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Abstract 

Exact NNS on text document becomes very expensive for its high dimensionality and 

the volumes. We demonstrate Exact NNS on text can be performed in linear time by 

using Zero-Suppressed Binary Decision Diagram (ZDD). We also demonstrate ZDD 

combined with Multi-hash technique can perform Approximate NNS on text with 

sublinear time. The exact NNS Naïve NN-ZDD model query time is order of magnitude 

faster than exhaustive NN for text, and approximate NNS using ZDD Multi-hash’s 

query time is closer to LSH with less build time and better accuracy.  
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1 Introduction 

 

Nearest Neighbour Search (NNS) is a search problem which effectively finds the pre-

processed objects in a database closest to a query object measured by distance/similarity 

metrics. In this report, we focus NNS on text domain which exhibits high dimensional 

and sparse properties. NNS on text has many applications [1], for example, de-

duplication for web crawling, plagiarism detection, personalized news aggregation, 

related page/document search, and text clustering. 

In general, the complexity of NNS increases exponentially with the dimensionality 

(curse of dimensionality). Exact NNS on text document becomes very expensive for its 

high dimensionality and the volumes. Most of the Branch and Bound NNS techniques 

(i.e. set partitioning) perform only as good as linear search on text document.  

Approximate NNS techniques attract attentions in high dimensionality NNS. 

Approximate NNS finds the nearest neighbour with high probability in sublinear time in 

the cost of allowing false positive. Locality Sensitivity Hashing (LSH) is one of the 

popular Approximate NNS algorithms. Google [4] used Approximate NNS algorithms 

Simhash for duplication for web crawling [5] and MinHash and LSH for Google News 

personalization [6]. 

In this report, we demonstrate Exact NNS on text can be performed in linear time by 

using Zero-Suppressed Binary Decision Diagram (ZDD) [2]. ZDD is a compact and 

efficient data structure of Binary Decision Diagram (BDD) to represent high 

dimensional sparse set. Each ZDD node represents the feature of the text document, and 

all ZDD nodes in a valid path consist of all the features of a text document.  

Besides, we also demonstrate ZDD combined with Multi-hash technique can perform 

Approximate NNS on text with sublinear time. Mult-hash technique hashes a document 

multiple times to cluster more similar one from the less similar document, and perform 

NN in a smaller set. 

 

This paper main research contribution is, 

 For exact NNS, we propose using the ZDD to perform NNS. 

 For approximate NNS, we propose a ZDD with Multi-hash to partition the 

smaller set to improve the performance for both build and query time with 

higher accuracy.  

 

The rest of the paper is organized as follows. Chapter 2 provides a brief background in 

various document representations and basic idea of ZDD. Chapter 3 describes the 

design of various NNS using ZDD (NN-ZDD models). Chapter 4 presents the 

experimental study. The final chapter offers conclusions and research direction. 
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2 Background 
 

In this chapter, we provide the background knowledge to lay the foundation for various 

NN-ZDD models in Chapter 3. We give overview of the NN methods. Then we go 

through various document term representation and weighting metrics in the vector space 

models. Last, we present ZDD data structure and its associated set operations. 

2.1 Overview 
 

Various NN methods have been proposed to reduce the complexity under 2 major 

categories [1], 

 Branch and Bound Techniques 

Branch and bound techniques construct tree-based structures which partition the 

set into disjoint subsets. Every node contains the threshold information which 

determines the subset closer to the query point. Branch and Bound NNS 

methods include K-D Tree, Vantage Point Tree (VP-Tree), and Generalized 

Hyperplane Tree (GH-Tree).  

 

 Mapping-based Techniques  

Mapping-based techniques map the set of high dimensions into lower 

dimensions with high probability of the closer objects staying near to each other. 

In Locality Sensitivity Hashing (LSH) [10], the objects are hashed into lower 

dimensions and another hash function maps each object into different buckets. 

The objects closer to each other have higher probability to fall into the same 

bucket.  

 

Branch and Bound techniques which normally use for are Exact NNS are not efficient in 

the high dimensional space.  In contrast, mapping-base techniques are efficient in high 

dimensional space performs only Approximate NNS.  

 

2.2 Problem Setting 
 

The NNS problem can be formalized [1] as, in a metric space   with similarity function 

 /distance function d, given a set of input              , and a query    . 

