
An Ordered Theory Resolution Calculus for Hybrid Reasoning in First-order
Extensions of Description Logic

Scott Sanner and Sheila McIlraith
University of Toronto

Department of Computer Science
Toronto, ON, M5S 3H5, CANADA
{ssanner, sheila} @cs.toronto.edu

Abstract

Systems for hybrid reasoning with first-order logic
(FOL) extensions of description logic (DL) date back
at least 20 years and are enjoying a renewed interest
in the context of recent FOL extensions of OWL DL
for the Semantic Web. However, current systems for
reasoning with such languages can only handle subsets
of FOL or they do not fully exploit recent advances in
both FOL theorem proving and DL inference. In re-
sponse, we present an ordered theory resolution calcu-
lus for hybrid reasoning in unrestricted FOL extensions
of the DL SHI. This calculus permits near-seamless
integration of highly optimized FOL theorem provers
and DL reasoners while minimizing redundant reason-
ing and maintaining soundness and refutational com-
pleteness. Empirical results demonstrate the potential of
this approach in comparison to the state-of-the-art FOL
theorem provers Vampire, Otter, and SPASS.

1 Introduction
It is widely acknowledged that knowledge representation
languages based on (decidable) description logics (DLs),
such as OWL DL (Patel-Schneider, Hayes, & Horrocks
2003), are not sufficiently expressive to encode many
real-world application domains (e.g., (Borgida 1996; Dean
2004)). The acknowledged merits of DL languages and the
desire for expressive languages that are upwardly compati-
ble with emerging DL-based Semantic Web languages have
been the driving force behind the development of a num-
ber of rule-based extensions to OWL DL and the like, most
notably RuleML (Boley et al. 2002) and SWRL (Horrocks
et al. 2004). Unfortunately, even these languages are not
suitable for certain tasks, such as the description of Web
service process models and their associated automated rea-
soning tasks (Berardi et al. 2004). This has contributed to
the development of first-order logic (FOL) extensions to Se-
mantic Web DL-based languages e.g., SWRL-FOL (Patel-
Schneider 2004), FOL RuleML (Boley et al. 2004), and
SWSL (Battle et al. 2005).

In this paper, we address the issue of how to reason ef-
ficiently with first-order extensions of DLs. Most DLs are
fragments of FOL; In particular OWL DL, which corre-
sponds to the expressive SHOIND−

n DL is a fragment
of FOL (Horrocks & Patel-Schneider 2003; Tsarkov et al.

2004). As such, an obvious way to reason with an FOL
extension of OWL DL is to translate it into FOL and use
a state-of-the-art theorem prover. Unfortunately, initial ex-
perimentation by Tsarkov et al (Tsarkov et al. 2004) indi-
cates that an efficient DL reasoner can outperform a highly
optimized FOL theorem prover. Tsarkov and colleagues
performed a number of experiments translating OWL DL
to FOL and performing inference using the highly op-
timized Vampire (Riazanov & Voronkov 2002) theorem
prover. Without optimization of the DL-to-FOL transla-
tion, Vampire performance was markedly worse than the
FaCT++ (Tsarkov & Horrocks 2004) DL reasoner. Even
when the translation was optimized, performance improved
but was still two orders of magnitude worse on problems that
could be solved. While Vampire was not optimized for de-
ciding DLs (c.f. Hustadt et al (2005)), it does indicate that
efficient DL reasoners are a good alternative in the absence
of DL-optimized theorem proving implementations.

Motivated by these observations, we propose a hybrid ap-
proach to reasoning with FOL extensions of expressive DLs,
henceforth referred to as DL-FOL. In DL-FOL, the DL han-
dles the SHI-expressible axioms of the theory and the FOL
handles the remaining axioms possibly relating to, and refin-
ing, the DL axioms. Rather than translating the entire DL-
FOL KB to FOL, we propose an instantiation of the ordered
theory resolution calculus (Baumgartner 1992) that permits
the use of highly optimized DL reasoners with optimized
strategies for resolution-based theorem proving. Our calcu-
lus exploits the inherent structure of DL taxonomic hierar-
chies together with ordered resolution techniques that sub-
stantially reduce the resolution search space. Preliminary
empirical results comparing our proof-of-concept DL-FOL
reasoner implementation with the state-of-the-art theorem
provers Vampire (Riazanov & Voronkov 2002), Otter (Mc-
Cune 2003), and SPASS (Weidenbach 2001) demonstrate
the potential of this approach.

The paper proceeds as follows: In Section 2 we provide
background on relevant logical languages and automated
reasoning systems. In Section 3 we define our DL-FOL lan-
guage and in Section 4, we propose a general ordered theory
resolution calculus, proving its soundness and completeness
in Section 4.3. In Section 5, we present initial empirical re-
sults and we conclude in Section 6 with a discussion of our
contributions and areas of future work.

2 Background
In this section we briefly review state-of-the-art automated
reasoning techniques that are relevant to DL-FOL reasoning.

2.1 Description Logic
Recent advances in tableaux-based DL inference algo-
rithms for (un)satisfiability checking have resulted in sound
and complete inference procedures for expressive DL lan-
guages such as SHIQ (Horrocks, Sattler, & Tobies 1999;
2000). Implementations of these inference procedures such
as Racer (Haarslev & Moeller 2001) and FaCT++ (Tsarkov
& Horrocks 2004) are known to be very efficient in prac-
tice. In this paper, we treat description logic reasoning as a
black box for unsatisfiability queries; we only require that
the DL be decidable and the reasoning system be sound and
complete.

2.2 First-order Logic
Automated theorem proving in first-order logic is a well-
explored field and we refer the reader to a standard refer-
ence (Chang & Lee 1973) for background on clausal nor-
mal form, unification, and resolution theorem proving. Re-
finements of resolution have yielded techniques such as or-
dered resolution (Bachmair & Ganzinger 2001) for restrict-
ing the search space, and theory resolution for incorporat-
ing special-purpose theory reasoning (Stickel 1985). Most
importantly for our work is the combination of both ideas
in a sound and complete ordered theory resolution frame-
work (Baumgartner 1992). On the implementation side,
there are a number of highly-optimized reasoners for full
first-order theorem proving such as Vampire (Riazanov &
Voronkov 2002), Otter (McCune 2003), and SPASS (Wei-
denbach 2001). SPASS is of particular interest because it has
special-purpose unification algorithms for handling monadic
predicates that frequently occur in sorted logics and FOL
translations of DLs.

2.3 Horn Extensions of Description Logic
Previous work on the CARIN language combines DLs and
Horn rules (Levy & Rousset 1996) but is extremely re-
stricted such that all inference is decidable. AL-Log (Donini
et al. 1998) combines DLs with Datalog rules, but requires
the concept and role symbols of the structural (DL) compo-
nent to be disjoint from the predicate symbols in the rela-
tional (Datalog) component.

A number of more expressive rule language extensions
of OWL DL have been defined for the Horn clause sub-
set of FOL with OWL DL types (Horrocks et al. 2004;
Boley et al. 2002). There have also been a number of pro-
posals for reasoning systems using default or closed-world
assumptions (Grosof et al. 2003; Golbreich 2004) in these
languages. We note that given the extremely expansive na-
ture of the Semantic Web, we often want to avoid a closed-
world assumption (Reiter 1978) so that inferences are mono-
tonic and hold even in the presence of additional KB con-
tent that could be encountered in the future. In this vein, a
full theorem prover has been used for a rule language ex-
tension of OWL DL by simply translating the DL portion to

FOL (Tsarkov et al. 2004). However, as previously noted,
such reasoning can be inefficient in certain inference tasks
for which DL reasoners are directly optimized.

