
Reinforcement Learning with the Use of Costly Features

Robby Goetschalckx1, Scott Sanner2, and Kurt Driessens1

1 Declarative Languages and Artificial Intelligence, Katholieke Universiteit Leuven, Leuven,
Belgium, email:{robby,kurtd}@cs.kuleuven.be

2 National ICT Australia, email: Scott.Sanner@nicta.com.au

Abstract. In many practical reinforcement learning problems, the state space is
too large to permit an exact representation of the value function, much less the
time required to compute it. In such cases, a common solution approach is to com-
pute an approximation of the value function in terms of state features. However,
relatively little attention has been paid to the cost of computing these state fea-
tures. For example, search-based features may be useful for value prediction, but
their computational cost must be traded off with their impact on value accuracy.
To this end, we introduce a new cost-sensitive sparse linear regression paradigm
for value function approximation in reinforcement learning where the learner is
able to select only those costly features that are sufficiently informative to jus-
tify their computation. We illustrate the learning behavior of our approach using
a simple experimental domain that allows us to explore the effects of a range of
costs on the cost-performance trade-off.

1 Introduction

We examine cost-sensitive linear-value function approximation in a reinforcement learn-
ing context where certain state features are only available at a certain cost. This cost
could reflect time or other resources spent on the process of acquiring the feature in-
formation, but we assume that this cost can be transformed into the same units used to
represent reward in the original reinforcement learning problem.

As a motivating example, consider an agent playing a game of perfect information
such as Backgammon or Othello where the opponent executes a stationary policy. The
agent knows the rules and thus has access to an accurate model of the environment, ex-
cept for the opponent policy, which we assume to be unknown. While any reinforcement
learning problem of this nature can be solved in theory by using an exact enumerated-
state representation of the value function, this is often infeasible in practice due to time
and space constraints. Thus, we must often resort to techniques for computing an ap-
proximation of the value function in terms of state features.

While value function approximation is well-addressed in the reinforcement learning
literature (c.f. Chapter 8 of [1]), the cost of feature computation is often considered
negligible and thus ignored. However, continuing our game-playing example, we note
that costly search-based state features may be useful for predicting the value of a state.
For instance, a useful state feature in a game might be the result of ann-ply expected
minimax search. However, there will often be a limit on the time available for a game
player to make decisions – either for the entire game or per turn – after which the game

2

is forfeited. In such a setup, it is important to find a good trade-off between the cost of
computation necessary to make a decision and the quality of the resulting decision.

Various theoretical approaches are possible to model this trade-off. While the orig-
inal optimal reinforcement learning problem we consider can be modelled as a Markov
decision process (MDP), one might consider modelling the function approximation set-
ting as a partially observable MDP (POMDP) [2], using information-gathering actions
to represent the computation of costly features. In theory, an optimal policy for this
POMDP would select those features to compute at any decision stage in order to opti-
mally trade-off feature cost w.r.t. its impact on future reward. However, such a frame-
work requires embedding an already difficult-to-solve MDP inside a POMDP and then
solving that POMDP.3 Such an approach will not generally be feasible in practice.

Here we propose a more pragmatic approach where we learn the relative value of
features in an explicit way. To do this, we approximate the value function using cost-
sensitive sparse linear regression techniques, trading off prediction errors with the costs
induced by using a feature. While such an approach does not guarantee that the optimal
set of features will be chosen at any decision-stage w.r.t. the cost-performance trade-off,
it does guarantee that the prediction accuracy will improve by at least the total cost of
the features used.

2 Related Work

Cost-sensitive regression and cost-sensitive classification in non-sequential decision
making, supervised learning settings have been widely studied, for example in [3].
While [4] addresses one aspect of cost-sensitive sequential decision-making, it should
be noted that in their special case, cost is only associated with actions – not with ob-
serving state features – so standard reinforcement learning techniques can be applied
without modification. In our work, we specifically consider the case of reinforcement
learning with function approximation where state features are costly to compute. This
induces a more difficult problem in that standard reinforcement learning techniques
must be modified to trade off the cost of using a feature w.r.t. its impact on prediction
accuracy during value approximation.

Other work which handles reinforcement learning with costs is discussed in [5].
Here the costly features are considered to have binary values, which allows for the
construction of a cost-sensitive regression tree (related to a cost-sensitive classification
using a decision tree) where the value of a computed feature can be used to decide which
other features to use. In contrast, here we consider the case of linear-value function
approximation with real-valued costly features. In the presence of both binary and real-
valued features, these two approaches could be merged although such extensions are
beyond the scope of the current paper.

