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Abstract.
A common solution approach to reinforcement learning problems

with large state spaces (where value functions cannot be represented
exactly) is to compute an approximation of the value function in
terms of state features. However, little attention has been paid to the
cost of computing these state features (e.g., search-based features).
To this end, we introduce a cost-sensitive sparse linear-value function
approximation algorithm — FOVEA — and demonstrate its perfor-
mance on an experimental domain with a range of feature costs.

1 Introduction

Reinforcement learning problems with large state spaces often pre-
clude the representation of a fully enumerated value function. In this
case, a common solution approach is to compute an approximation
of the value function in terms of state features. While value func-
tion approximation is well-addressed in the reinforcement learning
literature (c.f., Chapter 8 of [4]), the cost of feature computation is
often ignored. Yet in the presence of costly features, this cost must
be traded off with its impact on value prediction accuracy.

While reinforcement learning is often modelled as a Markov deci-
sion process (MDP) [3], one might consider modelling the function
approximation setting with costly features as a partially observable
MDP (POMDP) [2] by using information-gathering actions to repre-
sent the computation of costly features. In theory, an optimal policy
for this POMDP would select those features to compute at any deci-
sion stage in order to optimally trade-off feature cost w.r.t. its impact
on future reward. However, such a framework requires embedding
an already difficult-to-solve MDP inside a POMDP; in general, solu-
tions to such a POMDP will not be feasible in practice.

Here we propose a more pragmatic approach where we learn the
relative value of features in an explicit way. To do this, we approxi-
mate the value function using cost-sensitive sparse linear regression
techniques, directly trading off prediction errors with feature costs.

2 MDPs and Reinforcement Learning

We briefly reviewMarkov decision processes(MDPs) [3] andrein-
forcement learning(RL) [4]. Formally, an MDP can be defined as
a tuple 〈S, A, T, R, γ〉. S = {s1, . . . , sn} is a finite set of fully
observable states.A = {a1, . . . , am} is a finite set of actions.
T : S×A×S → [0, 1] is a stationary, Markovian transition function.
A rewardR : S × A → R is associated with every state and action.
γ is a discount factor s.t.0 ≤ γ < 1 used to specify that a reward
obtainedt timesteps into the future is discounted byγt. γ = 1 is
permitted if total accumulated reward is finite.
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A policy π : S → A specifies the actiona = π(s) to take in each
states. The valueQπ(s, a) of taking an actiona in states and then
following the policy π thereafter can be defined using the infinite
horizon, expected discounted reward criterion:

Qπ(s, a) = Eπ
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wherert is the reward obtained at timet (assumings0 anda0 re-
spectively represent the state and action att = 0). The objective in
an MDP is to find a policyπ∗ such that∀π, s. Qπ∗(s, π∗(s)) ≥
Qπ(s, π(s)). An optimal policyπ∗ is guaranteed to exist.

In the RL setting, the transition and reward model may not be ex-
plicitly known to the agent although both can be sampled from ex-
perience. Here, we use thegeneralized policy iteration(GPI) frame-
work known to capture most reinforcement learning algorithms [4].
GPI interleaves policy evaluation and update stages as follows:

Generalized Policy Iteration (GPI)

1. Start with arbitrary initial policyπ0 and seti = 0.
2. EstimateQπi(s, a) (e.g., from samples using Equation 1).
3. Let πi+1(s) = arg maxa∈A Qπi(s, a).
4. If termination criteria not met, leti = i + 1 and goto step 2.

Every RL algorithm that is an instance of GPI algorithm may pre-
scribe its own method for performing each step and many GPI in-
stances guarantee convergence toπ∗ or an approximation thereof.
We keep our treatment of reinforcement learning with costly features
as general as possible. Specifically, this means that in the context of
GPI, we can restrict our discussion of RL with costly features to that
of cost-efficient Q-value approximation in step 2 of GPI.

3 Cost-efficient Value-approximation

We represent a Q-value approximationQ̂π
~w(s, a) w.r.t. policyπ as a

linear combination of a feature setF = {f1, . . . , fk} with weights
~w = 〈w0, . . . , wk〉 where eachfi : S ×A → R and eachwi ∈ R:

Q̂π
~w(s, a) = w0 +

X
fi∈F

wifi(s, a) (2)

We assume each featurefi is associated with costcfi ∈ R expressed
in the same units as prediction error. Our task will be to find feature
weights~w that trade-off Q-value accuracy with feature cost.

At step 2 of GPI, we assume that we are given dataD = {Qπ
s,a}

consisting of sampled Q-values to approximate. Then we define the
optimal cost-efficient value approximation~w∗ as follows:

~w∗ = argmin
~w

1

|D|
X

Qπ
s,a∈D

[Qπ
s,a − Q̂π

~w(s, a)]2+
X

fi∈F

I[wi 6= 0]
cfi

1− γ

Here, I[·] is 1 when its argument is true and0 otherwise. We see



that the optimal setting of~w∗ directly trades off prediction error with
feature cost (divided by(1− γ) to account for the future discounted
cost of feature evaluation at every time step). Unfortunately, this op-
timization objective is not convex due to step discontinuities where
anywi = 0 and thus not easily amenable to finding a global optima.