2.4 FOL Extensions of Description Logic
Various extensions of FOL have used simple DL sort the-
ories to restrict quantified variables (Frisch 1985; Cohn
1989). However, these extensions place significant limita-
tions on the use of DLs in FOL statements. Constrained
resolution (Buerckert 1994) allows a constraint theory over
quantified variables that permits the use of DLs; however,
with a few extensions, it can be viewed as a variant of
theory resolution (Stickel 1985) that we discuss shortly.
Recent work on resolution calculi for deciding expressive
DLs (Hustadt et al. 2004; Hustadt, Motik, & Sattler 2005)
holds the interesting possibility of providing efficient rea-
soning for DLs fully within the resolution framework. How-
ever, current implementations are limited to function-free
disjunctive Datalog (Motik 2006).

Recent language extensions of OWL DL extend it with
FOL constructs, e.g., SWRL-FOL (Patel-Schneider 2004),
FOL RuleML (Boley et al. 2004), and SWSL (Battle
et al. 2005). For reasoning in such languages, systems
dating back to Krypton (Brachman, Fikes, & Levesque
1983) provided techniques for enhancing resolution using
a DL system. (Ordered) theory resolution (Stickel 1985;
Baumgartner 1992) somewhat enhanced and generalized
this result by providing a refutation-complete (ordered) res-
olution procedure for incorporating decidable first-order the-
ories into reasoning without duplicating the theory axioms in
the KB. However this work did not address theory-specific
computational issues and no follow-on work appears to pro-
vide an efficient theory resolution procedure for an expres-
sive DL theory such as SHI. As we will see, theories such
as SHI make it particularly difficult to identify the theory-
refuting substitutions required by ordered theory resolution
and carefully working around these difficulties comprises
one of the major contributions of this paper.

3 DL-FOL: an FOL Extension of DL
In this section we introduce DL-FOL, an FOL extension of
the DL SHI1. A DL-FOL KB comprises the following
components:

1. DL Component: expressed in standard SHI DL syntax.
We allow general concept inclusion (GCI) axioms since
decision procedures exist for this case (Horrocks, Sattler,
& Tobies 1999). We also allow cyclic terminologies, but
assume they have been internalized according to Horrocks
et al (1999).

2. FOL Component: expressed in a minor modification to
a standard equality-free FOL syntax (Chang & Lee 1973)
that includes the distinguished symbols > and ⊥. Inter-
nally the FOL component is stored in clausal form.

1We note that SHI is a subset of OWL DL which corresponds
to SHOIND−

n . Some of the additional expressivity provided by
OWL DL over SHI are individualsO, number restrictionsN , and
concrete data types D (such as strings and integers).

DL-FOL SHI constructors with DL, DL’ and FOL components
Constructor DL DL’ FOL

Atomic concept A A
Top (Thing) > >
Bottom (Nothing) ⊥ ⊥
Atomic role R R
Inverse role R∗, R∗ ≡ R− R∗ ∀x, y. R(x, y) ≡ R∗(y, x)
Transitive role R∗, R∗ ≡ R,R ∈ R+ R∗ ∀x, y, z. R∗(x, y) ∧R∗(y, z)→ R∗(x, z)
Negation ¬C ¬C
Conjunction C uD C uD
Disjunction C tD C tD
Value restriction A∗, A∗ ≡ ∀R.C A∗ ∀x. A∗(x) ≡ ∀y. R(x, y)→ C(y)
Exists restriction A∗, A∗ ≡ ∃R.C A∗ ∀x. A∗(x) ≡ ∃y. R(x, y) ∧ C(y)
Role filler restr. A∗ A∗ ∀x. A∗(x) ≡ R(x, c)

DL-FOL axioms with DL, DL’ and FOL components
Axiom DL DL’ FOL

Concept inclusion C v D C v D
Concept equivalence C ≡ D C ≡ D
Role hierarchy R v S R v S
Role equivalence R ≡ S R ≡ S
Concept assertion C(a)
Role assertion R(a, b)
FOL axiom ψ ψ

FOL query ψ ¬ψ

Table 1: Decomposition of DL-FOL into its SHI DL, DL’ and FOL components. (Role filler restrictions are not in SHI, but we include
them here.) The DL’ component is a restriction of the DL component that we will utilize in our completeness proofs. For the DL component,
the additional statements in parenthesis denote assertions that should be made when the respective constructors are used. A∗ and R∗ refer to
newly generated concept and role names that should be used when referring to the respective restrictions and roles they define.

Given a DL-FOL KB consisting of SHI DL and FOL as-
sertions that can freely reference the same concept and role
symbols, it is decomposed into DL and FOL components ac-
cording to Table 1.2 In Table 1 we also introduce an alternate
DL’ component, which we will utilize in our completeness
proofs. It is important to note that the DL-FOL decomposi-
tion introduces redundancy between the DL and FOL com-
ponents in the cases of inverse and transitive roles and role
restrictions. This redundancy does not occur between the
DL’ and FOL components.

To make this decomposition more concrete, we introduce
a simple DL-FOL KB and provide its DL, DL’ and FOL
components. Given a DL-FOL KB consisting of one asser-
tion {C ≡ D u ∃S−.B}, we would assert the following DL,
DL’ and FOL components:

DL :{C ≡ D u A∗, A∗ ≡ ∃R∗.B, R∗ ≡ S−}

DL’ :{C ≡ D u A∗}

FOL :{∀x. A∗(x) ≡ ∃y. R∗(x, y) ∧ B(y),

∀x, y. S(x, y) ≡ R∗(y, x)}

Note that A∗ and R∗ are newly generated symbols that
should be used to refer to their respective restriction and

2While we do not provide a procedure here, it is possible to
recognize many FOL axioms that can be represented within the
SHI DL syntax, thus allowing such FOL axioms to be asserted
and reasoned within the DL component.

role definitions. Also note that in the DL’ component
A∗ ≡ ∃R∗.B and R∗ ≡ S− are redundant with the FOL
component and are omitted in accordance with Table 1.

When the DL-FOL KB is queried, the query should be
negated and asserted in the FOL component regardless of
whether it is DL expressible (DL is a known subset of FOL).
In the next section, we will provide an ordered theory reso-
lution procedure for refuting the negated query.

It is important to mention that while our DL-FOL lan-
guage may evoke comparisons to sorted or constrained log-
ics with taxonomic sort theories (Frisch 1985; Cohn 1989;
Buerckert 1994), the DL component of DL-FOL is not re-
stricted to variable typing only. For example, we can define
a DL-FOL KB with the following components:

DL :{CompetentCEO ≡ CEO u CompetentWorker}

FOL :{∀x. CompetentWorker(x) ≡

Person(x) ∧ ∃y. hasJob(x, y)

∧ ∃z. requiresSkill(y, z) ∧ hasSkill(x, z)}

In this case, the FOL component asserts a non-DL express-
ible concept, and the DL component builds upon this asser-
tion with a term definition making use of the FOL concept.
Consequently, in DL-FOL, the FOL component actually ex-
tends the DL component as opposed to using it as a sim-
ple taxonomic sort theory. Thus, any non-fully redundant
calculi for reasoning in DL-FOL must address the complex
interactions between the FOL and DL components while
maintaining completeness.

Ordered Factoring

C
Cσ

if (1) σ is the most general syntactic unifier for
some {L1, . . . , Ln} ⊆ C, and (2) L1σ is max-
imal in Cσ

Ordered Narrow Theory Resolution

C1 . . . Cn

(C1σ − {L1σ}) ∪ . . . ∪ (Cnσ − {Lnσ})

if (1) σ ∈ CSRT ({L1, . . . , Ln}) for some
L1 ∈ C1, . . . , Ln ∈ Cn, and (2) Liσ is maxi-
mal in Ciσ (for i = 1 . . . n)

Table 2: The inference rules of the ordered narrow theory resolution calculus.