Find                                  as illustrated in Figure 2-1. 
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Figure 2-1 Nearest Neighbour Search in 2D 

 

2.3 Metric and Similarity Functions 
 

A distance function d on metric space M satisfies [1],  

 Non-negative :                   

 Symmetry      :          (    )    (    ) 

 Identity          :          (    )         

 Triangle Inequality :             (     )   (    )   (    ) 

Similarity function        satisfies all the properties above except the Triangle 

Inequality. We discuss various distance/similarity functions in Section 2.4. 

 

2.4 Document Model 

 

In NNS on text, the documents in document set S and the query are represented as 

vectors,       
      

     and             [8]. Each dimension in a vector 

represents a document feature. This model is referred as vector space model M. The 

value represents either existence or weighting of a document feature depending on the 

schemes 

 

2.4.1 Document Term Features 

 

Each term in a document represents a feature/dimension. The dimension k of the vector 

space model M equals to the number of unique terms in all the documents.  
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2.4.1.1 Boolean Scheme 

 

In the simplest scheme, the value of each vector j in document    and query   are 

expressed in Boolean as   
           representing the absent or present of a feature. 

The distance between document    and query   is measured by Hamming Distance. 

                 ∑     
     

 
    and        {

         
        

 

In Chapter 3, we use the Boolean scheme and Hamming Distance to construct NN-ZDD. 

 

2.4.1.2 Term Frequency Scheme[8] 

 

In term frequency scheme, each dimension of term t is weighted by the term 

occurrences in document p, and denoted as      . However, rare term is also important 

to distinguish the documents. Therefore, a measure Document frequency for term t (   ) 

represents the total term occurrences in all the documents, and the inverse of     give 

weight to the rare term, and defined as,         
 

   
 where N is the total number of 

documents.            reflects the weight of each term by considering both term 

frequency at the document itself, and overall document set. 

 

2.4.2 Hash Features 

 

One of the effective ways to reduce the dimension of the document is through hashing. 

Image we assign a unique ID to each of the English alphabet, 

A B C D E F G H I J K L M 

1 2 3 4 5 6 7 8 9 10 11 12 13 

 

N O P Q R S T U V W X Y Z 

14 15 16 17 18 19 20 21 22 23 24 25 26 
Table 2-1 ID for English Alphabets 

To represent any English word, we need a vector of 26 dimensions, for example, 

“APPLE”, {A=>1, P=>16, L=>12, E=>5}. 
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If we apply a hash function 31*x mod 5 to all the English alphabets’ ID,  

A B C D E F G H I J K L M 

0 1 2 3 4 0 1 2 3 4 0 1 2 

 

N O P Q R S T U V W X Y Z 

3 4 0 1 2 3 4 0 1 2 3 4 1 
Table 2-2 Hash ID for English Alphabets with 31*x mod 5. 

“APPLE” can now be represented by a vector of 5 dimensions {A, P=>0, L=> 1, E=>4}. 

So do “ALE”, and “PLE” which has the same vector as “APPLE”. 

If we apply a new hash function 31*x mod 6 to all the English alphabets’ ID,  

A B C D E F G H I J K L M 

0 1 2 3 4 5 0 1 2 3 4 5 0 

 

N O P Q R S T U V W X Y Z 

1 2 3 4 5 0 1 2 3 4 5 1 2 
Table 2-3 Hash ID for English Alphabets with 31*x mod 6. 

 “APPLE” can now be represented by a vector of 6 dimensions {A=>1, P=>4, L, E=>5}.  

By combining both hash vectors (from 31*x mod 5 and 31*x mod 6), we could distinct 

each word with the smaller vector sizes, and form the clusters of 31*x mod 5 with 3 

distinct words surround it.  

English Word 31*x mod 5 31*x mod 6 Original 
APPLE (0, 1, 4) (1, 4, 5) (1, 5, 12, 16) 

ALE (0, 1, 4) (1, 5) (1, 5 12) 

PLE (0, 1, 4) (4, 5) (5, 12, 16) 
Table 2-4 Combined Hash ID for English Alphabets 

The useful property of partition large set of document into small sets for NN, and it 

motivates the NN-ZDD Multi-hash in Section 3.2.1. 

