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Abstract. A policy 7 : S — A specifies the action = 7 (s) to take in each

A common solution approach to reinforcement learning problemsstates. The valueQ™ (s, a) of taking an actioru in states and then
with large state spaces (where value functions cannot be representlowing the policy = thereafter can be defined using the infinite
exactly) is to compute an approximation of the value function inhorizon, expected discounted reward criterion:
terms of state features. However, little attention has been paid to the o
cost of computing these state features (e.g., search-based features). Q™ (s,a) = Ex {Z Ay
To this end, we introduce a cost-sensitive sparse linear-value function i—0
approximation algorithm — FOVEA — and demonstrate its perfor-Wheren
mance on an experimental domain with a range of feature costs.

S0 = 8,a0 = a] 1)

is the reward obtained at time(assumingso andao re-
spectively represent the state and action at 0). The objective in
an MDP is to find a policyr* such thatvr,s. Q™ (s,7*(s)) >
1 Introduction Q™ (s, m(s)). An optimal policyn* is guaranteed to exist.
In the RL setting, the transition and reward model may not be ex-

Reinforcement learning problems with large state spaces often preplicitly known to the agent although both can be sampled from ex-
clude the representation of a fully enumerated value function. In thigperience. Here, we use tigeneralized policy iteratio(GP1) frame-
case, a common solution approach is to compute an approximatiomork known to capture most reinforcement learning algorithms [4].
of the value function in terms of state features. While value func-GPI interleaves policy evaluation and update stages as follows:
tion approximation is well-addressed in the reinforcement learnin
literature (c.f., Chapter 8 of [4]), the cost of feature computation is| Generalized Policy Iteration (GPI)
often ignored. Yet in the presence of costly features, this cost must . . L . ]
be traded off with its impact on value prediction accuracy. 1. Startwith arbitrary initial policyro and set = 0.

While reinforcement learning is often modelled as a Markov deci- 2- EStimateQ™ (s, a) (e.g., fromﬂsamples using Equation 1).
sion process (MDP) [3], one might consider modelling the function| 3+ L€t miv1(s) = argmax,e, Q™ (‘?’ a)_'
approximation setting with costly features as a partially observablg4- !f términation criteria not met, let= 7 + 1 and goto step 2.
MDP (POMDP) [2] by using information-gathering actions to repre-
sent the computation of costly features. In theory, an optimal policy Every RL algorithm that is an instance of GPI algorithm may pre-
for this POMDP would select those features to compute at any decicribe its own method for performing each step and many GPI in-
sion stage in order to optimally trade-off feature cost w.r.t. its impactStances guarantee convergencertoor an approximation thereof.
on future reward. However, such a framework requires embeddinyVe keep our treatment of reinforcement learning with costly features
an already difficult-to-solve MDP inside a POMDP; in general, solu-as general as possible. Specifically, this means that in the context of
tions to such a POMDP will not be feasible in practice. GPI, we can restrict our discussion of RL with costly features to that

Here we propose a more pragmatic approach where we learn tHif cost-efficient Q-value approximation in step 2 of GPI.
relative value of features in an explicit way. To do this, we approxi-
mate the value function using cost-sensitive sparse linear regressié Cost-efficient Value-approximation
techniques, directly trading off prediction errors with feature costs.

We represent a Q-value approximati@@(& a) w.r.t. policy w as a

linear combination of a feature sét = {f1,..., fx} with weights
2 MDPs and Reinforcement Learning @ = (wo, . .., wr) where eacly; : S x A — Rand eachv; € R:
We briefly reviewMarkov decision processéMDPs) [3] andrein- Qu(s,a) =wo+ Y_ wifi(s,a) (2
forcement learningRL) [4]. Formally, an MDP can be defined as fi€F
atuple(S,A,T,R,v). S = {s1,...,sx} is a finite set of fully  We assume each featufgis associated with cosf;, € R expressed
observable statesd = {ai1,...,an} is a finite set of actions. in the same units as prediction error. Our task will be to find feature

T :SxAxS — [0,1] is a stationary, Markovian transition function. weights: that trade-off Q-value accuracy with feature cost.
ArewardR : S x A — Ris associated with every state and action. At step 2 of GPI, we assume that we are given date: {Q7 .}