4 Ordered Theory Resolution for DL-FOL
We begin in Section 4.1 by summarizing Baumgartner’s or-
dered theory resolution (OTR) (Baumgartner 1992) for a
generic theory T and then instantiate it with a specific SHI
DL theory for DL-FOL in Section 4.2. We prove the sound-
ness and completeness of OTR for DL-FOL in Section 4.3
and then discuss practical resolution refinements and search
strategies in Section 4.4.

4.1 Ordered Theory Resolution
For completeness, we summarize Baumgartner’s definition
of the narrow3 OTR calculus (Baumgartner 1992):

Definition 1. LITERAL ORDERING (Baumgartner 1992)
Let � be a partial ordering on terms and let � denote the
strict subset of �. Let � satisfy the following conditions,
where (X,Y) ∈ Term × Term or (X,Y) ∈ Literal ×
Literal:

1. � is stable, i.e. for all substitutions σ: if X � Y then
Xσ � Y σ.

2. � is total on ground terms and � is total on ground liter-
als.

We define X � Y iff Y � X and X ≺ Y iff Y � X . Let M
be a literal set. L ∈ M is maximal in M iff for all L′ ∈ M
it holds that L ⊀ L′ (or, equivalently, iff there does not exist
a L′ ∈ M s.t. L ≺ L′). max(M) denotes the set of all
maximal literals of M .

Examples of orderings meeting these criteria are the well-
known lexicographic path orderings and recursive path or-
derings (Dershowitz & Plaisted 2001). Orderings are ex-
tremely useful since they substantially restrict the resolution
search space.

A clause is a set of literals {L1, . . . , Ln}, often written as
L1 ∨ . . . ∨ Ln. The non-theory portion of the KB axioms
are converted to a set of clauses. We require that a theory
T be representable by a set of satisfiable clauses and that
it provide a decision procedure for determining the unsat-
isfiability of a set of literals {L1, . . . , Ln}. In determining
(un)satisfiability, it is sufficient to limit the model theory to
consider Herbrand intepretations only, so we define a Her-
brand T -interpretation to be any total function from the
set of ground atoms to {true, false}. A T -interpretation
is an interpretation satisfying the theory T . A clause set Φ

3We say narrow because the theory T must decide the unsatis-
fiability of two or more literals (Stickel 1985).

is satisfiable iff there exists an interpretation that simulta-
neously assigns true to all ground instances of its members,
or else it is unsatisfiable. A literal set L is T -satisfiable
iff there exists an interpretation that satisfies theory T and
simultaneously assigns true to all ground instances of its
members, or else it is T -unsatisfiable.

Unlike ordinary resolution, the uniqueness of a most gen-
eral unifier (MGU) is not guaranteed in theory resolution.
Thus, we must generalize the concept of most general uni-
fiers (MGUs) to that of a set of most general theory refuting
substitions.

Definition 2. THEORY REFUTING SUBSTITUTION (Baum-
gartner 1992) Let L be a literal set. L is T -
complementary4 iff for all ground substitutions γ the set
Lγ 5 is T -unsatisfiable. L is minimal T -complementary
iff L is T -complementary and all subsets L′ ⊂ L are not
T -complementary.

We say that L is (minimal) T -refutable by σ iff Lσ is
(minimal) T -complementary.

A set of substitutions is a complete and most general set
of T -refuting substitutions for L (or short CSRT (L)) iff

1. (Correctness) for all σ ∈ CSRT , L is T -refutable by σ

2. and (Completeness) for all substitutions θ such that L is
T -refutable by σ, there exists a σ ∈ CSRT and a sub-
stitution σ′ such that θ = σσ′|var(θ).

We are now ready to provide the rules of inference for the
narrow ordered theory resolution calculus. These are given
in Table 2. We note that Baumgartner proves soundness and
completeness of this calculus when a procedure can be pro-
vided for theory T that determines the complete and most
general set of T -refuting substitutions for a set of literals
L (i.e., CSRT (L)).

4.2 Ordered Theory Resolution for DL-FOL
Having defined the general ordered theory resolution calcu-
lus, we now explain how we apply it to reasoning in DL-
FOL. In our case, our theory T will consist of an SHI
DL theory that we assume is satisfiable6 and which meets
the previously outlined conditions of being expressible as a

4This subsumes the notion of “syntactically complementary”
and thus standard resolution where two literals are complementary
if they are identical but of opposite polarity.

5The substitution γ is applied to each element of L.
6If satisfiability of the DL theory is in question, we can easily

do a consistency check to verify this.

set of clauses and having a decision procedure for unsatis-
fiability. Whenever an assertion (or query) is added to the
DL-FOL system, it is asserted directly in the DL and FOL
components according to Table 1.

At each step of ordered narrow theory resolution, one of
the inference rules from Table 2 is applied to the FOL com-
ponent.7 Search terminates with a refutation if the empty
clause is derived in the FOL component at any inference
step.8 The only part of the narrow OTR calculus that is spe-
cific to DL-FOL is the task of finding a correct and com-
plete set of theory refuting substitutions CSRT for a spe-
cific theory T . In Algorithm 1, we provide the procedure
FIND-CSRDL′(L) which uses the SHI DL’ theory from
Table 1 to determine CSRDL′(L) for a set of literals L.

The FIND-CSRDL′(L) proceeds in a straightforward
manner. If the set of literals L contains mixed monadic,
dyadic, and n-arity (n > 2) literals, the procedure calls it-
self recursively for the monadic and dyadic subsets. Since
n-arity (n > 2) literals cannot occur in the DL theory, any
MGUs for pairs of n-arity literals are returned along with the
substitutions returned by the recursive FIND-CSRDL′(L)
calls for the monadic and dyadic subsets of L. When L con-
tains only dyadic (monadic) literals, the CSR set is initial-
ized to the pairs of syntactically complementary literals in
L and CSR is augmented with any unifying substitutions for
role (concept) literals whose role (concept) names extracted
by Pred(·) are disjoint w.r.t. the DL’ role (concept) taxon-
omy. In this way FIND-CSRDL′(L) covers both theory
and standard resolution in accordance with Def. 2.

We note that the expressiveness of SHI poses some dif-
ficult problems that have been carefully worked around in
the definition of the DL, DL’ and FOL components and the
design of FIND-CSRDL′(L). Specifically, we note that
theory refuting substitutions for a full SHI DL component
without FOL redundancies for role restrictions can introduce
arbitrarily large function symbols, even when the literals be-
ing refuted contain only variables and constants!

In the following, we provide a few examples to demon-
strate these issues. However, we begin our examples by
making an important observation: the complete set of the-
ory refuting substitutions for our theory T (i.e., CSRT (L))
is necessarily independent of the procedure we use for decid-
ing T -unsatisfiability. This is a consequence of the fact
that Def. 2 for CSRT (L) is based on T -complementarity,
which is a model-theoretic notion independent of any deci-
sion procedure for T . Thus, if we use a decidable resolution
procedure for the clausal representation of a theory T , then
the CSRT (L) given by this decision procedure must match
the CSRT (L) given by any other decision procedure for T .

Consequently, in the following examples, we use resolu-
tion on the clausal representation of an SHI DL theory as
a decision procedure for determining CSRDL(L).9 Any

7We defer discussion of specific clause selection strategies to
Section 4.4.

8We assume that ⊥ literals are automatically removed from
clauses in a preprocessing step.

