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ABSTRACT
It has been previously observed that optimization of the
1-call@k relevance objective (i.e., a set-based objective that
is 1 if at least one document is relevant, otherwise 0) em-
pirically correlates with diverse retrieval. In this paper, we
proceed one step further and show theoretically that greedily
optimizing expected 1-call@k w.r.t. a latent subtopic model
of binary relevance leads to a diverse retrieval algorithm
sharing many features of existing diversification approaches.
This new result is complementary to a variety of diverse
retrieval algorithms derived from alternate rank-based rele-
vance criteria such as average precision and reciprocal rank.
As such, the derivation presented here for expected 1-call@k
provides a novel theoretical perspective on the emergence of
diversity via a latent subtopic model of relevance — an idea
underlying both ambiguous and faceted subtopic retrieval
that have been used to motivate diverse retrieval.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models

General Terms
Algorithms
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1. DIVERSE RETRIEVAL AND SUBTOPICS
One of the basic tenets of set-based information retrieval

is to minimize redundancy, hence maximize diversity, in the
result set to increase the chance that the results will con-
tain items relevant to the user’s query [9]. Hence, diverse
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retrieval can be defined as a set-level retrieval objective that
takes into account inter-document relevance dependences
when producing a result set relevant to a query.

Subtopic retrieval — “the task of finding documents that
cover as many different subtopics of a general topic as pos-
sible” [19] — has often been noted as a motivating case for
diverse retrieval. That is, if a query has multiple facets that
should be covered by a result set, or a query has multiple
ambiguous interpretations, then a retrieval algorithm should
try to “cover” all of these subtopics in its result set. It is this
subtopic-based motivation for diverse retrieval — a motiva-
tion which also underlies the TREC 6-8 Interactive tracks1

and TREC 2009-2010 Diversity subset of the Web tracks2

— that we draw on for the latent subtopic binary relevance
model presented in this paper.

If one wants to optimize a result set to cover all possible
query subtopics, the question naturally arises as to what set-
level relevance objective should be optimized? Wang and
Zhu [17] have shown that natural forms of diversification
arise via the optimization of average precision [3] and recip-
rocal rank [15]. While these results directly motivate diverse
retrieval via rank-based (ordered set) relevance criteria, they
do not use the subtopic motivation for diversity. We use this
alternate subtopic motivation in this paper, where we define
binary relevance via a latent subtopic model. With this defi-
nition of relevance, we then optimize the expectation of the
n-call@k set-based relevance criteria (specifically for n = 1)
that takes the value 1 if at least n of k documents in a result
set are relevant and 0 otherwise [6]. We conjecture that an
optimal result set w.r.t. this objective and relevance model
will attempt to cover all subtopics in order to ensure that at
least one document is relevant, hence yielding diversity.

One may ask why we focus on the n-call@k metric with
n = 1 rather than n > 1 for diverse retrieval? In [16] (Figure
2c), Wang and Zhu observed that optimizing 1-call@k cor-
relates most strongly with diverse retrieval, while as n → k,
retrieval becomes less diverse. The reasons for this are sim-
ple: as n → k, a higher proportion of documents are required
to be relevant; if the top-ranked document is deemed most
relevant, similar documents are also likely to be relevant,
discouraging diversity. At the other extreme, n = 1 encour-
ages diversity since only one relevant document is needed.

1http://www-nlpir.nist.gov/projects/t8i/t8i.html
2http://trec.nist.gov/data/web09.html (also web10)
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Figure 1: Latent subtopic binary relevance model.

In the rest of this paper, we derive a diverse retrieval al-
gorithm via greedy optimization of expected 1-call@k in a
latent subtopic binary relevance model and compare it to a
variety of existing diversification approaches.