 

2.5 Zero-Suppressed Decision Diagram 

 

The Zero-suppressed Decision Diagram (ZDD) is a canonical directed acyclic graph 

(DAG) [0] compactly represents a set of objects S. ZDD represents the sparse set 

efficiently and makes it a potential candidate for the representation of document. ZDD 

consists of one root node, a set of decision nodes (circle) and two terminal nodes (box) 

as shown in Figure 2-2. The terminal node 0 (    represents the empty set 'Ø' and 

terminal node 1 (    represents '{Ø}'.  
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Figure 2-2 Basic Elements of ZDD 

 

An object     can be represented by an k-bit Boolean vector              where 

        . Each path from the root node to the terminal node 1 represent an object 

    . A variable is present in object    if the path go through the 1-edge of the node 

represents it. 

Each decision node    for a variable xi and two subset   
 
 and   

 
 denoted as    

          
 
   

 
  representing the Boolean function          

 
        

 
 . The 

decision node    contains 1-edge (solid line) and 0-edge (dash line) for variable       

or       on the path representing   . In Figure 2-3 a), ZDD set S represents 3 object 

set {{A, C}, {B, C}, {A, B, C}} corresponding to all 3 paths from the root decision 

node to terminal node 1. 

ZBDD has an important property [3], i.e. all the equivalent decision nodes are shared 

and reusable. If two decision nodes Ni and Nj represent variable xi with two subsets N0 

and N1, they are considered equivalent, canonical and shared, i.e.       

          
 
   

 
    Therefore a vector space of 2

k
 can be represented by lesser nodes 

compactly. 

 

Figure 2-3 Examples of ZDD Basic Operations 
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The basic operation of the ZDD is shown in Table 2-5. A simple example in Figure 2-3 

b) to e) illustrates how the set S3 is constructed using the ZDD basic operations. In 

Figure 2-3 f), set S4 are the union of set S1 and S3. Note that ZDD for S1 and S4 have 

the same number of decision nodes even though they represent different sets as some of 

the decision nodes are reused. 

 

Operation Description 

Empty() Return empty set Ø 

Base() Return set contains empty set {Ø} 

Change(  ,  ) If set    does not contain   , return the set of subset of    with   , else 

return the set of subset of    without    

Subset0(  ,   ) Return set of subsets of    not containing variable    

Subset1(  ,   ) Return set of subsets of    containing variable    

Union(  ,   ) Return set of         

Intersec(  ,   ) Return set of         

Diff(  ,   ) Return set of   \    

Table 2-5 ZDD Basic Operations 

 

Variable ordering affects the size of the ZDD of the same sets as demonstrate in Figure 

2-4 a) and b). Effective variable ordering for compact ZDD [3] should, 1) groups of 

variables with high co-occurrence rate should be put together; 2) Variables are ordered 

by their frequency. It’s a hard problem to find out the optimal variables ordering, 

especially in the text domain where new documents incrementally adding to the ZDD, 

and influence the relative frequency of variables. One of the heuristics used [3] is to 

order the variables by their frequency. We show in the experiments (section 4.4.1.2) the 

variable ordering has slightly influences on the ZDD node sizes. 

 

Figure 2-4 ZDD with variable ordering 
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The theoretical maximum number of decision node for the ZDD is the total number of 

variables presented in all subset of a set. However, the actual sizes of the ZDD nodes 

are smaller due to the node reusability. 
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3 Design and Theory 

 

3.1 Exact NNS 

3.1.1 Exhaustive NN Model 

 

The exhaustive NN does not pre-process the document set S to build data structure or 

index to speed up the searching. In this model, a document    and query   is 

represented as Boolean vector    (  
      

 )                   
          . 

The model compares the similarity of each document features   
  with the query features 

  , and return the closest document   . The time complexity of the exhaustive NN is 

O(nk) where n is the number of documents in document set S, and the k is the number 

of feature in the target document.  

             ∑     
     

 

   
 

         {
           

           
 

 

3.1.2 Naïve NN-ZDD Model 

 

The naïve NN-ZDD model is the fundamental NN-ZDD model and serves as a 

framework for other NN-ZDD models in the subsequence discussion. In this model, a 

document is represented as Boolean vector    (  
      

 )   
        represents the 

existence of term    in document i. The similarity between the documents and the query 

is measured by Hamming distances. In Section 3.1.3, we replace the Hamming Distance 

with Idf, and TF-IDF. 