9Standard resolution terminates on all of our DL examples.
Consult Grosof et al (2003) for an FOL (and by CNF transforma-

Algorithm 1: FIND-CSRDL′(L) −→ CSRDL′(L)

input : DL′,L : an SHI DL’ theory and a set of literals

{L1, . . . , Ln} to refute using theory or standard resolution

output : CSR
DL′ (L) : complete & most general T -refuting

subst. of L when T = SHI DL’ (plus standard res. MGUs)
begin

// Find refuting subst. of monadic, dyadic and compl. literals separately

if (L consists of mixed monadic, dyadic, and n-arity (n > 2) literals)

then
LM := monadic literal subset of L from DL’ component;

LD := dyadic literal subset of L from DL’ component;

σC := set of MGUs for pairs of n-arity syntactically

complementary literals of L;

return FIND-CSR
DL′ (LM) ∪ FIND-CSR

DL′ (LD) ∪ σC ;

CSR := set of MGUs for any pair of syntactically complementary

literals of L;

if (L consists of dyadic literals) then
// Find refuting substitution of dyadic literals in DL’ component

// (i.e., DL’ roles)

foreach (pair of literals 〈L1, L2〉 from L where L1 has positive

polarity and L2 has negative polarity) do
// Predicate sumbols ignored, MGU of term lists only

σ := MGU(L1, L2);

if (σ 6= null ∧ Pred(L1) vDL Pred(L2)) then
CSR := CSR ∪ σ;

else
// Find refuting substitution of monadic literals in DL’ component

// (i.e., DL’ concepts)

for (s := 2..|L|) do
foreach (set of literals 〈L1, . . . , Ls〉 from L of size s

where a subset has not already been refuted) do
σ := ∅;

LC := >;

for (k := 2..s) do
// Pred. sumbols ignored, MGU of term lists only

σ := compose(σ, MGU(Lk−1, Lk));

LC := LC u Pred(Lk−1);

if (σ 6= null ∧ LC vDL ¬Pred(Ls)) then
CSR := CSR ∪ σ;

return CSR;

end

alternative decision procedure for CSRDL(L) must nec-
essarily derive the same substitutions modulo renaming of
Skolem functions in the clausal representation of DL. (Note
that we are talking about the full DL theory here, not DL’.)

Example 1. Suppose that we are given the DL-FOL KB as-
sertions {∃R.A v B, ¬B(c), R(c, d), A(d)}.10 Then we
obtain the clausal representation of the DL and FOL com-
ponents for this KB:

DL :{¬R(x, y) ∨ ¬A(y) ∨ B(x)}

FOL :{¬B(c), R(c, d), A(d)}

We can directly refute this DL-FOL KB by resolving all three
singleton FOL clauses using CSRDL(L) = {∅}.

tion, clausal) representation of the DL theory.
10In our examples, we use w, x, y, z to denote variables, all re-

maining 0-arity terms should be interpreted as constants.

The last example was simple and no unexpected surprises
occurred. However, in the next example, we will see that if
we change the DL-FOL KB slightly then the result is not so
straightforward.

Example 2. Suppose that we are given the DL-FOL KB as-
sertions {∀R.A v B, ¬B(c), ∀z. ¬R(c, z) ∨ A(z)}. Then
we obtain the clausal representation of the DL and FOL
components for this KB:

DL :{R(x, f(x)) ∨ B(x), ¬A(f(y)) ∨ B(y)}

FOL :{¬B(c), ¬R(c, z) ∨ A(z)}

While this DL-FOL KB is refutable, we must do it in
two narrow theory resolution steps. In the first step, we
choose L = {¬R(c, z),¬B(c)} to refute. In this case
CSRDL(L) = {{z/f(c)}}. Because the literal ¬R(c, z)
came from the clause ¬R(c, z) ∨ A(z), this yields the re-
solvent A(f(c)). In the next step, we choose to refute
L = {A(f(c)),¬B(c)}. In this case CSRDL(L) = {∅}
and the resolvent is ⊥.

While the previous example demonstrated a straightfor-
ward application of resolution, we note an interesting phe-
nomenon: although the FOL theory initially contained no
function symbols, the first theory resolution step introduced
a function symbol into the FOL theory. While this is obvi-
ous from the clausal representation of the DL theory, we note
that any non-resolution decision procedure for determining
CSRDL(L) would also need to introduce function symbols
in this example case. But this is only the beginning of the
problem, as it turns out in the next example, narrow theory
resolution with an SHI DL theory can introduce even larger
arity functions symbols into a function-free FOL theory.

Example 3. Suppose that we are given the follow-
ing DL-FOL KB assertions {∃S.∀R.A v B, ¬B(c),
∃w∀z. S(c, w) ∧ (¬R(w, z) ∨ A(z))}. Then we obtain the
clausal representation of the DL and FOL components for
this KB:

DL :{¬S(x, y) ∨ R(y, f(x, y)) ∨ B(x),

¬S(x, y) ∨ ¬A(f(x, y)) ∨ B(x)}

FOL :{¬B(c), S(c, d), ¬R(d, z) ∨ A(z)}

This DL-FOL KB is refutable in two nar-
row theory resolution steps. In the first steps
we refute L = {¬B(c), S(c, d),¬R(d, z)} with
CSRDL(L) = {{z/f(c, d)}} to obtain the resol-
vent A(f(c, d)). In the next step, we choose to re-
fute L = {A(f(c, d)),¬B(c), S(c, d)}. In this case
CSRDL(L) = {∅} and the resolvent is ⊥.

This is all to say that narrow theory resolution for the
SHI DL theory has introduced a function symbol of arity
2 into the originally function-free FOL theory. The astute
observer will notice that we can generalize the structure of
this example to obtain arbitrary size function symbols.

Theorem 1. For arbitrarily large n, there exists a function-
free set of literals L for which a complete set of theory refut-
ing substitutions CSRDL(L) (for a DL theory from Table 1)
contains an n-arity function symbol.

Proof Sketch. Following the above examples, we can con-
struct DL-FOL KB of the following form for for arbitrarily
large n:

{∃S1.∃S2. . . . ∃Sn.∀R.A v B, B(c),

∃w1, w2, . . . , wn∀z. S1(c, w1) ∧ S2(w1, w2)∧

. . . ∧ Sn(wn−1, wn) ∧ (¬R(wn, z) ∨ A(z))}

While the derivation is tedious, it is a straightforward proce-
dure to verify that the DL theory introduces a function sym-
bol of size n into a function-free FOL theory. This follows
from the fact that to convert the DL GCI (v) axiom to clausal
form, we will need to negate the LHS of the GCI resulting in
a chain of quantifiers ∀w1 . . . ∀wn ∃z where the innermost
variable z will be Skolemized to f(w1, . . . , wn). On the
other hand, the FOL theory will have no function symbols
because it has the quantifier chain ∃w1 . . . ∃wn ∀z. Now,
given the complementary structure of this DL-FOL KB it is
trivial to show that it must be refutable. Following a reso-
lution derivation similar to Ex. 3 that requires exactly two
steps, we can show a refutation of this DL-FOL KB that in-
troduces an n-arity function symbol f(· · ·) into CSRDL(L)
for the refutation of the function-free literals L occurring in
the first resolution step of this refutation. Thus, for arbi-
trarily large n, we can produce an example that satisfies the
theorem.