2. OPTIMIZING EXPECTED 1-CALL@K
Given an item set D (e.g., a set of documents) where

retrieved items are denoted as si ∈ D, we aim to select
an optimal subset of items S∗k ⊂ D (where |S∗k | = k and
k < |D|) relevant to a given query q (e.g., query terms).
For computational efficiency, we will build S∗k in a greedy
manner by choosing the next optimal selection s∗k given the
previous set of optimal selections S∗k−1 = {s∗1, . . . , s∗k−1} and
recursively defining S∗k = S∗k−1 ∪ {s∗k} with S∗0 = ∅.

One of the most popular result set diversification methods
is Maximal Marginal Relevance (MMR) [4] that chooses s∗k
greedily according to the following criteria:

s∗k = arg max
sk∈D\S∗

k−1

[λ(Sim1(q, sk))−(1−λ) max
si∈S∗

k−1

Sim2(si, sk)].

(1)
Here, similarity metric Sim1 measures query-item relevance,
metric Sim2 measures the similarity between two items, and
the parameter λ ∈ [0, 1] trades off relevance and diversity. In
the case of s∗1, the maximization term is vacuous (=0). We
take special note of this form for MMR optimization since
the results we derive next will bear a close resemblance.

To begin the derivation, we provide a directed graphical
model in Figure 1 to formalize the independence assump-
tions in a probabilistic subtopic model of binary relevance.
Shaded nodes represent observed variables while unshaded
nodes are latent. The observed variables are the vector of
query terms q and selected items si (where for 1 ≤ i ≤ k,
si ∈ D). For the subtopic variables, let T be a discrete
subtopic set. Then variables ti ∈ T represent subtopics for
respective si and t ∈ T represents a subtopic for query q.
The ri are binary variables indicating whether the respective
selected items si are relevant (1) or not (0).

The conditional probability tables (CPTs) are as follows:
P (ti|si) and P (t|q) respectively represent the subtopic dis-
tribution for item si and query q. The remaining CPTs are
for relevance variables ri, where item si is deemed relevant
(ri = 1) iff its subtopic ti matches query subtopic t:

P (ri = 1|t, ti) = I[ti = t]

Here, I[·] is 1 when its argument is true and 0 otherwise.
We now formally define the expected 1-call@k objective:

Exp-1-Call@k(Sk,q) = E

"
k_

i=1

ri = 1

˛̨
˛̨
˛ s1, . . . , sk,q

#
(2)

Since jointly optimizing Exp-1-Call@k(Sk,q) is NP-hard,
we take a greedy approach similar to MMR where we choose
the best s∗k assuming that S∗k−1 is given. Then following [6],

we can greedily optimize this objective as follows:3

s∗k = arg max
sk

Exp-1-Call@k(S∗k−1 ∪ {sk},q)

= arg max
sk

E

"
k_

i=1

ri = 1

˛̨
˛̨
˛S

∗
k−1, sk,q

#

= arg max
sk

E

"
(r1 = 1) ∨ (r2 = 1 ∧ r1 = 0) ∨ · · · ∨
 

rk = 1 ∧
k−1̂

i=1

ri = 0

! ˛̨
˛̨
˛S

∗
k−1, sk,q

#

= arg max
sk

kX
i=1

P (ri = 1, {rj = 0}j<i | {s∗j}j≤i,j<k, {sk}k=i,q)

= arg max
sk

kX
i=1

P (ri = 1 | {rj = 0}j<i, {s∗j}j≤i,j<k, {sk}k=i,q)

P ({rj = 0}j<i | {s∗j}j<i,q)

= arg max
sk

P (rk = 1 | {rj = 0}j<k, S∗k−1, sk,q) (3)

Here, we applied a logical equivalence, exploited additivity
of exclusive events, rewrote the expectation of a binary event
as its probability, exploited d-separation to remove irrelevant
conditions, factorized each joint into a conditional and prior,
and removed terms and factors independent of sk. Thus, we
need only maximize sk’s probability of relevance conditioned
on the query and previous selections (assumed irrelevant).