 

3.1.2.1 Build Phase 

 

In the build phase, each document      is converted to a ZDD denoted as 

        
   where    is the set of document features for    using ZDD Change 

operation (Algorithm 2) for each document feature      ,   
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an example is illustrated in Figure 3-1. The number of nodes in          
    define 

number of document features.  

 

Figure 3-1 ZDD Change Operation on Text Doc 

A Naïve NN-ZDD model is built by union all the         
   (Algorithm 1), 

       ⋃         
   

    

 

and illustrated  Figure 3-2 which union set S1 and S2 to form S3, and also union set S3 

and S4 to form S5. 

 

Figure 3-2 Example of ZDD Union for document set 

3.1.2.2 Query Phrase 
 

Finding a nearest neighbour for a query document in naïve NN-ZDD model is 

equivalent to finding the path from root node    of ZDD(S) to terminal node    with 

maximum score. Dynamics programming calculates the maximum score from the 
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terminal nodes    and    back to the root node   . Each node    gets the maximum 

score       from its 0-edge node (  
 
) and 1-edge node (  

 
) with additional hamming 

similarity score          if the term   
  

 represented by    matches query term   . The 

        (  ) is the child branch with maximum score (Algorithm 3 and Algorithm 4). 

            (  
 
)  (  

 
)      

  
      

 (  
  

   )  {
        

  
   

        
  

   

 

        (  )        
     

 
   

 
 
      

The document features (terms) of the nearest neighbour document    to query   can be 

extracted from the 1-edge (    with maximum score (        (  )    ) from 

terminal node    to root node    of ZDD(S).     is the set of extracted document 

features for    (Algorithm 5 and Algorithm 6). 

    {

                                                                                                 

                  
                        (  )    

                                                  (  )    

 

Algorithm 1: BuildNNZDD (D) 

1 

2 

3 

4 

5 

6 

7 

8 

NNZDDTopic = ZDDBase        // Initialize ZDD structure 

ZDDFeatureDict = {}                                                                 // Initialize ZDD Node Feature dictionary 

while D is not empty do 

       d  D.current()        // Assign document from set of documents 

       ZDDTopic  DocumentToZDD(d, ZDDFeatureDict)      // Convert document to ZDD 

       NNZDDTopic = ZDDUnion(NNZDDTopic, ZDDTopic) 

       remove d from D 

return NNZDDTopic 

Algorithm 1 : Building NN-ZDD from documents 

 

Algorithm 2: DocumentToZDD(d, ZDDFeatureDict) 

1 

2 

3 

4 

5 

6 

7 

8 

 

9 

10 

ZDDTopic = ZDDBase       // Initialize ZDD structure 

featues  extractFeature(d)                      // Convert the document to a list of features 

while feature is not empty do:    

       f  feature.current()                      // Assign feature from a list of features 

       if not ZDDMember(ZDDFeatureDict, f) then       // If the feature not already the existing node 

 ZDDadd(ZDDFeatureDict, f)                      // Create a new node for this feature 

 ZDDNode  ZDDLookup(ZDDFeatureDict, f)    // Assign the node for the feature. 

 ZDDTopic = ZDDChange(ZDDTopic, ZDDNode) // Use ZDD Change operation 

                                                                                                   // to add ZDDNode to ZDD Structure 

       remove f from features 

return ZDDTopic 

Algorithm 2 : Convert document to ZDD 
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Algorithm 3: ReduceScoreMain (Z, q) 

1 

2 

MaxChild = {}                                                                            // Initialize dictionary to store high score edge  

return ReduceScore(Z.root, q, MaxChild)                                // Recursive call ReduceScore 

Algorithm 3 : ReduceScore Main 

 

Algorithm 4: ReduceScore (z, q, MaxChild) 

1 

2 

3 

4 

5 

6 

 

7 

8 

9 

10 

11 

if z is ZDDEmpty return ZDDEmptyCost                                // If z reaches Terminal node 0 return the  

if z is ZDDBase return ZDDBaseCost                                      // If z reaches Terminal node 1 return the  

zLow  0-Edge of z                                                                  // Assign 0-edge of z to zLow 

zLowScore  ReduceScore(zLow, q, MaxChild)                    // Recursive call ReduceScore follow 0-edge 

zHigh  1-Edge of z                                                                 // Assign 1-edge of z to zHigh 

zHighScore  ReduceScore(High, q, MaxChild)                    // Recursively call ReduceScore follow 1-edge 

                         + ZDDContain(z, q)                                          // Give score if this node represent a doc feature 

if zHighScore > zLowScore then                                              // If the 1-edge score higher than 0-edge 

       MaxChild(z) = High                                                           // Set the child node to 1-edge 

else 

       MaxChild(z) = Low                                                            // Set the child node to 0-edge 

return Max(zHighScore, zLowScore)                                      // Return the score. 