Now, Theorem 1 introduces a particular difficulty for us
if we want to use a blackbox DL reasoner to determine
CSRDL(L) for our SHI DL theory. The blackbox DL rea-
soner must be able to properly interpret the function sym-
bols that the DL theory can introduce into the FOL theory
on account of its clausal representation. Yet it is not im-
mediately clear how this could be done with today’s state-
of-the-art tableau reasoners that neither perform resolution
nor handle function symbols. We work around this in our
calculus by making DL role restrictions (and thus the poten-
tial source of function symbols in the DL theory) redundant
with the FOL component of the DL-FOL KB. In addition,
to avoid the need for the DL theory to reason with function
symbols from the FOL theory, all terms including constants
(i.e., nominals) are also offloaded to the FOL component.
It is also not clear whether there is a generalization of Al-
gorithm 1 that will yield CSRDL′(L) when DL’ contains
inverse and transitive11 DL role definitions so we have also
made these redundant w.r.t. the FOL theory.

We briefly mention a few reasons which help mitigate the
fact that we have have introduced FOL redundancy w.r.t. the
DL theory: (1) Most of the redundant FOL axioms can be
represented as Horn clauses for which many efficient or-
dered resolution strategies exist. (2) Term indexing opti-
mizations permit efficient FOL resolution with KBs consist-
ing of large amounts of terms, so it is not necessarily a bad
idea to handle nominals and complex terms in the FOL com-
ponent. (3) If we extend the DL theory to SHIN in the
future, including nominals in the theory would require that
Algorithm 1 attempt to refute arbitrary non-unifiable sets

11E.g., for transitive role S, a literal set L containing S(x, f(x))
might require taking the infinite transitive closure of S.

Given DL-FOL Axioms: (PT is for partially-tangible, BW for between, SL for spatial location, and OFIL for object found in location)

PT v >, Location v >, SL v Location, City v PT, River v PT, ColdLocation v SL

ColdLocation ≡ (Cold u Location) t ∃hasRegion(∃hasClimate.arctic)

Location(canada), hasRegion(canada, nunavut), hasClimate(nunavut, arctic)

∀w, x, y, z PT (w) ∧ PT (x) ∧ PT (y) ∧ SL(z)→ OFIL(w, z) ∧OFIL(x, z) ∧BW (w, x, y)→ OFIL(y, z)

Query:

∀w, x, y. City(w) ∧ City(x) ∧River(y)→ ∃z. SL(z) ∧ (OFIL(w, z) ∧OFIL(x, z) ∧BW (w, x, y)→ OFIL(y, z))?

Convert the given axioms and negated query to the DL-FOL DL and FOL components and apply the ordered theory resolution inference
rules for DL-FOL from Table 2 as follows. We omit literal ordering in this proof, its specification would simply restrict the order in
which the following inferences are made. For all narrow ordered theory resolution (OTR) steps, θ = CSRDL′(L).

1a,b,c. Given FOL Component Location(canada), hasRegion(canada, nunavut),
hasClimate(nunavut, arctic)

1d. Given FOL Component ¬SL(z) ∨ ¬PT (w) ∨ ¬PT (x) ∨ ¬PT (y)∨
¬OFIL(w, z) ∨ ¬OFIL(x, z) ∨ ¬BW (w, x, y) ∨OFIL(y, z)

2a. Given FOL Component ¬hasClimate(x, arctic) ∨A∗(x) ←− Def. for ∃hasClimate.arctic ≡ A∗

2b. Given FOL Component ¬hasRegion(x, y) ∨ ¬A∗(y) ∨A∗∗(x) ←− Def. for ∃hasRegion.A∗ ≡ A∗∗

3. Negated Query City(c1)
4. Negated Query City(c2)
5. Negated Query River(r)
6. Negated Query ¬SL(z) ∨OFIL(c1, z)
7. Negated Query ¬SL(z) ∨OFIL(c2, z)
8. Negated Query ¬SL(z) ∨BW (c1, c2, r)
9. Negated Query ¬SL(z) ∨ ¬OFIL(r, z)
10. Narrow OTR, 1c with 2a,θ = {x/nunavut} A∗(nunavut)
11. Narrow OTR, 2b with 1b,10,

θ = {x/canada, y/nunavut} A∗∗(canada)
12. Narrow OTR, 11 with 6, θ = {z/canada} OFIL(c1, canada)
13. Narrow OTR, 11 with 7, θ = {z/canada} OFIL(c2, canada)
14. Narrow OTR, 11 with 8, θ = {z/canada} BW (c1, c2, r) ←− Complex refutation: ¬SL,A∗∗ v ColdLocation v SL
15. Narrow OTR, 11 with 9, θ = {z/canada} ¬OFIL(r, canada)
16. Narrow OTR, 1d with 3-5, θ = {w/c1, x/c2} ¬SL(z) ∨ ¬OFIL(c1, z) ∨ ¬OFIL(c2, z) ∨ ¬BW (c1, c2, r) ∨OFIL(r, z)
17. Narrow OTR, 16 with 11-15, θ = {z/canada} ⊥ ←− Refutation, query proved! �

Table 3: Sample query-answering with the DL-FOL reasoning procedure.

of literals. As an example, consider the refutable DL-FOL
KB {≤ 2R v B,¬B(a), R(a, 1), R(a, 2), R(a, 3)}. In this
case, the four literals {B(a), R(a, 1), R(a, 2), R(a, 3)} will
need to be simultaneously refuted at some point even though
they are not unifiable. Having to check all non-unifable lit-
erals could lead to a huge explosion in the complexity of
DL theory reasoning. In contrast Algorithm 1 currently only
tests satisfiability of unifiable sets of literals.

Having now explained the reasoning for our DL-FOL de-
composition given in Table 1, we demonstrate a full appli-
cation of our algorithm to an application of query-answering
in Table 3 for the OpenCyc KB (CycCorp, Inc. 2005) aug-
mented with a few additional assertions.

4.3 Soundness and Completeness

We now show that this procedure satisfies the two conditions
of correctness and completeness from Definition 2 that are
required to show soundness and completeness of the DL-
FOL ordered theory resolution calculus. As a preliminary

step, we note that the DL’ component given in Table 1 is just
a weakening of the DL component where the redundant DL
axioms for the exists and value restrictions, and inverse and
transitive roles are removed. We will first prove properties
for a DL-FOL theory using a DL’ component and then show
that these results trivially generalize to a DL-FOL theory
using the full DL component.
Theorem 2. Procedure FIND-CSRDL′(L) is correct.
I.e., when T = DL′: ∀σ ∈ CSRT , L is T -refutable by σ.

Proof Sketch. It is straightforward to verify that in each
case where FIND-CSRDL′(L) adds a substitution σ to
CSRDL′(L), then Lσ is T -complementary under theory
DL’. Thus, no T -interpretation could simultaneously sat-
isfy all literals in Lσ. and by definition, for all σ ∈ CSRT ,
L is T -refutable by σ.
Theorem 3. Procedure FIND-CSRDL′(L) is complete.
I.e., when T = DL′: for all substitutions θ such that L is T -
refutable by θ, there exists a σ ∈ CSRT and a substitution
σ′ such that θ = σσ′|var(θ).

Ordered Partial Narrow Theory Resolution

C1, C2

(C1σ − {L1σ}) ∪ (C2σ − {L2σ}) ∪ (L1 u L2)σ

if (1) σ ∈ MGU({L1, L2}) (term-only
MGU) for some L1 ∈ C1, L2 ∈ C2, and
(2)Liσ is maximal inCiσ (for i = 1 . . . 2)

Table 4: The ordered partial narrow theory resolution inference rule that replaces the narrow version.