The value of information has been formalized by Howard [6] and can be used as a
framework to estimate the expected utility increase of observing a random variable (e.g.,
a feature) given prior information. The meta-reasoning paradigm [7] extends this idea
to sequential decision-making by trading off the allocation of computational resources

3 This is only one difficulty with the POMDP approach. See Section 2 for further discussion.

3

over time w.r.t. the expected gain of using those resources. The difference between the
meta-reasoning paradigm and our work is that we do not (and for all practical purposes,
cannot) directly model the predictions of costly features since the ability to accurately
model them would preclude the need to actually compute them.

When an MDP has costly-observable state (i.e., not state features, but the underly-
ing state itself), the problem may be formally modeled as a POMDP. Variants of such
approaches are explored in [8] and [9]. However, such problems are inherently more
difficult than the case we consider here. In our case, the underlying problem we are
trying to solve is an MDP with fully observable state (zero-cost, by definition), not a
POMDP. Our difficulties with costly features only arise when considering the value
function approximation paradigm. While we could use a POMDP model to formalize
the decision-theoretic trade-off between feature computation and prediction accuracy
in this approximation, such an approach would be impractical: Not only would the
POMDP be intractably large to solve, without a model of information-gathering ac-
tions4, the POMDP solution would only become further complicated by the need to
perform belief-state updating on a model of such actions from experience. While an-
alytical solutions to related problems exist in theory (c.f., [10]), such approaches are
incapable of practically scaling beyond all but the smallest problems.

3 Reinforcement Learning with Costly Features

In this section, we review the general framework of function approximation in rein-
forcement learning and then proceed to describe our modifications to accommodate
costly features.

3.1 MDPs and Reinforcement Learning

We assume the decision-making environment to be aMarkov decision process(MDP) [11]
with which an agent interacts by repeatedly executing an action in the current state,
receiving a reward signal and then stochastically transitioning to a successor state.
Formally, an MDP can be defined as a tuple〈S, A, T,R, γ〉. S = {s1, . . . , sn} is
a finite set of fully observable states.A = {a1, . . . , am} is a finite set of actions.
T : S × A × S → [0, 1] is a stationary, Markovian transition function. We often
expressT as the conditional probability distributionP (s′|s, a). We will assume that a
rewardR : S × A → R is associated with every state and action.γ is a discount factor
s.t. 0 ≤ γ < 15 used to specify that a reward obtainedt timesteps into the future is
discounted byγt.

A policy π : S → A specifies the actiona = π(s) to take in each states. The value
Qπ(s, a) of taking an actiona in states and then following the policyπ thereafter can

4 If an accurate model of a costly information-gathering action existed, it could be substituted
in place of the action itself to obtain an equivalent zero-cost action.

5 With modifications to enforce that total accumulated reward is finite,γ = 1 could be accom-
modated.

4

be defined using the infinite horizon, expected discounted reward criterion:

Qπ(s, a) = Eπ

[∞∑
t=0

γt · rt

∣∣∣∣∣s0 = s, a0 = a

]
(1)

wherert is the reward obtained at timet (assumings0 anda0 respectively represent the
state and action att = 0). Then we can define a value functionV π(s) = Qπ(s, π(s))
that represents the expected value obtained by starting in states and acting according
to π.

The objective in an MDP is to find a policyπ∗ such that∀π, s. V π∗
(s) ≥ V π(s).

At least one such optimal policy is guaranteed to exist and, in addition, the following
Bellman optimality equation is known to hold forπ∗ [11]:

V π∗
(s) = maxa∈A

{
R(s, a) + γ · Eπ∗

[
V π∗

(st+1)
∣∣∣st = s

]}
In the reinforcement learningsetting, the transition and reward model may not be

explicitly known to the agent although they both can be sampled from experience. Here,
we assume thegeneralized policy iteration(GPI) framework that is known to capture
most reinforcement learning approaches [1]. GPI interleaves policy evaluation and pol-
icy update stages as follows:

Generalized Policy Iteration (GPI)

1. Start with arbitrary initial policyπ0 and seti = 0.
2. EstimateQπi(s, a) from experience (e.g., using Equation 1).
3. Let πi+1(s) = arg maxa∈A Qπi(s, a).
4. If termination criteria not met, leti = i + 1 and goto step 2.

