outline for a proof that
ParLiR does obtain the optimal solution.

2 Related Work

Turney [8] provides an overview of ways that cost-
sensitivity may be introduced into machine learning as well
as a comprehensive bibliographical reference to historical
work in this area. With respect to the published literature,
there are two main categories in which this work is concen-
trated:

• Prediction error costs: Here it is assumed that differ-
ent prediction errors incur different penalties (see [2,
4, 6] for a sampling of recent work).

• Feature evaluation costs: This is the fundamental
problem that we address. Historically, there has been

1Def. Parsimonious (adjective): Exhibiting the quality of being careful
with money or resources.



work on the classification side of this problem [7].
Such approaches do not easily extend to the regression
of continuously varying functions on a continuous in-
put space. For such problems, linear regression models
are commonly used although parsimonious extensions
to deal with feature costs do not admit the simple mod-
ifications used for classification. As such, parsimo-
nious extensions of linear regression to deal with fea-
ture costs as proposed in this paper comprise a novel
contribution to machine learning.

Finally, we note that while we do make use of least angle
regression methods related to sparse linear regression meth-
ods such as lasso [5], these algorithms by themselves do
not guarantee parsimony w.r.t. feature costs. Furthermore,
while the original least angle regression approaches solve
a constrained quadratic programming problem, the corre-
sponding parsimonious linear regression problem results in
a constrained mixed 0-1 integer quadratic program formu-
lation. As such, it is not clear that modified least angle re-
gression techniques necessarily produce a low-cost solution
to the parsimonious linear regression problem, nor one that
closely approximates the global optimum. Thus, it is cru-
cial to prove such properties for these modified algorithms
in the parsimonious linear regression setting as we do in
Section 5.

3 Parsimonious Linear Regression

We begin with the problem formulation for parsimonious
linear regression and then proceed to specify the ParLiR al-
gorithm that efficiently approximates its solution.

3.1 Problem Formulation

Our problem is identical to the linear regression setting
with the added modification that features are costly. For-
mally, we are given the following information:

• A set of input features (i.e., variables) X =
{f1, . . . , fn} where each feature variable fi ∈ R.

• A finite cost ci associated with each input feature fi.

• A target response variable y ∈ R.

• A set of m data samples D = {〈X , y〉} where we
denote the particular assignment for data sample j
(1 ≤ j ≤ m) in expanded form 〈f1j , . . . , fnj , yj〉.

• By affine transformations for each feature fi, we as-
sume the feature value vector ~fi = 〈fi1, . . . , fim〉 is
standardized to mean 0 and unit length.

Our objective is to find a linear regressor ŷ(X , ~w) w.r.t.
data D and weight vector ~w = 〈w0, . . . wn〉 (~w ∈ Rn+1) in
the following linear form:

ŷ(X , ~w) = w0 +
∑
fi∈X

wifi (1)

If a weight wi = 0, then we say that the feature fi has not
been selected. Formally, we define the subset of selected
features for our regressor ŷ with weights ~w asF~w ⊂ X such
that F~w = {fi ∈ X |wi 6= 0}. Then we can easily define
the cost C(~w) of a particular selection of linear regression
weights ~w using the following weighted L0 norm:

C(~w) =
∑
fi∈F~w

ci. (2)

We also define the usual average squared error function
E(~w,D) for weights ~w as the following

E(~w,D) =
1
m

∑
〈X ,y〉∈D

(ŷ(X , ~w)− y)2 . (3)

Assuming that prediction error and feature costs can be
measured in commensurable units, we now reformulate our
linear regression problem w.r.t. a parsimonious objective
criterion — one that jointly minimizes both prediction er-
ror and feature cost.

Definition 3.1 (Parsimonious Linear Regression). Given in-
put feature variables X , target response variable y, and a
target linear form ŷ(X , ~w) using weight variables ~w, we
define the parsimonious linear regression solution ~w to be a
global optima of the following unconstrained optimization
problem:

Variables: ~w
Minimize: C(~w) + E(~w,D)

Unfortunately, in this form, the above optimization ob-
jective is not convex in ~w – while the sum of squared er-
ror E(~w,D) is well-known to be a convex function in ~w
(i.e., it is the same error function used for ordinary least
squares regression), C(~w,D) has step discontinuities where
any wi = 0 and is therefore non-convex in ~w, making the
overall objective non-convex. Thus, in contrast to the case
of ordinary least squares linear regression, we cannot apply
unconstrained convex optimization techniques to directly
solve this parsimonious linear regression problem. To find
an optimal solution, one has to check the full power-set of
the set of features, making the problem NP-complete.