Proof Sketch. T -refuting substitutions θ for L are only
possible in three cases: (1) θ unifies two syntactically com-
plementary literals in L where their MGU must subsume θ
and be in CSRDL′(L); (2) θ unifies two dyadic literals in L
that are complementary via a role subsumption chain where
their MGU must subsume θ and be in CSRDL′(L). This
follows from the observation that the only DL’ role axioms
are simple role inclusions and these are all representable as
binary Horn clauses. In this case, the role taxonomy pro-
vides the closure of all inferences w.r.t. these axioms; Or
(3) θ unifies a set (or subset) of monadic literals in L that
renders the conjunction of the literal predicate names un-
satisfiable in the DL’ theory. This last statement follows
from the fact that all DL’ axioms for monadic literals consist
solely of monadic literals sharing the same variable. Thus,
a refutation of these clauses can only be made by resolving
monadic clauses unified on the same term. (This implies
that no dyadic literals could influence unsatisfiability of Lθ
since there would be no way to derive a refutation from the
clausal representation of DL’.) And we know that if Lθ is
purely monadic, it is unsatisfiable under the DL’ theory if
Pred(L1) u . . . u Pred(Ln) is unsatisfiable under the DL’
theory. Now, assume there does not exist a σ ∈ CSRDL′(L)
and a substitution σ′ such that θ = σσ′|var(θ). But we
know that θ must unify some unsatisfiable set of literals, and
that the MGUs for all possible sets and subsets of unsatis-
fiable literals L are in CSRDL′(L). Then θ = σσ′|var(θ)
for some σ ∈ CSRDL′(L) and substitution σ′. Thus, by
contradiction, we satisfy completeness for case (3). By con-
struction of the DL and FOL theories, no other cases could
exist. Thus, from the fact that cases (1), (2), and (3) are
exhaustive and individually complete, we can infer the com-
pleteness of FIND-CSRDL′(L).

Having shown that FIND-CSRDL′(L) satisfies the cor-
rectness and completeness conditions, the soundness and
refutation completeness of ordered theory resolution for DL-
FOL for a weakened DL theory DL’ is a direct consequence
of Baumgartner’s proof of the soundness and completeness
of the ordered narrow theory resolution calculus (Baumgart-
ner 1992). By strengthening the DL theory to the full DL of
Table 2 and using FIND-CSRDL′(L), we only introduce
redundancy (with the advantage of shorter refutation deriva-
tions), so soundness and refutation completeness are clearly
preserved. This gives us our final result:

Theorem 4. The ordered narrow theory resolution calculus
from Table 2 is sound and refutation complete for DL-FOL
when T = DL, the procedure FIND-CSRDL′(L) given
in Algorithm 1 is used to derive CSRT (L), and the DL and
FOL theory components are defined as in Table 1.

We note that in standard resolution calculi, tautologi-

cal clauses are redundant and can be safely deleted with-
out affecting completeness. Unfortunately, this result does
not extend to (ordered) theory resolution (Stickel 1985;
Baumgartner 1992). For example, consider a DL-FOL KB
with DL component {A ≡ B,B ≡ C} and FOL component
Φ containing the clauses {A(x) ∨ B(x) ∨ C(x),¬A(x) ∨
¬B(x) ∨ ¬C(x)}. While this set of clauses is refutable via
narrow OTR, any derivation of the empty clause necessarily
requires the intermediate derivation of a tautology. We con-
jecture that extending ordered factoring to consider theory
implication as opposed to syntactic equivalence may resolve
this problem.

4.4 Ordered Theory Resolution Strategies

Ordered theory resolution leaves open the possibility of res-
olution strategy, yet this is perhaps the most critical aspect
of the system w.r.t. efficient and effective reasoning. In this
section, we adapt concepts used in modern resolution theo-
rem proving strategies to exploit structure in DL-FOL.

A refutation-complete resolution strategy would assign
each clause an index 1 . . . n (newly generated clauses re-
ceive the next free index) and apply all inference rules for
clause index k that involve clauses 1 . . . k.12 We’ll call this
the age selection strategy, i.e., older clauses are selected be-
fore younger, more recently inferred clauses. A major re-
finement of this idea used in many modern theorem provers
is the age-weight ratio a : w selection strategy (McCune
2003) where for every a + w clauses chosen, a are cho-
sen according to the age selection strategy and w are cho-
sen from a priority queue where each clause is assigned a
weight. Clearly, so long as a is non-zero, the strategy re-
mains refutation-complete, while allowing the incorporation
of heuristic knowledge to select clauses that are likely to
contribute to a refutation (e.g., clauses with fewer literals).

In a moment, we show how we can additionally exploit
DL-FOL structure for determining the heuristic weight, but
first we digress with a discussion of how to reduce nar-
row OTR to partial narrow OTR so that we need only re-
solve a maximum of two clauses at a time. To do this,
we note that FIND-CSRDL′(L) is extremely efficient for
theory resolution cases where |L| = 2. That is, to deter-
mine whether the conjunction of two role or concept liter-
als L1 and L2 are unsatisfiable, it suffices to check whether
Pred(L1) v ¬Pred(L2) in a DL taxonomy (where as pre-
viously noted, the Pred(·) function returns the predicate

12Of course, the literal ordering is also important and we note
that using a lexicographic path ordering where non-DL literals and
DL role literals are given precedence over DL concept literals is a
good choice since it postpones the most difficult literal resolutions
until they are needed to obtain a refutation.

name for the literal).
Unfortunately, binary resolution is not complete

for OTR. For example, take the following DL KB
{D1 = A u ¬B,D2 = B u ¬C,D3 = C u ¬A} and FOL
KB with three clauses {D1(x) ; D2(y) ; D3(z)}. While
the FOL KB can be refuted by one narrow OTR step, no
binary OTR steps with |L| = 2 can be applied.

Fortunately, there is a refinement of theory resolution
that restricts T -unsatisfiability checking to cases where
|L| = 2 and retains completeness. This refinement is known
as partial narrow theory resolution (Stickel 1985) and it is
given in Table 4. Of course, such simplicity must come with
a catch, and this catch is that a partial narrow OTR must be
applied regardless of whether (L1 u L2)σ can be refuted. If
(L1 u L2)σ can be refuted by the DL theory then this lit-
eral can be removed from the consequence (this case is just
standard OTR), otherwise the compound literal (L1 u L2)σ
is a residue that must be resolved away by additional par-
tial narrow OTR steps. With proper precedence assigned to
the residue literals, we can prove the completeness of partial
narrow OTR.

Theorem 5. If all compound residue literals are assigned an
ordering precedence that is equal to the maximal precedence
among their primitive constituents, then the partial narrow
OTR rule from Table 4 and the ordered factoring rule from
Table 2 are complete for DL-FOL when T = DL, the pro-
cedure FIND-CSRDL′(L) given in Algorithm 1 is used to
derive CSRT (L), and the DL and FOL theory components
are defined as in Table 1.

Proof Sketch. The proof of completeness follows from the
fact that partial narrow OTR with the specified precedence
for compound literals essentially simulates narrow OTR. By
the age-weight ratio selection strategy, we know that we will
eventually derive all possible combinations of axioms using
partial narrow OTR (if the resolved literals do not refute,
they are retained as compound residue literals to be resolved
later). It is only sufficient to show that when literals would
be resolved away in the narrow OTR case, they would also
be resolved away in the case of partial narrow OTR. We can
show this by an inductive argument that constructs a narrow
OTR resolution of clause set {C1, . . . , Cn} on literals Lσ
from n − 1 partial narrow OTR resolutions. By the order-
ing restriction of narrow OTR and Def. 1, we know that for
each Li ∈ L, Li must be maximal in Ci (this follows from
the stability property of substitutions from Def. 1). Then we
know that we can perform n−1 resolutions on {C1, . . . , Cn}
in any order to yield a final clause with compound literal
(L1 u . . .uLn)σ′ (for all intermediate resolutions, the com-
pound literal must have maximal precedence since it derives
from the maximal precedence of its constituents). From the
definition of FIND-CSRDL′(L) used in both narrow OTR
and partial narrow OTR, we can infer that σ = σ′. Hence,
(L1 u . . . u Ln)σ′ is unsatisfiable since σ ∈ CSRDL′(L)
(we know this from the narrow OTR resolution) so we can
remove this compound literal resulting in the same resolvent
as narrow OTR. Thus, partial narrow OTR simulates all pos-
sible narrow OTR steps and narrow OTR with factoring was
already proved sound and complete in Theorem 4.

