
1

School of Computer Science

College of Engineering and Computer Science

Nearest Neighbour Search with

Zero-Suppressed Decision

Diagram for Text Retrieval

Yong Boon, Lim – U5122243

COMP8740 - Artificial Intelligence Project

Supervisor: Dr. Scott Sanner

2

Abstract

Exact NNS on text document becomes very expensive for its high dimensionality and

the volumes. We demonstrate Exact NNS on text can be performed in linear time by

using Zero-Suppressed Binary Decision Diagram (ZDD). We also demonstrate ZDD

combined with Multi-hash technique can perform Approximate NNS on text with

sublinear time. The exact NNS Naïve NN-ZDD model query time is order of magnitude

faster than exhaustive NN for text, and approximate NNS using ZDD Multi-hash’s

query time is closer to LSH with less build time and better accuracy.

Acknowledgements

Thanks Dr. Scott for sharing his view and precious time to honestly guide a rookie.

Thanks Dr. Weifa for sharing his project experience and living tips in Canberra.

Thanks God for everything.

3

Table of Contents

1 Introduction ... 4

2 Background ... 5

2.1 Overview ... 5

2.2 Problem Setting ... 5

2.3 Metric and Similarity Functions .. 6

2.4 Document Model ... 6

2.4.1 Document Term Features ... 6

2.4.2 Hash Features .. 7

2.5 Zero-Suppressed Decision Diagram .. 8

3 Design and Theory .. 12

3.1 Exact NNS .. 12

3.1.1 Exhaustive NN Model .. 12

3.1.2 Naïve NN-ZDD Model .. 12

3.1.3 NN-ZDD Model for Different Metrics .. 16

3.2 Approximate NNS .. 18

3.2.1 NN Multi-hash Model .. 18

3.2.2 NN-ZDD Multi-hash Model .. 22

4 Evaluation ... 23

4.1 Data Set Description.. 23

4.2 Experiment Setup .. 23

4.3 Performance Metrics ... 23

4.4 Results ... 24

4.4.1 ZDD Properties .. 24

4.4.2 Exact Search .. 25

4.4.3 Approximate Search .. 26

5 Conclusion and Future Work .. 29

6 References ... 30

4

1 Introduction

Nearest Neighbour Search (NNS) is a search problem which effectively finds the pre-

processed objects in a database closest to a query object measured by distance/similarity

metrics. In this report, we focus NNS on text domain which exhibits high dimensional

and sparse properties. NNS on text has many applications [1], for example, de-

duplication for web crawling, plagiarism detection, personalized news aggregation,

related page/document search, and text clustering.

In general, the complexity of NNS increases exponentially with the dimensionality

(curse of dimensionality). Exact NNS on text document becomes very expensive for its

high dimensionality and the volumes. Most of the Branch and Bound NNS techniques

(i.e. set partitioning) perform only as good as linear search on text document.

Approximate NNS techniques attract attentions in high dimensionality NNS.

Approximate NNS finds the nearest neighbour with high probability in sublinear time in

the cost of allowing false positive. Locality Sensitivity Hashing (LSH) is one of the

popular Approximate NNS algorithms. Google [4] used Approximate NNS algorithms

Simhash for duplication for web crawling [5] and MinHash and LSH for Google News

personalization [6].

In this report, we demonstrate Exact NNS on text can be performed in linear time by

using Zero-Suppressed Binary Decision Diagram (ZDD) [2]. ZDD is a compact and

efficient data structure of Binary Decision Diagram (BDD) to represent high

dimensional sparse set. Each ZDD node represents the feature of the text document, and

all ZDD nodes in a valid path consist of all the features of a text document.

Besides, we also demonstrate ZDD combined with Multi-hash technique can perform

Approximate NNS on text with sublinear time. Mult-hash technique hashes a document

multiple times to cluster more similar one from the less similar document, and perform

NN in a smaller set.

This paper main research contribution is,

 For exact NNS, we propose using the ZDD to perform NNS.

 For approximate NNS, we propose a ZDD with Multi-hash to partition the

smaller set to improve the performance for both build and query time with

higher accuracy.

The rest of the paper is organized as follows. Chapter 2 provides a brief background in

various document representations and basic idea of ZDD. Chapter 3 describes the

design of various NNS using ZDD (NN-ZDD models). Chapter 4 presents the

experimental study. The final chapter offers conclusions and research direction.