Algorithm 4 : ReduceSore to identify path with highest similarity to a Query 

 

Algorithm 5: ExtractSetMain(Z, MaxChild, ZDDFeatureDict) 

1 

2 

3 

4 

DocFeatures = {}                                                                        // Initialize dictionary to store high score edge  

z =Z.root                                                                                      // Start from the root node of ZDD 

DocFeatures = ExtractSet(z, MaxChild, ZDDFeatureDict, DocFeatures)  // Recursively call ExtractSet 

return DocFeatures                                                                    // Recursive call extracted set 

Algorithm 5 : Extract Set 

 

Algorithm 6: ExtractSet(z, MaxChild, ZDDFeatureDict, DocFeatures) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

If z is not ZDDEmpty or ZDDBase then                                 // If z is not terminal node 

       If MaxChild(z) = High then                                               // If the child with higher score is 1-edge 

              f ZDDFeatureDict(z)                                               // Extract the feature represented by node z 

              DocFeatures.add(f)                                                      // Add the feature to the Feature set 

              zHigh  1-Edge of z                                                   // Assign 1-edge of z to zHigh  

              DocFeatures = ExtractSet(zHigh, MaxChild, ZDDFeatureDict, DocFeatures) // Recursive call 

       else 

              zLow  0-Edge of z                                                   // Assign 0-edge of z to zLow 

              DocFeatures = ExtractSet(zLow, MaxChild, ZDDFeatureDict, DocFeatures) // Recursive call 

return DocFeatures       

Algorithm 6 : Extract the most similar features to a Query 
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3.1.2.3 Complexity 

 

In this section, we analyse the space and time complexity of the Naïve NN-ZDD model.  

 

3.1.2.3.1 Space Complexity 

 

In the worst case scenario, each document p contains n distinct unique document 

features. The space complexity is O(dn) where d is the total number of document in set 

S. In the real world, documents share some common features which promote the node 

reusability, therefore the space complexity is much smaller than O(dn).  

 

3.1.2.3.2 Time Complexity 

 

3.1.2.3.2.1 Build Phase 

 

Construct a ZDD chain for a document of n features required O(n). Union a document 

of n features to a ZDD of total m distinct feature in the worst case required max(O(n), 

O(m)). Therefore the complexity of building a Naïve NN-ZDD with d number of 

documents, each with n distinct feature would require d * (O(n) + max(O(n), O(m)). 

 

3.1.2.3.2.2 Query Phase 

 

To identify the path with maximum similarity score to the query document, we need to 

traverse to all the ZDD nodes in the Naïve NN-ZDD. It’s proportional to the ZDD nodes 

size of the Naïve NN-ZDD. In the worst case scenario, the query complexity is O(dn) 

where d is the number of document and n is the number of distinct features of each 

document.  

 

3.1.3 NN-ZDD Model for Different Metrics 

 

In this section, we introduce two variants of NN-ZDD model with different scoring 

metrics, i.e. IDF and TF-IDF. 
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3.1.3.1 IDF 

 

In this model, we replace the hamming similarity score          in the naïve NN-ZDD 

with IDF score so the rare term get high score. The total number of nodes in ZDD(S) is 

same with Naïve NN-ZDD.  

 (  
  

   )  {
           

  
   

             
  

   

 

 

3.1.3.2 TF-IDF 

 

Document is represented as    (  
      

 )   
    is the TF-IDF weight of        

     in TF-IDF. To integrate the term frequency to the ZDD, we adopt the concept from 

Frequent Pattern (FP-tree) [9] to include the frequency information in the ZDD nodes 

(Figure 3-3), and represent the variable as        . 