To deal with the potential inefficiencies of partial narrow
OTR, we must introduce weighting heuristics to be used
with the age-weight ratio selection strategy. Heuristically,
the larger a residue literal (L1 u . . . u Ln)σ grows, the less
likely it is to be refuted given that no proper subset could be
refuted. We can build this heuristic into our strategy by as-
signing the priority weight w of a clause to decrease with the
size of the largest residue literal in the clause. When used
with the age-weight ratio selection strategy, this postpones
resolution of clauses with large residues that are unlikely to
be resolved away, and thus yield even larger residues.

Another useful heuristic, this time applied to the literal
ordering, is that of giving higher ordering priority to liter-
als associated with concepts and roles that are deeper in the
taxonomy. We call this the Prefer-Deep strategy and its in-
verse the Prefer-Shallow strategy. The reason that we ex-
pect the Prefer-Deep strategy to be more efficient is that it
prefers inferences relevant to specialized concepts and roles
that are often much less prolific than inferences for concepts
and roles near the top of their respective hierarchies. Since
we need to refute all literals in a clause, it only makes sense
to try refuting the more difficult ones first, i.e. the ones that
deal with more specific requirements and for which fewer
inference opportunities exist. In doing this, the size of the
KB is also minimized which is important for efficient infer-
ence.

Altogether, partial narrow OTR with age-weight selection
and the above weighting and literal ordering heuristics give
us a specialized refutation-complete strategy for DL-FOL
that need only refute binary sets of literals and that exploits
taxonomic information for selecting literals to resolve.

5 Experiments with a Proof-of-Concept
System

We investigated the application of DL-FOL reasoning to the
spatial reasoning subset of the OpenCyc KB (CycCorp, Inc.
2005). For this KB, we extracted a small subset of the CycL
language that could be represented as a subset of the SHI
DL and translated the rest to FOL; as a result, the KB con-
tained 332 DL concepts and 323 FOL axioms. We applied
the partial narrow theory resolution procedure for DL-FOL
using FaCT++ (Tsarkov & Horrocks 2004) as our black-box
DL reasoner and compared it to the highly-optimized Vam-
pire (Riazanov & Voronkov 2002), Otter (McCune 2003),
and SPASS (Weidenbach 2001) theorem provers. We used
three versions of our DL-FOL reasoner: the DL-FOL or-
dered resolution prover using only the full FOL translation
of the DL-FOL KB and two versions of the partial narrow
OTR inference system presented in this paper – one for
the Prefer-Deep weighting heuristic and one for the Prefer-
Shallow weighting heuristic.

While our experimental results illustrate the potential of
our technique in minimizing clause generation and proof
length, it should be noted that Vampire typically posted over
an order of magnitude faster CPU time than our DL-FOL
prover. Clearly an objective comparison of our proposed
technique with Vampire, Otter and SPASS is not achiev-
able. In particular, because of a lack of suitable DL plus

Combined Results for the OpenCyc KB
Reasoner # Successes Avg. Clauses Gen. Avg. Resolution Proof Length
Vampire v8 25/25 137 10.5
Otter v3.3 25/25 603 9.6
SPASS v2.1 25/25 4763 9.4
DL-FOL (FOL Translation Only) 5/25 N/A N/A
DL-FOL (Partial Narrow OTR – Prefer-Shallow) 25/25 346 7.3
DL-FOL (Partial Narrow OTR – Prefer-Deep) 25/25 147 7.3

Table 5: For our subset of the OpenCyc KB, each reasoner was run on 25 queries. We report the total number of successful queries (all
were provable as verified by the results), the average number of clauses generated, and the average number of resolution steps in the resulting
proofs. Results are not shown when the theorem prover could not answer all queries within a 5 minute time limit.

FOL KBs13, we constructed a set of benchmark problems
that we felt would be difficult for current theorem provers
to address (i.e., inferences that involve complex subsump-
tion chains). This skewed the results slightly in our favor in
terms of proof length although Vampire slightly edges out
DL-FOL in the average number of clauses generated. On
the other hand, it is unfair to compare our proof-of-concept
system with these highly optimized theorem provers. Better
CPU performance by these systems is bound to reflect en-
gineering efforts as much as an intrisically better approach.
We additionally note that DL ontologies such as Galen (Rec-
tor, Nowlan, & Glowinski 1993) and Tambis (Baker et al.
1998) that have proved difficult for theorem provers such as
Vampire (Tsarkov et al. 2004) may fare better for DL-FOL
OTR reasoners if they were extended with full FOL axioms
since the FaCT++ reasoner performed very well on these on-
tologies.

Since our DL-FOL prover was not heavily optimized, per-
haps the most telling results come from self-comparison.
The DL ontology in our OpenCyc KB was fairly small, con-
taining only 332 concepts, but this proved to be a prob-
lem when the entire DL-FOL KB was translated to FOL.
In this case, ordered resolution spent the majority of its time
making simple taxonomic inferences with the DL subclass
axioms and only managed to prove a very small subset of
the queries. On the other hand, these unneccessary infer-
ences did not occur for the partial narrow OTR reasoners
which performed much better. While they both found the
same proofs, we note that the Prefer-Deep strategy gener-
ated fewer clauses than the Prefer-Shallow strategy since it
focused on refuting the “deeper” literals in the taxonomy
for which there were fewer inferences to be made. Conse-
quently, we see that the intuitions behind the Prefer-Deep
heuristic were appropriate for this particular test KB and set
of queries.

6 Conclusion
We have presented an instantiation of Baumgartner’s or-
dered theory resolution calculus (Baumgartner 1992) for hy-
brid inference in FOL extensions of the SHI DL that mini-
mizes redundancy of DL reasoning relative to the FOL com-
ponent. This is a notable accomplishment since theory re-

13Probably in part because there are no effective reasoners for
DL plus FOL KBs.

futing substitutions for the SHI DL can introduce arbitrar-
ily large function terms and DL reasoning languages (even
those handling nominals) were not designed for such reason-
ing. In addition, we presented refinements of the basic or-
dered theory resolution strategy that were intended to further
restrict and guide search using taxonomic information. As a
result of all these considerations, the DL-FOL ordered the-
ory resolution calculus permits the near-seamless integration
of highly optimized off-the-shelf DL reasoners with opti-
mized strategies for resolution-based theorem proving. Em-
pirically, a proof-of-concept implementation of the DL-FOL
hybrid reasoner demonstrates the potential of this approach
in comparison to the alternate strategy of using a theorem
prover on an FOL translation of the DL-FOL KB.

This research is just the beginning of an exciting new class
of reasoners, and there are many extensions. We would like
to explore saturation and redundancy extensions (Bachmair
& Ganzinger 2001). In addition, we would like to look at
superposition extensions of ordered resolution with equality
as it appears in DL theories (c.f. (Hustadt, Motik, & Sat-
tler 2005)), thus ultimately allowing us to define a complete
ordered resolution calculus for the SHIQ DL or beyond.
Also, given the difficulty of implementing an optimized the-
orem prover, but the simple way in which the DL-FOL cal-
culus allows theorem provers and DL reasoners to interact,
we would like to consider integrating our ordered theory res-
olution technique into a highly-optimized theorem prover.
Such approaches hold the promise of allowing us to engi-
neer state-of-the-art reasoning systems that can scale to the
inference demands of large DL-FOL ontologies, especially
those that we expect to encounter as such languages take
hold on the Semantic Web.