Every reinforcement learning algorithm that is an instance of the above GPI algo-
rithm may prescribe its own method for performing each step and many such instances
are known to have strong convergence guarantees. For now, we keep our treatment of re-
inforcement learning with costly features as general as possible. Specifically, this means
that in the context of GPI, we can restrict our discussion of reinforcement learning with
costly features to Q-value estimation.

3.2 Cost-sensitive Value Approximation

In practice, it is often infeasible to work with an enumerated state representation due
to time and space constraints. A common solution approach in this case is to resort
to value function approximation in step 2 of the GPI algorithm by defining relevant
state features. In this case, the agent does not directly observe the exact states of the
environment. Instead, the agent has access to a set of state featuresF = {f1, . . . , fk},
where for eachf ∈ F , f : S → R is an (apriori unknown) mapping from a state to
R. The benefits of this approach are well-known: (1) an accurate approximation of a

5

Q-function (and thus implicitly, a policy) can often be represented with|F | << |S| and
(2) a limited set of descriptive features enablesgeneralizationof learned value across
multiple states, leading to faster learning.

However, as argued in Section 1 for the games setting, it is plausible to consider
using costly features such as those that perform search. Thus, we assume that each
featuref is associated with a cost functioncf : S → R, which represents the cost
of computing featuref in states.6 We assume that the feature cost functionscf and
the rewardR are expressed in the same units. For a game where there is a fixed time
available per move (after which the game is forfeited), a feature cost could be set to a
fraction of the loss value corresponding to the time spent computing the feature.

In the setting of value function approximation with costly features, we must modify
our MDP solution criterion to consider both the original reward signal as well as the
cost of computing a particular choice of featuresF . To facilitate this modification, we
introduce a new meta-policyΠ = 〈π,F〉 whereπ is the policy for the original MDP
andF : F ×S×A → {true, false} is a feature selection function that indicates which
features should be selected when evaluating the Q-value for a given state and action.
Abusing notation slightly, we often useF(s, a) to directly denote the subset of features
F ′ ⊆ F selected for a given states and actiona.

However, there is one additional and important complication to value function ap-
proximation with costly features. Since we do not represent the policy explicitly, but
rather implicitly by evaluating a set of Q-functions, we must take into account the cost
of evaluating a set of Q-functions for policyπ w.r.t. our feature selection criterionF . In
light of this issue and our previous definitions, we now formally define our problem:

Definition 1 (Cost-sensitive Value Approximation).
Given an MDP〈S, A, T,R, γ〉, a set of state featuresF and their related cost functions
cf and a policyπ
Find a feature selection functionF∗ for meta-policyΠ∗ = 〈π,F∗〉, such that

F∗ = arg max
F

{
Es∼P (s|π,F)

[
V 〈π,F〉(s)

]}
(2)

whereP (s|π,F) is a state occupancy distribution induced for meta-policy〈π,F〉 and

V 〈π,F〉(s) =

E〈π,F〉

 ∞∑
t=0

γt

rt −
∑
a′

t∈A

∑
f∈F(st,a′

t)

cf (st, a
′
t)

 ∣∣∣∣∣s0 = s

 (3)

In words,V 〈π,F〉(s) represents the infinite-horizon discounted reward starting from
states and following policyπ thereafter. In addition to the rewardrt accumulated at
timet, this value definition also explicitly models the cost of computing the meta-policy

6 We can easily relax both the feature mapping and its cost function to be stochastic (e.g., for
randomized search-based features) since our reinforcement learning approach is sample-based.
We provide the deterministic case here to simplify our notation and presentation.

6

at timet via the cost of computing a Q-function for each actiona′t w.r.t.F(st, a
′
t). The

objective itself is to find the feature selection functionF that maximizes the value
V 〈π,F〉(s) for each states, weighted by the occupancy probability ofs w.r.t. the meta-
policy.

Perhaps one of the most interesting observations about value function approxima-
tion with costly features is that even thoughπ is assumed to be fixed, the actual policy
executed varies according toF . This occurs because in the function approximation set-
ting, the policy is computed implicitly w.r.t. Q-values, which are themselves modulated
by a feature selection functionF . In this sense, it appears quite difficult to optimally
compute Definition 1 without exhaustive enumeration of all possibleF thus requir-
ing 2|F | evaluations. This is intractable for sufficiently large|F | and thus we focus on
approximate solutions with weaker optimality guarantees in the next section.