Next we evaluate the final query from (3) w.r.t. our graph-
ical model of subtopic relevance from Figure 1:

s∗k = arg max
sk

P (rk = 1 | {rj = 0}j<k, S∗k−1, sk,q)

= arg max
sk

X
t1,··· ,tk,t

P (t|q)P (tk|sk)I[tk = t]

k−1Y
i=1

P (ti|s∗i )I[ti 6= t]

= arg max
sk

X
t

P (t|q)
X
tk

P (tk|sk)I[tk = t]

k−1Y
i=1

X
ti

P (ti|s∗i )I[ti 6= t]

= arg max
sk

X
t

P (t|q)P (tk = t|sk)
k−1Q
i=1

(1− P (ti = t|s∗i ))

Defining P̃ (t|S∗k−1) = 1 − 2 = 1 −Qk−1
i=1 (1 − P (ti = t|s∗i )),

this is the probability that set S∗k−1 already covers topic t

w.r.t. a noisy-or interpretation. Substituting (1−P̃ (t|S∗k−1))

for 2 since (1− P̃ (t|S∗k−1)) = 1− (1− 2) = 2, we obtain

s∗k = arg max
sk

X
t

P (t|q)P (tk = t|sk)
“
1− P̃ (t|S∗k−1)

”

= arg max
sk

X
t

P (t|q)P (tk = t|sk)| {z }
query similarity

−
X

t

P (t|q)P (tk = t|sk)P̃ (t|S∗k−1)| {z }
query-reweighted diversity

. (4)

This final result in (4) has a clear interpretation as a di-
verse information retrieval algorithm where D consists of

3The notation {·}C refers to a (possibly empty) set of vari-
ables (or variable assignments) · that meet constraints C.



Table 1: MMR vs Exp-1-call@k on various ranking measures of diversity.

Testbed Algorithm ERR-IA@5 ERR-IA@10 ERR-IA@20 α-nDCG@5 α-nDCG@10 α-nDCG@20 MAP-IA

TREC6-8 MMR (λ = .5) 0.0433 0.0548 0.0607 0.2310 0.2590 0.2728 0.0361
Exp-1-call@k 0.0456 0.0561 0.0621 0.2332 0.2602 0.2750 0.0365

ClueWeb 2009 MMR (λ = .5) 0.0984 0.1085 0.1174 0.1500 0.1696 0.2045 0.0095
Exp-1-call@k 0.0972 0.1084 0.1158 0.1435 0.1698 0.1997 0.0123

ClueWeb 2010 MMR (λ = .5) 0.1198 0.1422 0.1503 0.1516 0.2066 0.2339 0.0085
Exp-1-call@k 0.1211 0.1408 0.1550 0.1527 0.1984 0.2476 0.0093
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Figure 2: MMR vs Exp-1-call@k on subtopic recall.

documents: at each step, sk is chosen so as to maximize a
similarity function while minimizing a diversity penalty that
increases as S∗k−1’s coverage of query-relevant subtopics in
document sk increases. Thus we have achieved our goal
of deriving a diverse retrieval algorithm via optimization of
Exp-1-call@k in a latent subtopic model of binary relevance.

3. RELATED WORK
3.1 MMR

The result in (4) is strikingly similar to MMR — it con-
tains two terms, one for query similarity and the other for
result set diversification, where each term represents a simi-
larity kernel — more specifically a probability product kernel
(PPK) [11] that is an inner product of probability vectors (or
more generally, functions). More formally, let T′, Tk, and
TS∗

k−1
be respective topic probability vectors P (t′ = t|q),

P (tk = t|sk) and P̃ (tk = t|S∗k−1) with vector indices for
each topic t ∈ T . Then the similarity and diversity terms
from (4) can be respectively written as

X
t∈T

P (t′ = t|q)P (tk = t|sk) = 〈T′,Tk〉 and (5)

X
t∈T

P (t|q)P (tk = t|sk)P̃ (t|S∗k−1) = 〈Tk,TS∗
k−1

〉T′ . (6)

Here, we let 〈·, ·〉 denote an inner product of two vectors and
〈·, ·〉v a v-reweighted inner product, defined as in (6).