Although the same approach is used in other work [1],
one might object that it is unusual to consider squared er-
ror and cost in the same units. For example, if non-squared
error and cost are both measured in the same units, then



squared error cannot be directly traded off against non-
squared cost. But this is not a problem; if the non-squared
error and cost are in the same units then the squared cost
may be used as the feature cost ci so that the trade-off can
be expressed in the same units. Because this is just a change
of constants ci, it requires no change to the algorithms.

3.2 Efficient Approximation

Due to their sparsity properties, which are useful for per-
forming implicit feature selection, we focus on a class of
linear regression techniques collectively referred to as least-
angle regression (LAR) methods, such as lasso and forward
stage-wise regression [3].

One of the key ideas behind least angle regression is that
one may perform regression by incremental line search in
single feature dimensions, specifically ordering feature di-
mensions by the amount they correlate with the regression
error of the current solution. Furthermore, doing so often
yields sparse solutions when there is a restrictive L1 con-
straint on the total sum of the weights. Least angle regres-
sion methods manage to closely approximate the optimal
regression solutions to their respective problems formulated
as quadratic programs [3].

For parsimonious linear regression, this single dimen-
sional line search is an attractive approach because we can
reprioritize the order in which features are selected for up-
dating according to their correlation with the error and their
associated feature cost. Even though the parsimonious lin-
ear regression optimization problem is quite different from
the lasso objective, algorithmically, only minor modifica-
tions are required to approximate the solution to parsimo-
nious linear regression. In fact, all that is needed is the ad-
justment of the score used to select the next appropriate fea-
ture with respect to the costs of the features (See step 6(a)
of the algorithm below). We present a modified least an-
gle regression algorithm called ParLiR to approximate the
solution of parsimonious linear regression in Figure 1.

However, it is not immediately clear that modified least
angle regression techniques will still produce a low-cost
solution to the parsimonious linear regression problem.
Therefore, we experimentally evaluate efficiency, approx-
imation error and parsimony in Section 4 and prove formal
theoretical guarantees on parsimony and a special case of
optimality in Section 5.

3.3 Time complexity of ParLiR

Finding the optimal cost-sensitive linear function for the
given data requires examining every subset of features, as
the possible inclusion of a feature has a non-monotonic,
non-convex influence on the total score. This implies that

2sgn(·) is +1 if its argument is non-negative and −1 otherwise.

Parsimonious Linear Regression Approximation
(ParLiR)

1. Input: a set D of m data samples represented as
n m-length feature vectors ~f1, . . . , ~fn and an m-
length target vector ~y.

2. Initialize the step-size η to some small positive
value.

3. Initialize the current selected feature set F = ∅.

4. Initialize weight vector ~w = 〈w0, w1, . . . , wn〉
with w0 equal to the average value of ~y (this will
give the residuals a mean of 0), and wi>0 = 0.

5. Define the residual vector ~r~w for the current
weight settings as the following:

~r~w = ~y −

[
w0 +

n∑
i=1

wi~fi

]

6. Repeat the following:

(a) Calculate the cost-penalized correlation
score for all fi ∈ F :

scorei =
1
m

∣∣∣~fi · ~r~w∣∣∣− I[fi ∈ F ]
√
ci

(b) Find the feature fi with the highest
scorei ≥ η; if no such feature found then
halt and Output: ~w.

(c) If fi /∈ F , let F = F ∪ {fi} and let wi =
wi + sgn(~fi · ~r~w)

√
ci. (see footnote2)

(d) Else let wi = wi + sgn(~fi · ~r~w)η.

Figure 1. The ParLiR Algorithm

finding the exact solution is NP-complete, and a straight-
forward algorithm to find it (considering every subset and
calculating its score on the training data) has time complex-
ity O(m#F2#F ). If we look at the time complexity of
ParLiR, it can be seen that all data has to be checked for
every update. Each such a check takes time of the order of
O(m#F ). This is repeated for every selected feature and
every weight update. The number of weight updates for a
given feature is of the order of O( 1

η ), and the number of
selected features is equal to #F . The total time complexity
of ParLiR is then O(#Fm#F

η ).



3.4 Dealing with Missing Values

In the proposed setting, it is important to differentiate be-
tween two possible versions of missing values. Since fea-
tures are costly, it is possible the feature is missing because
it wasn’t requested. Because the decision not to pay for a
feature when collecting training data should not influence
its correlation with the target value, we do not count exam-
ples of this first case when computing the score of a feature
as described in step 6(a) in the algorithm above. I.e., m is
set to the number of training examples minus the number of
examples where we decided not to pay for the feature.