4 Sparse Linear-value Approximation

So far we have not assumed a specific functional form for our value approximation.
However, from here out, we focus solely on linear value-approximation techniques,
not only because linear regression is one of the most widely used and well-understood
function approximation methods, but also because it admits elegant sparse solutions
that will be useful in minimizing feature usage, and thus feature cost.

We represent a value approximationV̂
〈π,F〉
w (s) of V 〈π,F〉(s) from Equation 3 as a

linear combination of features with weightsw = 〈w0, . . . , wk〉 with eachwi ∈ R:

V̂ 〈π,F〉
w (s) = w0 +

∑
fi∈F(s)

wifi(s) (4)

HereF(s) is not considered to be action-dependent and thus we drop the action argu-
ment.

When a policy cannot be derived directly from a value function, we could use action-
dependent weightswa for all a ∈ A to learn a Q-value approximation for each action:

Q̂〈π,F〉
w (s, a) = wa,0 +

∑
fi∈F(s,a)

wa,ifi(s) (5)

For simplicity, we focus on direct value approximation in the following presentation
although the framework can be easily modified to handle Q-value approximation as
well.

4.1 Least Angle Regression Methods

Due to their sparsity properties, we focus on a class of linear regression techniques
collectively referred to asleast-angle regression(LAR) methods, such aslassoand
forward stagewise regression[12].

In the context of linear-value approximation, LAR methods provide a solution to the
following linear regression problem with cost budgetC where we define the indicator

7

functionI[·] to take the value1 when its argument· is true and0 otherwise:

Minimize:
∑

s

P (s|π,F)
[
V̂ 〈π,F〉

w (s)− V 〈π,F〉(s)
]2

Subject to:

[∑
s

P (s|π,F)
k∑

i=0

(α|wi|+ I[wi 6= 0] · cfi
(s))

]
≤ C (6)

Although notationally cumbersome, this optimization problem simply states that we
wish to minimize the sum-of-squared errors of the approximate value functionV̂

〈π,F〉
w (s)

w.r.t. samples from the true distributionV 〈π,F〉(s) weighted by state occupancy prob-
ability. The constraints simply state that the total sum of weights and feature costs for
non-zero weights should be less thanC. Here,α is a constant indicating how important
weight regularization is relative to minimizing the costs. For ordinary LAR, this value
is equal to 1 (while the costs are zero). For our preliminary experiments as presented in
section 5, we choseα = 0.

At first, the budgetC would seem to be an unnecessary since the feature costs are
already accounted for in the value function estimate. However, including this additional
constraint has two advantages: (1) the use of small budgetsC encourage sparsity in the
weights, thereby maximizing the predictive power of the subset of features with non-
zero weights, and (2) by incrementally increasingC from 0 to∞, we can greedily add
in new features fromF , thus providing us with an efficient way to explore the entire
feature selection function without enumerating all possibilities.

Fortunately, the forward-stagewise regression solution to optimizing the above prob-
lems provides us with an efficient way of doing exactly this. We briefly describe this
below and refer the reader to the detailed discussion in [12] for more information on
this and related methods. Our adaptation of the forward-stagewise regression algorithm,
dubbed FOVEA, can be seen in Fig. 4.1.

Note that we do not normalize the target values, which is the normal procedure
for least-angle regression. Our reason for this is that by not dividing by the standard
deviation, the residuals at each step correspond to the actual errors. This is necessary
for the trade-off of cost and error.

It should be noted that the forward stage-wise approach is agreedyselection ap-
proach. Because of this, the approximation obtained might not be the optimal one in
all cases. A local optimum is guaranteed, however and the increase in value prediction
accuracy of using this greedy feature set is guaranteed to equal or exceed the cost of its
computation.

5 Experiments

A first setting we used for experiments is a simple deterministic corridor domain (fig-
ure 2). The state space consists of five rooms, labeleds1, . . . , s5. From each state two
actions,+1,−1 can be performed. Performing action+1 in statesi for i < 5 leads to
si+1 and performing−1 in statesi for i > 1 leads tosi−1. All other actions take the
agent to the centers3. A reward of1 is assigned for taking+1 in s5 and−1 is assigned

8

Forward-stagewise Value Approximation (FOVEA)