While having similarity and diversity terms similar to
MMR, Exp-1-call@k in (4) clearly differs from MMR:

1. While MMR’s definition allows for any similarity func-
tion, not just PPKs, we note that equating words to
subtopics, popular kernels like TF and TFIDF [13] can
be viewed directly as PPKs if the TF and TFIDF vec-
tors are L1 normalized to represent probability vectors.

2. MMR uses a maximization term for diversity, whereas
optimization of Exp-1-call@k instead calls for a prod-
uct (noisy-or) diversity term P̃ (t|S∗k−1). We note that
a noisy-or reduces to a max when the subtopic proba-
bilities are deterministic (0 or 1).

3. While MMR proposes a λ term to explicitly trade off
the similarity and diversity terms, the greedy optimiza-
tion of Exp-1-call@k in (4) yields no such trade-off
term (or alternately, an implicit λ = .5). Although it
seems a tunable λ is not needed for maximizing Exp-1-
call@k, it may be desirable when maximizing surrogate
retrieval objectives (e.g., ranking objectives).

4. Optimizing Exp-1-call@k introduces query-specific rel-
evance into the diversification term as shown by the
query topic (T′) reweighted diversity function in (6).

To verify whether the differences between MMR and Exp-
1-call@k matter empirically, we compare the two algorithms
across a number of metrics on three diversity testbeds: the
TREC 6-8 Interactive Track1 (17 queries) and 2009 and
2010 ClueWeb Diversity tasks of the TREC Web Track2 (50
queries each). On these testbeds, we evaluate mean subtopic
recall@k [19] (fraction of total annotated aspects/subtopics
covered by a result set at rank k, averaged over queries),
which is an appropriate loss function for the set-level met-
ric (2) [6]. We also evaluate a variety of more recent rank-
based diversity evaluation metrics such as intent-aware ex-
pected reciprocal rank (ERR-IA@k) [5], α-nDCG@k [7], and
intent-aware mean average precision (MAP-IA) [1].

We use MMR with λ = 0.5 to match the equal weighting of
similarity and diversity in Exp-1-call@k. An LDA [2] topic
model is trained on the top-100 OKAPI BM25 [12] results for
each query (on its respective collection) and these subtopic
distributions are used for the similarity and diversity ker-
nels in both algorithms: for MMR we choose Sim1 and Sim2

kernels as in (5) — effectively LDA variants of latent seman-
tic indexing (LSI) [8] kernels; for Exp-1-call@k, we use the
similarity and diversity kernels respectively defined in (5)
and (6). Both MMR and Exp-1-call@k are used to rank the
top-20 documents from the top-100 OKAPI BM25 results.

Results in Table 1 and Figure 2 show the performances
of MMR and Exp-1-call@k on the three diversity testbeds
across various diversity measures; although there are minor
performance differences, we note that these differences are
not statistically significant w.r.t. 95% confidence intervals.
Nonetheless, the results appear to indicate that the struc-
tural similarities in the use of MMR and the optimization
of Exp-1-call@k outweigh the differences in this evaluation.

3.2 Other Diversification Approaches
Recent years have seen numerous proposals for diversifi-

cation approaches and here we summarize the relationship
between optimization of Exp-1-call@k and representatives
of these alternative approaches:

Portfolio Theory: [16] motivates diversification in set-
based information retrieval by a risk-minimizing portfolio
selection approach. Viewing a result set as an investment
portfolio with the objective to maximize return while mini-
mizing risk, the derived result of [16] mimics both MMR and
Exp-1-call@k in that the similarity term may be viewed as
expected portfolio payoff (relevance) and the diversity term
may be viewed as expected portfolio risk, which increases
as the correlations between documents in the result set in-
crease. One major difference in this framework is that rather
than computing the diversity term via a max (MMR) or
product (Exp-1-call@k) the portfolio theory derivation uses
a summation — we examine the implications of this next.