Acknowledgements
We would like to thank Mark Stickel, Peter Patel-Schneider
and the anonymous reviewers for their comments and sug-
gestions regarding this work. Many ideas in this paper
stemmed from their input.

References
Bachmair, L., and Ganzinger, H. 2001. Resolution theorem prov-
ing. In Robinson, A., and Voronkov, A., eds., Handbook of Auto-
mated Reasoning, volume I. Elsevier Science. chapter 2, 19–99.

Baker, P.; Brass, A.; Bechhofer, S.; Goble, C.; Paton, N.; and
Stevens, R. 1998. Tambis: Transparent access to multiple bioin-

formatics information sources: an overview. In Sixth Interna-
tional Conference on Intelligent Systems for Molecular Biology,
25–34.

Battle, S.; Bernstein, A.; Boley, H.; Grosof, B.; Gruninger, M.;
Hull, R.; Kifer, M.; Martin, D.; McIlraith, S.; McGuinness, D.;
and Su, J. 2005. Semantic web service language (swsl). Doc-
ument located on-line at http://www.w3.org/Submission/SWSF-
SWSL/.

Baumgartner, P. 1992. An Ordered Theory Resolution Calcu-
lus. In Voronkov, A., ed., Logic Programming and Automated
Reasoning (Proceedings), volume 624, 119–130. St. Petersburg,
Russia: Springer.

Berardi, D.; Gruninger, M.; Hull, R.; and McIlraith, S. 2004.
Towards a first-order ontology for semantic web services. In
Working notes of the W3C Workshop on Constraints and Ca-
pabilities for Web Services. Document located on-line at
http://www.w3.org/2004/09/ws-cc-program.html.

Boley, H.; Grosof, B.; Sintek, M.; Tabet, S.; and Wagner,
G. 2002. RuleML design. Document located on-line at
http://www.ruleml.org/indesign.html.

Boley, H.; Dean, M.; Grosof, B.; Sintek, M.; Spencer, B.;
Tabet, S.; and Wagner, G. 2004. FOL RuleML: The
first-order logic web language. Document located on-line at
http://www.ruleml.org/fol/.

Borgida, A. 1996. On the relative expressiveness of description
logics and predicate logics. Artif. Intell. 82(1-2):353–367.

Brachman, R. J.; Fikes, R. E.; and Levesque, H. J. 1983. KRYP-
TON: Integrating terminology and assertion. In AAAI-83, 31–35.

Buerckert, H.-J. 1994. A resolution principle for constrained
logics. Artif. Intell. 66(2):235–271.

Chang, C.-L., and Lee, R. 1973. Symbolic Logic and Mechanical
Theorem Proving. Orlando, FL, USA: Academic Press, Inc.

Cohn, A. G. 1989. Taxonomic reasoning with many-sorted logics.
Artificial Intelligence Review 3:89–128.

CycCorp, Inc. 2005. OpenCyc. OpenCyc website:
http://www.opencyc.org/.

Dean, M. 2004. Semantic Web rules: Covering the use cases. In
RuleML ’04, volume 3323 of Lecture Notes in Computer Science,
1–5.

Dershowitz, N., and Plaisted, D. 2001. Rewriting. In Robinson,
A., and Voronkov, A., eds., Handbook of Automated Reasoning,
volume I. Elsevier Science. chapter 9, 535–610.

Donini, F. M.; Lenzerini, M.; Nardi, D.; and Schaerf, A. 1998.
Al-log: integrating datalog and description logics. J. of Intelligent
and Cooperative Information Systems 10:227–252.

Frisch, A. M. 1985. An investigation into inference with re-
stricted quantification and a taxonomic representation. SIGART
Bull. (91):28–31.

Golbreich, C. 2004. Combining rule and ontology reasoners for
the Semantic Web. In RuleML ’04, volume 3323 of Lecture Notes
in Computer Science, 6–22.

Grosof, B. N.; Horrocks, I.; Volz, R.; and Decker, S. 2003.
Description logic programs: Combining logic programs with de-
scription logic. In WWW 2003.

Haarslev, V., and Moeller, R. 2001. Racer reasoner implementa-
tion. Racer website: http://www.racer-systems.com/.

Horrocks, I., and Patel-Schneider, P. 2003. Reducing owl en-
tailment to description logic satisfiability. In 2nd International
Semantic Web Conference (ISWC-03).

Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.; Grosof,
B.; and Dean., M. 2004. SWRL: A semantic web rule lan-
guage combining OWL and RuleML. Document located on-line
at http://www.daml.org/2004/04/swrl/.

Horrocks, I.; Sattler, U.; and Tobies, S. 1999. Practical reasoning
for expressive description logics. In Ganzinger, H.; McAllester,
D.; and Voronkov, A., eds., Proceedings of the 6th International
Conference on Logic for Programming and Automated Reason-
ing (LPAR’99), number 1705 in Lecture Notes in Artificial Intel-
ligence, 161–180. Springer-Verlag.

Horrocks, I.; Sattler, U.; and Tobies, S. 2000. Practical reasoning
for very expressive description logics. Logic Journal of the IGPL
8(3):239–264.

Hustadt, U.; Motik, B.; ; and Sattler, U. 2004. Reducing SHIQ-
description logic to disjunctive datalog programs. In KR 2004.
Los Altos, CA: Morgan Kaufmann.

Hustadt, U.; Motik, B.; and Sattler, U. 2005. A decomposi-
tion rule for decision procedures by resolution-based calculi. In
LPAR 2004, number 3452 in Lecture Notes in Computer Science.
Springer Verlag.

Levy, A. Y., and Rousset, M.-C. 1996. CARIN: A representation
language combining horn rules and description logics. In ECAI-
96, 323–327.

McCune, W. 2003. Otter: An Automated Deduction System.
Technical Report ANL/MCS-TM-263, Argonne National Labo-
ratory, Illinois.

Motik, B. 2006. KAON2 reasoner implementation. KAON2
website: http://kaon2.semanticweb.org/.

Patel-Schneider, P. F.; Hayes, P.; and Horrocks, I. 2003. Web on-
tology language (owl): Abstract syntax and semantics. Document
located on-line at http://www.w3.org/TR/owl-semantics/.

Patel-Schneider, P. F. 2004. A proposal for a SWRL ex-
tension to first-order logic. Document located on-line at
http://www.daml.org/2004/11/fol/proposal.

Rector, A.; Nowlan, W.; and Glowinski, A. 1993. Goals for
concept representation in the GALEN project. In 17th Annual
Symposium on Computer Applications in Medical Care, 414–418.

Reiter, R. 1978. On closed world data bases. Logic and
databases.

Riazanov, A., and Voronkov, A. 2002. The design and implemen-
tation of Vampire. AI Communications 15(2–3).

Stickel, M. J. 1985. Automated deduction by theory resolution.
4(1):333–355.

Tsarkov, D., and Horrocks, I. 2004. FaCT++ reasoner implemen-
tation. FaCT++ website: http://owl.man.ac.uk/factplusplus/.

Tsarkov, D.; Riazanov, A.; Bechhofer, S.; and Horrocks, I. 2004.
Using Vampire to reason with OWL. In Proceedings of the 3rd
International Semantic Web Conference, volume 3298 of Lecture
Notes in Computer Science, 471–485.

Weidenbach, C. 2001. SPASS: Combining superposition, sorts
and splitting. In Robinson, A., and Voronkov, A., eds., Handbook
of Automated Reasoning, volume II. Elsevier Science. chapter 27,
1965–2013.