7 is a discount factor s.t0 < v < 1 used to specify that a reward consisting of sampled Q-values to approximate. Then we define the
obtained: timesteps into the future is discounted by, v = 1is  optimal cost-efficient value approximatia#i* as follows:

permitted if total accumulated reward is finite. . 1 ) )
w* = argnin o D Q% — QE(s, @)+ > Tw; # 0]
“ QT €D fieF
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that the optimal setting afi* directly trades off prediction error with
feature cost (divided byl — ~) to account for the future discounted 005 RMSE versus Cost
cost of feature evaluation at every time step). Unfortunately, this op- ' ST T T RMSE ——
timization objective is not convex due to step discontinuities where cost
anyw; = 0 and thus not easily amenable to finding a global optima. 02 A 2¢c2

However, observing that weight sparsity encourages low feature
cost, we can modify sparse linear regression approaches to encourage,, 015 1 o 1
sparsity for a feature weight in a manner proportional to its cost. To 2 "
do this, we focus on a class of sparse linear regression techniques col- 0.1
lectively referred to ateast-angle regressio(LAR) methods, such
aslassoandforward stepwise regressidi]. Fortunately, a simple
modification of forward-stepwise regression provides us with an ef- \
ficient algorithm — FOVEA — for approximating the solution to 0 L oo ook
our optimization problem. We present FOVEA below and refer the 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05
reader to the detailed discussion in [1] for the original algorithm. c2

Figure 1. Prediction error (RMSE) vs. the feature cost of the prediction.
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Forward-stepwise Value Approximation (FOVEA)
We provided seven state-action indicator featyider 0 < i < 6

1. Input: Q-value sample®) = {Q7 .} for policy  (e.9., COM1  {o the agent where taking actian € {+1,—1} in i results in
puted from sample trajectories for a polieyising Equation 1). fi+a = 1 with all remaining indicator features set tof, fo, fs, fs
2. Initialize F = 0. and fs are free and are assigned cost= 0 while f; and f4 have a
3. Initialize w; = 0 for > 1 andwo with the average value of  costc,. Furthermore two random number generators were provided
Qs,a € D (this gives the residuals a mean of 0). to the agent, one which was free and another one which had a cost
4. Normalize all feature predictions to have 0 mean and a standard., ~, ., Finally, the state-action feature indicatgfs . . . , fs were
deviation of 1. copied but now with the higher cost. We used forward-stepwise
5. Initialize the step-sizg to some small positive value. value approximation to approximate Q-values using the state-action
6. Repeat the following: features defined above. We used 100 samples for each forward-
(a) Compute a vector of residuaisand a vector of feature val-  stepwise update. All results shown are averages over 10 runs.
uesﬁ with entries for each data saml€ , € D where the We varied the value of, over a range of) to 0.5. If the agent
residual isQ7 , — Qg(& a) and the feature value (s, a). does not pay., for f1 or fa, it can not distinguish between andss

(if it pays the cost of only one of; or f4, it can still infer the other

(b) Calculate cost-penalized correlation score forfale 7 by absence). The results in Figure 1 demonstrate the effectiveness of

1 1= FOVEA. Initially the agent pay&c; for both f; and f4 (illustrating
seorei = 1] fi: 7"’ —I[fi € Fly/ey, slight sub-optimality by paying for both features due to inherent sta-
tistical noise in the estimation process, but still avoiding the useless
(c) Find the featuref; with the highestcore; > n; if no such features that costs) until it realizes forco > 0.05 that it can just
feature found then halt ar@utput; . pay co for one of these features and still obtain low prediction error.

= However, forcz > 0.185, the agent refuses to pay the cost for either
. P . . . = . s . 3

() If fi & 7 letF = FU{fi}i wi = wi +sQnfi - 7)\/C5;. f1 or f4 since the cost exceeds the future expected reward. As such,

(e) Elseletw; = w; + sgn(f; - #)n. there is a clear phase transition near= 0.185 as the paid feature

cost decreases rapidly while the prediction error likewise increases.

It is important to note that the forward stepwise approach is a
greedyselection approach and thus the result obtained might not b®  Future Work

the optimal one in all cases. However, we can still prove a form Ofberhaps the most important area of future work is to explore efficient
local optimality during the progression of the FOVEA algorithm: - oensions to handle state- and action-dependent feature selection.

Theorem 1 Every featuref; which is introduced in step 6d of the
FOVEA algorithm immediately reduces the mean squared error oACknowledgements
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We evaluated GPI using FOVEA on a simple deterministic corridor
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