Set Covering: Yue and Joachims [18] propose a set cov-
ering approach for training SVMs to predict diverse result
sets for information retrieval. In their work, they equate
subtopics with words and build a loss function for SVM
training that penalizes result sets according to the sum of
weights of query-relevant words not covered by the result
set. While their approach provides a “hard” set-covering
view of diversity, we note that an expansion of P̃ (t|S∗k−1)
used in the diversity term of (4) provides a “soft” latent set-
covering interpretation; that is, sk is chosen so as to best
cover (in a probabilistic sense) the latent topic space not
already covered by {s∗1, . . . , s∗k−1}. Formally, expanding the

product in P̃ (t|S∗k−1) =
Qk−1

i=1 (1− P (ti = t|s∗i )), collecting
terms and writing it as a series, we arrive at a form that re-
flects the inclusion-exclusion principle applied to the calcula-
tion of probability that topic t is covered by {s∗1, . . . , s∗k−1}:

k−1Y

i=1

(1− P (ti = t|s∗i ))

= 1−
2
4

k−1X

i=1

P (ti = t|s∗i )−
k−1X

i=1

k−1X

j=1

P (ti = t|s∗i )P (tj = t|s∗j )

+ · · · − (−1)k−1
k−1Y

i=1

P (ti = t|s∗i )

#
(7)

This result has a natural interpretation: the first summa-
tion term determines the coverage of topic t by each docu-
ment si (1 ≤ i ≤ k−1) currently in the result set, the second
double summation term corrects the first term by removing
the joint probability mass from all pairs of documents that
was double counted, and so on according to the principle of
inclusion-exclusion. (7) not only provides a probabilistic set
covering view of Exp-1-call@k, but it also suggests that a
portfolio approach to diversity using only the first summa-
tion would overcount each document’s contribution to the
diversity metric according to this set covering perspective.

Subtopic Relevance Models: We use a subtopic rele-
vance model that is a simplified version of the model in [10]
with fewer dependence assumptions. In other work, Zhai et
al [19] present an empirical risk minimization view of depen-
dent document retrieval from a subtopic perspective, where
they derive a formalization of the greedy selection step that
is similar to MMR and to a lesser extent, Exp-1-call@k.

Set-based Relevance Objectives: Chen and Karger [6],
whose derivation we extended, directly optimize 1-call@k,
but their intention is not to formalize MMR and instead
use näıve Bayes to directly evaluate (3). Agrawal et al [1]
and Santos et al (xQuad) [14] both specify set-based diver-
sity metrics very similar to Exp-1-call@k but do not provide
formal derivations as we have done in this work.

Ranking Based Objectives: Finally, returning to our in-
troductory motivation, Wang and Zhu [17] have shown that
natural forms of result set diversification arise via the op-
timization of average precision [3] and reciprocal rank [15].
Both of these methods share the view of directly optimiz-
ing a ranking-based objective, whereas this paper proposes a
novel derivation from the alternate view of optimizing a set-
based objective w.r.t. a subtopic model of relevance. How-
ever, even though Exp-1-call@k is a set-based objective, an
indirect consequence of (and motivation for) greedily opti-
mizing it is that documents added earlier yield a greater
increase in objective than those added later; this yields a
natural rank ordering on the greedy Exp-1-call@k result set.

4. CONCLUSION
This paper presented a new derivation of diverse retrieval

by directly optimizing the expected 1-call@k set-based re-
trieval objective w.r.t. a latent subtopic model of binary

relevance. This result both motivates and contrasts with
various related diversification approaches, providing a new
theoretical basis for the investigation of diverse retrieval.
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