 (  
  

   )  {
   

  
             

  
   

                            
  

   

 

where    
  

represents the term frequency of node    for variable          

 

Figure 3-3 ZDD with Frequency Variables 
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3.2 Approximate NNS 
 

3.2.1 NN Multi-hash Model 

 

The time complexity of the exhaustive NN is       where   is the number of 

documents in document set S, and the k is the number of feature in the target document. 

One way to improve the performance of exhaustive NN is to reduce size for both   and 

  during NN while preserving features for each document. Hash representation has the 

nice property of partition the set while preserving (with error) the features as we 

discussed in Section 2.4.2. 

By hashing the document from    (  
      

 )   
        to           

       
    

  
       ,    is the dimension of       , and     , we could reduce the dimension 

of the document    from   to   . Because of the possible ‘hash collision’ (happened 

when mapping higher dimension vector to lower dimension vector), two or more 

documents might have the same hash representation, i.e.   (  )         

   
       

    the maximum hash document size |  | is     but normally the actual 

|  |    and the equal hold if no hash collision. The time complexity of the NN query is 

reduced from       to   |  |   .  

However, number of documents which share the same hash representation might still be 

large, therefore, we repeating the same process for documents sharing the same hash 

representation, we also increase the hash size to separate the less similar from the more 

similar documents, i.e.        . Each of the increased size new hash representation 

   forms the branch of the previous sharing hash representation     .  

We discuss the details of query phase in section 3.2.1.2. 

 

3.2.1.1 Build Phase 

 

In the build phase, each document    is initially hashed to root tree       . The        

is added to a set of root trees     . 

      

                 

The document    is then hashed to       , and added to the branch of        (i.e. 

 (  (  ))                   ) where the hash size       (and        ) . 



19 
 

The same process is repeated for document    from        to          where   is the 

depth of the tree, and    .  

           

 (    (  ))                      

At the leaf, document    is added to the branch  (    (  )). 

         

 (    (  ))                  

The next document    in the document set S goes through the same process from root to 

leaf till all the documents in S is placed at one of the leaf. Figure 3-4 illustrates the trees 

structure of     . The algorithm is shown in Algorithm 7. 

 

 

Figure 3-4 Build Phase for Multi-Hashing 

 

3.2.1.2 Query Phase 

 

In the query phase, the query   is initially hashed to       and performed exhaustive 

NN on      and identified the nearest neighbour    .    is the dimension of      . 

      

                 ∑     
    

     
  

   
 

  Where 
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     ⋃       

    

 

            {
              
              

 

The query q is then hashed to       and performed exhaustive NN with all the hash 

values of the branch of     (      ) and identified the nearest neighbour    . The same 

process is repeated till    . 

           

                       ∑     
    

     
  

   
 

            {
              
              

 

At the leaf, the query   is performed the exhaustive NN search on all the documents 

             .  

         

                      ∑     
     

 

   
 

         {
           

           
 

An example is illustrated in Figure 3-5, and the algorithm is shown in Algorithm 8. 

 

Figure 3-5 Query Phase for Multi-Hashing 
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Algorithm 7: BuildNNMultiHash(D, L) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

while D is not empty do 

             = null                                                     // Initialize parent tree 

       d  D.current()                                                // Assign document from set of documents 

       for each l   L do     

              if l = 1 and            then                 // if the hash value of d is not exist at Level 1 

                                                            // Add hash value of d to the hash set at Level 1 

              else if l = L then                                       // if it’s the leaf 

                                                         // Add the doc to the branch of parent tree       

              else 

                                                       // Add hash value to the branch of parent tree       

              end if 

                                                                    // Assign the current hash value as parent tree. 

       end for 

Algorithm 7 : Build NN Multi-hash 

 

Algorithm 8: QueryNNMultiHash(q) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

for each l   L do 

             = null                                                     // Initialize parent tree 

       if l = 1 then then                                             // if Level 1 

              t = nn(F(s),                                           // Perform nn on F(S) with       

       else if l = L then                                              // if leaf 

              p = nnFile(                                       // Perform nn on all the files from branch of parent tree           

                                                                                         with q       

              return p                                                    // return the closest files to q 

       else 

              t = nn(                                           // Perform nn on all hash values from branch of parent tree           

                                                                                         with       

       end if 

             t                                                          // Assign the current hash value as parent tree. 

end for 

Algorithm 8 : Query NN Multi-hash 

3.2.1.3 Complexity 

 

In this section, we analyse the space and time complexity of the NN Multi-hash model. 