1. Normalize all feature predictions inF to have 0 mean and a
variance of 1.

2. Initialize the step-sizeη to some small positive value.
3. InitializeF such that∀s.F(s) = ∅.
4. Given a policyπ and currentF , collect a batch of data sam-

plesV 〈π,F〉(s) by executing meta-policy〈π,F〉 (this implic-
itly generates samples with state distributionP (s|π,F)), ini-
tialize w0 with the average value of the batch (this gives the
residuals a mean of 0), and repeat the following:
(a) calculate the correlation score (absolute correlation with

the current residualr(s), minus the costif the feature is
not yet included in the linear function) for every feature:

scorei =

˛̨̨̨
˛X

s

fi(s)r(s)

˛̨̨̨
˛ − (1− δi)

X
s

costi(s)

(hereδi indicates whether the feature is already included
in the sum: iffi ∈ F , δi = 1, otherwiseδi = 0).

(b) Find the featurefi with the highest score, and with
scorei ≥ 0, if no such feature found, halt algorithm

(c) If the fi was not yet included inF , let F = F ∪ {fi}
(d) Increment or decrementwi by η to reduce the residuals.

Fig. 1.The FOVEA Algorithm

for taking action−1 in s1. All other rewards are equal to 0. We used a discount factor
γ = 0.9.

We provided seven state-action indicator featuresfi for 1 ≤ i ≤ 7 to the agent
where taking actiona ∈ {+1,−1} in i results infi+a = 1 with all remaining indicator
features set to 0.f0, f2, f3, f5 andf6 are free whilef1 andf4 have a costc. Further-
more two random number generators were provided to the agent, one which was free
and another one which had a high cost0.5. Finally, the state-action feature indicators
f0, . . . , f6 were copied but now with the higher cost0.5. We used FOVEA to approxi-
mate Q-values using the state-action features defined above. We used 100 samples for
each update unless stated otherwise. All results shown are averages over 10 runs.

A first experiment was performed withc = 0. This was an initial check to verify
that out algorithm works as expected. Indeed, the agent always learned to use the free,
informative features, and never to use the random features or the costly ones.

In a second experiment we varied the value ofc over a range of0 to 0.5. Increasingc
takes away the possibility for the agent to locate itself exactly without paying any cost:
if the agent does not payc, it can not distinguish betweenx1 andx4. (Paying for only
f1 or f4 is enough, however: if the agent knows he’s not in one of the freely observable
states, and not inx4, he must be inx1 and vice versa.) We predicted that there is a
certain threshold-value for the cost where the agent will be undecided on using one of
the featuresf1 or f4 and paying the cost or not using these. Ifc is much lower, the agent

9

s1 s2 s3 s4 s5

0 0 0 0

0000

+1

−1

Fig. 2. A simple domain with five linked states. Actions and their corresponding transitions are
labeled with their reward.

will always use one of the features, if it is much higher it will not pay off to spend the
cost in exchange for the information. For the forward-selection approach, this is exactly
what happened with a clear-cut phase transition nearc = 0.185. This is actually the
theoretically correct value for the threshold in this problem domain. This can be clearly
seen in figure 3.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
M

S
E

pr
ed

ic
tio

n
co

st

c2

RMSE versus Cost

RMSE
cost

c2
2 c2

Fig. 3.Error the agent is aware of making versus the amount spent on costly features

Here the cost the agent pays is compared with the prediction error the agent is
aware of making (the root mean squared error, or the 2-norm of the final residual). For
very low values ofc, the agent actually computes both of the features while only one is
needed. As the costs are indeed very low, this does not pose a real problem. Using larger
batches to compute the new linear regression function would remedy this problem. For

10

low values ofc, the agent keeps paying for one of the features (so the spent cost is equal
to c). When getting close to the threshold value of 0.185, however, the agent is no longer
willing to pay for the information. Indeed, for values higher than the threshold, the error
the agent is aware of making is lower than the cost of extra information. Given longer
training time and larger batches for the updates, the phase transition would become even
more clear.

For varying values ofc the root mean square error of the predictions (compared to
the actual optimal values) as the number of examples increases is shown in figure 4.
For the value of0.185 only in about half of the runs the agent was deeming it worth
the investment. As this is the threshold value, for which the agent should in theory be
undecided whether or not to pay for the extra information, this is what was expected.
For lower values than this, the agent quickly learns that the feature is worth its cost. (In
figure 4 results are shown for every 1000th episode. During the first 1000 episodes, there
is a slight difference for the lower costs, with faster convergence when the information
is cheaper.)