However, it is also possible the feature was requested
and payed for but the associated test failed and we didn’t
receive the feature value, for example when an experiment
failed. In this case, we set the feature value to 0 (as stated,
we assume all features to have a 0 mean) and do count the
example when computing the correlation. If a feature does
not give any result with a probability p, the correlation will
be multiplied by a factor (1 − p). This can be regarded as
an increase of the cost of the feature by a factor 1

1−p , i.e. a
feature likely to fail is, in a way, more costly.

4 Experiments

We performed experiments on several different data-sets
from the UCI repository (also available on Weka [9]). We
report the results obtained for the ‘Pima-Indians diabetes’,
‘Boston Housing’ and ‘Bodyfat’ data-sets. Results for the
other datasets were comparable but less illustrative. The
first of these is a classification data-set, the other are regres-
sion tasks. For the regression data sets, there are no feature
costs given but we decided to to use artificial costs based on
our own intuition, i.e., medical experiments are more costly
than information such as age and gender for example.

To show the behavior of the different algorithms for
varying relative costs, we multiplied the basic cost vectors
by a varying factor.

All reported results in this section are averages of 10 rep-
etitions of 10-fold cross-validation using a random parti-
tioning of the data for each repetition.

The plots given in this section all show the C(~w) +
E(~w,D) measure for varying cost-factors for both the train-
ing data and test-data. We compare our algorithm with
another cost-sensitive linear regression algorithm, which is
based on greedy forward-selection. Here the set of features
is found by taking the highest scoring feature, projecting
the target vector to the hyperplane orthogonal to the feature
vector, and repeating until no feature has a positive score.
The subset of features selected in this way is then used in
normal linear least-squares regression.
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Figure 2. The Pima-Indians dataset.
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Figure 3. The Housing dataset.

4.1 Pima-indians Diabetes dataset

This dataset contains user-defined costs (reflecting the
actual price of medical tests according to the Ontario Health
Insurance Program). The dataset has eight numerical fea-
tures. The target is either 0 or 1, indicating whether the
patient tested negative or positive for diabetes.3 Most of the
costs are equal to 1.0, except for two tests (glucose test and
insulin test). The results of our algorithm can be seen in Fig-
ure 2. It is clear that both algorithms perform almost equally
well, both on training data and test-data, with a slight ad-
vantage for ParLiR on the training data. The behavior is
characteristic: for low costs, all features are used. As costs
increase, only a few (cheap) features are used. From a given
point (cost-factor = 0.02) the algorithm prefers the predic-
tion error cost to the cost of the features.

3We note that this dataset was meant for classification. As we had no
regression dataset with user-defined costs, the result of normal regression
is given as a proof of concept. For a classification task it is advisable not
to use basic linear regression, but instead to use logistic regression.
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Figure 4. The Bodyfat dataset.

4.2 Housing dataset

The housing dataset contains information about differ-
ent suburbs of Boston, such as crime rate, distance to em-
ployment centers, number of rooms per dwelling, . . . The
target function is the average housing value. For this set
we defined costs according to the confidentiality of the in-
formation: the amount of tax paid is more costly than the
teacher-to-pupil ratio, for example.

The results can be seen in Figure 3. For this set it is more
clear that ParLiR performs better on the training data. The
behavior for the test data shows that the either algorithm
might be better for specific values of the cost factor. The
critical point where all information is too expensive is not
reached in this figure.

4.3 Bodyfat dataset

The bodyfat dataset is used for predicting the percentage
of bodyfat using different measures of the body. We gave
the attribute ‘age’ a cost equal to 0, the measuring of density
from underwater weighing a cost of 1.0 (indicating the more
elaborate procedure needed) and all other attributes a cost of
0.5. From Figure 4 we can see that for this dataset there is a
large difference between the two algorithms. ParLiR clearly
outperforms the greedy selection algorithm on the training
data, however on the test data it is the other way round. This
might imply that the dataset gives rise to overfitting when
linear regression is used.

4.4 Summary of experiments

From all experiments it was clear that ParLiR performs
very well on the training data. The proof of parsimonity
as given in section 5 explains this: for the training data,
every feature used by ParLiR will pay back at least its cost

in the training set. For the greedy selection algorithm no
such property holds.