 

3.2.1.3.1 Space Complexity 

 

In the worst case scenario, all documents n spans all hash values |  |  (with hash 

collision) if |  |    or   of them have its owner hash value if |  |    in Level  . 

Therefore, the space complexity in Level   is      |  |   . 
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For NN Multi-hash with Level  , the space complexity is,   ∏      |  |    
    , which 

is much higher than exhaustive NN of O(dn). However, by proper selecting the hash 

function which balance the tree to achieve |  |   . 

 

3.2.1.3.2 Time Complexity 

 

3.2.1.3.2.1 Build Phase 

 

Construct a NN Multi-hash for   documents with   Level, each document is required to 

hashed   times only, therefore the overall time complexity for build phase is      . 

 

3.2.1.3.2.2 Query Phase 

 

Assume that   documents are evenly distributed at each Level   during build phase, the 

complexity of the query time for performing exhaustive NN for all level is  

  |    |     ∑ | (       )|    
   
       (       ) . 

The |    | is the size of the root of trees, | (       )| is the branch which parent branch 

has the most similar hash value to the query.    is the dimension of hash value at Level 

 .   is the dimension of the document, and   (       ) is the number of documents that 

fall under this particular branch. 

 

3.2.2 NN-ZDD Multi-hash Model 

 

In the NN Multi-hash Model, we perform exhaustive NN on each branch of the tree from the 

root to leaf. As we’ve seen in Section 3.1.2.2, the Naïve NN-ZDD has better query time than the 

exhaustive NN. Therefore, we construct ZDD at each branch during the build phase and perform 

query on the ZDD which is more efficient as shown in Section 4.4.3.2  
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4 Evaluation 

 

In this section, we introduce the details of our experiments and show the results. 

 

4.1 Data Set Description 

 

These models are evaluated with the newsgroups data. The newsgroups data set is a 

collection of approximate 10,000 newsgroup documents which contains 11 different 

newsgroups of different topics in the text file format. The filtering process performs 

tokenizing, stop word removal and stemming on text files and passes the result to NN 

models. 

 

4.2 Experiment Setup  

 

We construct 3 types of experiments to demonstrate the ZDD properties and the 

performances of NN-ZDD models. In section 4.4.1, we demonstrate two important 

properties of ZDD, i.e. relationship of ZDD node and file sizes, and variable ordering to 

ZDD node sizes. In section 4.4.2, we focus on exact NNS. We evaluate the performance 

of NN-ZDD with Exhaustive NN, and also demonstrate NN-ZDD models of various 

metrics. In section 4.4.3, we compare the performance of NN-ZDD-MLH with LSH. 

 

4.3 Performance Metrics 

 

Four performance metrics measure and compare the performances of NN models as 

defined in Table 4-1. 

Performance 

Metric 

Description 

Build Time (ms) Time to build the data structure for effective querying.  

Query Time (ms) Time retrieve the nearest neighbour document. 

Accuracy (%) The percentage of the nearest neighbour docs correctly matches the queries. 

Node Size Number of Nodes in the ZDD (ZDD only). 

Table 4-1 Performance Metrics 
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4.4 Results 

 

4.4.1 ZDD Properties 

 

4.4.1.1 ZDD Node Size and No of Files 

 

The ZDD node size is increasing linearly with the number of file. The ZDD search is as 

good as linear search in the worst case. 

 

Figure 4-1  ZDD Node Size and number of Files Relation 

 

4.4.1.2 Variable Ordering and ZDD Node Size 

 

We’ve discussed the variable ordering influences ZDD node size in section 2.5.  In this 

experiment, we are using data set sci.med which contains 16914 distinct document 

terms. We sort the variable ordering based on inverse document frequency (IDF) in both 

ascending and descending order, and compared with case without ordering. The result is 

shown in Table 4-2. 

Ordering Number of ZDD Nodes 

IDF Descending 97789 

IDF Ascending 97795 

No Ordering 99727 

Table 4-2 : ZDD sizes with various Ordering 

 

 

In the text document ZDD, the variable ordering has slightly influences on the ZDD 

node sizes (2% less than no ordering). Therefore, our NN-ZDD models do not 

implement the variable ordering to improve the build time.  
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4.4.2 Exact Search 

 

4.4.2.1 Query Time: Exhausting NN vs Naïve NN-ZDD. 

 

We compare the total times required for building and querying 701 files (alt.atheism) 

for the exhaustive NN and Naïve NN-ZDD. The Naïve NN-ZDD is order of magnitude 

faster than the exhaustive NN (Figure 4-2). 