 0

 0.5

 1

 1.5

 2

 0 2000 4000 6000 8000 10000

R
M

S
E

episodes

RMSE versus number of episodes

c2 = 0
c2 = 0.1

c2 = 0.15
c2 = 0.185

c2 = 0.5

Fig. 4. Evolution of the average prediction error compared to the ideal solution as the number of
episodes increases

For a third experiment the size of the domain was increased to see how the algo-
rithm scales up. The domain still consists of a corridor, with a positive and negative
reward at respectively the rightmost and the leftmost room. The features provided were
state-action indicators as before. Each indicator had a cost inversely proportional to the
world size (this compensates for the inherently lower differences in value function for

11

neighboring states). In figure 5 one can see the sum of the relative errors on the predic-
tions of all state values as the number of episodes increases (note the logarithmic scale
on the vertical axis). The value approximation was updated each 10000 samples.

 0.01

 0.1

 1

 0 100000 200000 300000 400000 500000

re
la

tiv
e

er
ro

r

episodes

relative error over time for various world sizes

size 7, 109 s
size 15, 234 s
size 21, 319 s
size 51, 537 s

Fig. 5.Relative error on the predictions for varying world sizes

From this figure it is clear that for all these world sizes there was similar conver-
gence behavior. For the larger world (size 51), the convergence is slower, which is
understandable, as it takes more time to propagate updates over the entire domain. In
the legend of figure 5 the run-times for these domains is also shown. As predicted, the
runtime is about linear in the number of features, in this case the size of the world.

6 Conclusions and Future Work

Faced with the task of value approximation in reinforcement learning with costly fea-
tures, we introduced a novel sparse linear-value approximation approach to efficiently
select the features for value prediction that are sufficiently informative to justify their
computation. In experimentation, our forward-stagewise value approximation algorithm
provided near-perfect trade-offs in value prediction exhibiting sharp phase transitions
at theoretical switchover points where feature computation no longer paid-off in reward
gain. Furthermore, our experiments demonstrated the ability of our approach to scale in
terms of performance and training samples over a range of problem sizes.

While we could only provide an initial investigation of reinforcement learning with
costly features in this work, our results warrant future experimentation on larger more
difficult problems such as game domains with search-based features. In addition to

12

such experimental evaluation, various efficiency enhancements can be explored in the
forward-stagewise regression framework to avoid discarding samples every time the
feature selection function is updated. Altogether, such advances should make possible a
new and useful paradigm for large-scale reinforcement learning in real-world domains
where useful features cannot always be assumed to be cost-free.

Acknowledgements

This research was sponsored by the fund for scientific research (FWO) of Flanders, of
which Kurt Driessens is a postdoctoral fellow, and by National ICT Australia.

References

1. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge,
MA (1998)

2. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable
stochastic domains. Artificial Intelligence101(1998) 99–134

3. Domingos, P.: Metacost: A general method for making classifiers cost-sensitive. In: Pro-
ceedings of the 5th International Conference on Knowledge Discovery and Data Mining.
(1999) 155–164

4. Pednault, E., Abe, N., Zadrozny, B.: Sequential cost-sensitive decision making with rein-
forcement learning. In: KDD ’02: Proceedings of the International Conference on Knowl-
edge discovery and data mining, New York, NY, USA, ACM (2002) 259–268

5. Goetschalckx, R., Driessens, K.: Cost sensitive reinforcement learning. In Kuter, U., Ab-
erdeen, D., Buffet, O., Stone, P., eds.: Proceedings of the workshop on AI Planning and
Learning. (2007) 1–5

6. Howard, R.A.: Information value theory. IEEE Transactions on Systems Science and Cy-
berneticsSSC-2(1966) 22–26

7. Russell, S., Wefald, E.: Principles of metareasoning. Artificial Intelligence49 (1991)
8. Zubek, V.B., Dietterich, T.G.: A POMDP approximation algorithm that anticipates the need

to observe. In: Pacific Rim International Conference on Artificial Intelligence. (2000) 521–
532

9. Fox, R., Tennenholtz, M.: A reinforcement learning algorithm with polynomial interaction
complexity for only-costly-observable mdps. In: AAAI. (2007) 553–558

10. Poupart, P., Vlassis, N., Hoey, J., Regan, K.: An analytic solution to discrete bayesian re-
inforcement learning. In: ICML ’06: Proceedings of the 23rd international conference on
Machine learning, New York, NY, USA, ACM (2006) 697–704

11. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, New York (1994)

12. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Technical report,
Statistics Department, Stanford University (2002)