The greedy selection algorithm outperformed ParLiR on
the test data in some experiments, however. For most of the
datasets, this might be due to them not being well-suited
for linear regression, leading to bad fitting. Comparing to
the optimal solution (based on the training data) was not
feasible as such an algorithm takes time exponential in the
number of features.

5 Theoretical Results

5.1 Proof of Parsimony

Theorem 5.1 (Parsimony of ParLiR). Every feature which
is introduced in step 6c of the ParLiR algorithm immedi-
ately reduces the mean squared error of the prediction by
the value of its cost. Furthermore, at every weight update
in step 6d, the mean squared error is reduced by η2.

r

r’

sqrt(c)

r_m

f . r - sqrt(c)

f

Figure 5. Geometric representation for clarifi-
cation of the proof

Proof. For the proof we refer to figure 5.1 for clarification.
Important to note is that the correlation between two vec-
tors, ~fi · ~r (when ‖~fi‖2 = 1) is equal to the length of the
orthogonal projection of ~r on ~fi. In the figure we use ~r, ~r′
and ~rm to respectively indicate the current residual at the
moment the feature fi is selected, the residual after wi has
been updated by

√
ci and the minimal residual we can ob-

tain by only changing the weight of feature fi, which we get
for wi equal to the correlation: the minimal distance from
the target to the feature vector is equal to the orthogonal
distance. We give the proof for ~fi · ~r > 0, the case where
~fi · ~r < 0 is completely analogous up to some changes in
sign.

We divide the residuals by the number of samples in the
batch, to indicate how much the error per sample relates to
the cost spent on each sample.

In the theorem we will use the average correlation of all
data samples,

~fi·~r
m , instead of the normal correlation, as this



gives an indication how the average error over all samples
will decrease.

We will first prove the statement about step 6c. Note that,
as the feature is added, step 6b of the algorithm tells us that
|~fi·~r|
m >

√
ci must hold.

Using the theorem of Pythagoras, we get:

‖ ~r
m
‖22 = ‖rm

m
‖22 + (

~fi · ~r
m

)2

‖
~r′

m
‖22 = ‖rm

m
‖22 + (

~fi · ~r
m
−
√
ci)2

Rewriting this gives:

| ~r
m
‖22 − ‖

~r′

m
‖22

= (
~fi · ~r
m

)2 − (
~fi · ~r
m

)2 + 2
√
ci
~fi · ~r
m
− ci

> 2
√
ci
√
ci − ci (because

~fi · ~r
m

>
√
ci)

= ci

For the case where step 6d is performed, the proof is
analogous: we only need to substitute η for

√
ci.

5.2 Approximation Error Bound in the
Case of Orthogonal Features

In this part we consider the case where all features are
mutually independent. We prove that in this case, the Par-
LiR algorithm will closely approximate the exact solution.

Theorem 5.2 (Error bound on ParLiR in the case where fea-
tures are mutually orthogonal). In the case where feature
vectors are mutually orthogonal, i.e. ~fi · ~fj = 0 if i 6= j,
the ParLiR algorithm gives an approximation closer than
kη2 to the optimal solution to the parsimonious linear re-
gression problem, with k the number of features which has
a non-zero weight in the optimal solution.

The proof is intuitive and based on the fact that in the
case of orthogonal features, updating the weight of one
feature does not influence the score of another. This im-
plies that all included features have weights closer than η to
the optimal weights. Applying the generalized theorem of
Pythagoras gives the required result.

6 Conclusions and Future Work

In this paper we formalize the problem of linear regres-
sion where features are only observable at a certain cost.
We argued that finding the exact solution for this parsimo-
nious linear regression problem is computationally hard for
large datasets using existing mixed integer quadratic pro-
gramming approaches. We introduced ParLiR, an adapta-
tion of a least-angle regression algorithm, which efficiently

finds an approximation to the solution. We have shown both
empirically and theoretically that the solution found by this
algorithm is cost-efficient.

There are various routes for future work. As became
clear from the empirical results, linear regression is not
well-suited for many domains, and more complex regres-
sion functions might be more appropriate. We have the
feeling that many regression methods might be adapted to
be cost-sensitive, such as artificial neural networks, support
vector machines and kernel methods.

In the current setup, we use the same costly features for
each example. It might be useful to employ the cost-less
features to determine which costly features to use, thereby
making the selection of features different for each sample.
This possibly allows for a better resolution. Having a com-
plex regression function which is adaptable according to the
cost-free information would give a powerful, cost-efficient
method for parsimonious linear regression.
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