 

 

Figure 4-2  Query Time for Exhaustive NN and Naive NN-ZDD 

  

4.4.2.2 Comparison of Exact NNS for different metrics 

 

We compare NN-ZDD models with three different metrics (i.e. Hamming Distance, IDF, 

and TF-IDF). The Hamming Distance and IDF have similar query time and identical 

number of nodes, and 100% accuracy. However, TF-IDF has slight higher number of 

nodes, longer query time, and degraded accuracy. NN-ZDD models are suitable for non-

frequency term. 
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Figure 4-3 Exact NN-ZDD for Different Metrics 

The degraded accuracy of NN-ZDD TF-IDF is because the query scores high in certain 

documents that the terms matched have higher frequency without containing all the 

terms as shown in Figure 4-4. One way to reduce this effect is to multiply the TF-IDF 

score with the fraction of all query terms matched (as Apache Lucene does). 

 

Doc1 = {Adam:10, Eve:5} 

Doc2= {Adam:5, Love:5, Eve:5} 

TF Adam Love Eve 

1 10 0 5 

2 5 5 5 
 

 

Idf Adam Love Eve 

N = 2 2 1 2 

 

Query = {Adam, Love, Eve} 

TF-IDF Adam Love Eve Score 

1 6.02 0 3.01 9.03 

2 3.01 2.39 3.01 8.4 
 

Figure 4-4  TF-IDF Issues: The similar doc. to query should be D2, but D1 has higher TF-IDF. 

 

4.4.3 Approximate Search 

 

4.4.3.1 Comparison of Approximated NNS for Small Data Set 

 

We compare the accuracy, build and query time for 799 files (alt.atheism) among NN-

ZDD Hash, Idf App(roximate),  LSH Minhash (Baseline), Multi-Hash and ZDD Multi-

Hash (Figure 4-5).  

The LSH Minhash, Multi-Hash, and ZDD Multi-Hash have 100% accuracy and LSH 

Minhash has the lowest query time. But ZDD Multi-Hash has least build time.  
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Figure 4-5 Approximate NNS (Smaller Data Sets) 

 

4.4.3.2 Comparison of Approximated NNS for Large Data Set 

 

We compare the accuracy, build and query time for 2,000 files among LSH Minhash 

(Baseline), Multi-Hash and ZDD Multi-Hash (Figure 4-6). The accuracy of LSH 

Minhash drops to 99.90%. The query time of ZDD Multi-Hash and LSH MinHash are 

comparable.  

 

 

Figure 4-6 Approximate NNS (Large Data Sets) 

 

4.4.3.3 Comparison of Approximated NNS for Huge Data Set 

 

We compare the accuracy, build and query time for 10,003 files for LSH Minhash 

(Baseline), and Multi-Hash (Figure 4-7). ZDD Multi-Hash is excluded because the data 

structure used in the 3
rd

 party packages (initialize large integer array, hash map should 

be used instead) is inefficient. However, we could infer the results based on the fact that 
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ZDD Multi-Hash performs query more effective than Multi-Hash, and get the glimpse 

of ZDD Multi-Hash performance at huge data set. The conclusion is same as the large 

data set. 

 

Figure 4-7 Approximate NNS (Huge Data Sets) 
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5 Conclusion and Future Work 
 

In this paper, we focus on NNS for text. We propose an exact NNS Naïve NN-ZDD 

model. Its query time is order of magnitude faster than exhaustive NN for text. We also 

propose an approximate NNS ZDD Multi-hash model. The query time is closer to LSH 

with less build time and better accuracy.  

In the future work, for exact search, we would seek the better heuristic for finding the 

path with highest score for Naïve NN-ZDD model using A*Star + DFS. Besides, we 

would explore using Weighted Zero-suppressed Binary Decision Diagram (WZDD) [3] 

for TF-IDF. For Approximate search, we would explore other hashing functions 

(Minhash/Simhash) which preserve more document features than the simple hashing use 

for NN-ZDD Multi-hash. 
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