However, observing that weight sparsity encourages low feature
cost, we can modify sparse linear regression approaches to encourage
sparsity for a feature weight in a manner proportional to its cost. To
do this, we focus on a class of sparse linear regression techniques col-
lectively referred to asleast-angle regression(LAR) methods, such
as lassoand forward stepwise regression[1]. Fortunately, a simple
modification of forward-stepwise regression provides us with an ef-
ficient algorithm — FOVEA — for approximating the solution to
our optimization problem. We present FOVEA below and refer the
reader to the detailed discussion in [1] for the original algorithm.

Forward-stepwiseValue Approximation (FOVEA)

1. Input: Q-value samplesD = {Qπ
s,a} for policy π (e.g., com-

puted from sample trajectories for a policyπ using Equation 1).
2. InitializeF = ∅.
3. Initialize wi = 0 for i ≥ 1 andw0 with the average value of

Qs,a ∈ D (this gives the residuals a mean of 0).
4. Normalize all feature predictions to have 0 mean and a standard

deviation of 1.
5. Initialize the step-sizeη to some small positive value.
6. Repeat the following:

(a) Compute a vector of residuals~r and a vector of feature val-
ues~fi with entries for each data sampleQπ

s,a ∈ D where the
residual isQπ

s,a−Q̂π
~w(s, a) and the feature value isfi(s, a).

(b) Calculate cost-penalized correlation score for allfi ∈ F :

scorei =
1

|D|

˛̨̨
~fi · ~r

˛̨̨
− I[fi ∈ F ]

√
cfi

(c) Find the featurefi with the highestscorei ≥ η; if no such
feature found then halt andOutput: ~w.

(d) If fi /∈ F , letF = F ∪ {fi}; wi = wi + sgn(~fi · ~r)
√

cfi .3

(e) Else let wi = wi + sgn(~fi · ~r)η.

It is important to note that the forward stepwise approach is a
greedyselection approach and thus the result obtained might not be
the optimal one in all cases. However, we can still prove a form of
local optimality during the progression of the FOVEA algorithm:

Theorem 1 Every featurefi which is introduced in step 6d of the
FOVEA algorithm immediately reduces the mean squared error of
the prediction by the value of its costcfi .

4 Experiments

We evaluated GPI using FOVEA on a simple deterministic corridor
domain. The state space consists of five rooms, labeleds1, . . . , s5.
From each state two actions,+1,−1 can be performed. Performing
action+1 in statesi for i < 5 leads tosi+1 and performing−1 in
statesi for i > 1 leads tosi−1. All other actions take the agent to
the centers3. A reward of1 is assigned for taking+1 in s5 and−1
is assigned for taking action−1 in s1. All other rewards are equal to
0. We used a discount factorγ = 0.9.

3 sgn(·) is +1 if its argument is non-negative and−1 otherwise.
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Figure 1. Prediction error (RMSE) vs. the feature cost of the prediction.

We provided seven state-action indicator featuresfi for 0 ≤ i ≤ 6
to the agent where taking actiona ∈ {+1,−1} in i results in
fi+a = 1 with all remaining indicator features set to 0.f0, f2, f3, f5

andf6 are free and are assigned costc1 = 0 while f1 andf4 have a
costc2. Furthermore two random number generators were provided
to the agent, one which was free and another one which had a cost
c3 > c2. Finally, the state-action feature indicatorsf0, . . . , f6 were
copied but now with the higher costc3. We used forward-stepwise
value approximation to approximate Q-values using the state-action
features defined above. We used 100 samples for each forward-
stepwise update. All results shown are averages over 10 runs.

We varied the value ofc2 over a range of0 to 0.5. If the agent
does not payc2 for f1 or f4, it can not distinguish betweens1 ands4

(if it pays the cost of only one off1 or f4, it can still infer the other
by absence). The results in Figure 1 demonstrate the effectiveness of
FOVEA. Initially the agent pays2c2 for bothf1 andf4 (illustrating
slight sub-optimality by paying for both features due to inherent sta-
tistical noise in the estimation process, but still avoiding the useless
features that costc3) until it realizes forc2 > 0.05 that it can just
payc2 for one of these features and still obtain low prediction error.
However, forc2 > 0.185, the agent refuses to pay the cost for either
f1 or f4 since the cost exceeds the future expected reward. As such,
there is a clear phase transition nearc2 = 0.185 as the paid feature
cost decreases rapidly while the prediction error likewise increases.

5 Future Work

Perhaps the most important area of future work is to explore efficient
extensions to handle state- and action-dependent feature selection.
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