5

2 Background

In this chapter, we provide the background knowledge to lay the foundation for various

NN-ZDD models in Chapter 3. We give overview of the NN methods. Then we go

through various document term representation and weighting metrics in the vector space

models. Last, we present ZDD data structure and its associated set operations.

2.1 Overview

Various NN methods have been proposed to reduce the complexity under 2 major

categories [1],

 Branch and Bound Techniques

Branch and bound techniques construct tree-based structures which partition the

set into disjoint subsets. Every node contains the threshold information which

determines the subset closer to the query point. Branch and Bound NNS

methods include K-D Tree, Vantage Point Tree (VP-Tree), and Generalized

Hyperplane Tree (GH-Tree).

 Mapping-based Techniques

Mapping-based techniques map the set of high dimensions into lower

dimensions with high probability of the closer objects staying near to each other.

In Locality Sensitivity Hashing (LSH) [10], the objects are hashed into lower

dimensions and another hash function maps each object into different buckets.

The objects closer to each other have higher probability to fall into the same

bucket.

Branch and Bound techniques which normally use for are Exact NNS are not efficient in

the high dimensional space. In contrast, mapping-base techniques are efficient in high

dimensional space performs only Approximate NNS.

2.2 Problem Setting

The NNS problem can be formalized [1] as, in a metric space with similarity function

 /distance function d, given a set of input , and a query .

Find as illustrated in Figure 2-1.

6

Figure 2-1 Nearest Neighbour Search in 2D

2.3 Metric and Similarity Functions

A distance function d on metric space M satisfies [1],

 Non-negative :

 Symmetry : () ()

 Identity : ()

 Triangle Inequality : () () ()

Similarity function satisfies all the properties above except the Triangle

Inequality. We discuss various distance/similarity functions in Section 2.4.

2.4 Document Model

In NNS on text, the documents in document set S and the query are represented as

vectors,

 and [8]. Each dimension in a vector

represents a document feature. This model is referred as vector space model M. The

value represents either existence or weighting of a document feature depending on the

schemes

2.4.1 Document Term Features

Each term in a document represents a feature/dimension. The dimension k of the vector

space model M equals to the number of unique terms in all the documents.

7

2.4.1.1 Boolean Scheme

In the simplest scheme, the value of each vector j in document and query are

expressed in Boolean as
 representing the absent or present of a feature.

The distance between document and query is measured by Hamming Distance.

 ∑

 and {

In Chapter 3, we use the Boolean scheme and Hamming Distance to construct NN-ZDD.

2.4.1.2 Term Frequency Scheme[8]

In term frequency scheme, each dimension of term t is weighted by the term

occurrences in document p, and denoted as . However, rare term is also important

to distinguish the documents. Therefore, a measure Document frequency for term t ()

represents the total term occurrences in all the documents, and the inverse of give

weight to the rare term, and defined as,

 where N is the total number of

documents. reflects the weight of each term by considering both term

frequency at the document itself, and overall document set.

2.4.2 Hash Features

One of the effective ways to reduce the dimension of the document is through hashing.

Image we assign a unique ID to each of the English alphabet,

A B C D E F G H I J K L M

1 2 3 4 5 6 7 8 9 10 11 12 13

N O P Q R S T U V W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25 26
Table 2-1 ID for English Alphabets

To represent any English word, we need a vector of 26 dimensions, for example,

“APPLE”, {A=>1, P=>16, L=>12, E=>5}.

8

If we apply a hash function 31*x mod 5 to all the English alphabets’ ID,

A B C D E F G H I J K L M

0 1 2 3 4 0 1 2 3 4 0 1 2

N O P Q R S T U V W X Y Z

3 4 0 1 2 3 4 0 1 2 3 4 1
Table 2-2 Hash ID for English Alphabets with 31*x mod 5.

“APPLE” can now be represented by a vector of 5 dimensions {A, P=>0, L=> 1, E=>4}.

So do “ALE”, and “PLE” which has the same vector as “APPLE”.

If we apply a new hash function 31*x mod 6 to all the English alphabets’ ID,

A B C D E F G H I J K L M

0 1 2 3 4 5 0 1 2 3 4 5 0

N O P Q R S T U V W X Y Z

1 2 3 4 5 0 1 2 3 4 5 1 2
Table 2-3 Hash ID for English Alphabets with 31*x mod 6.

 “APPLE” can now be represented by a vector of 6 dimensions {A=>1, P=>4, L, E=>5}.

By combining both hash vectors (from 31*x mod 5 and 31*x mod 6), we could distinct

each word with the smaller vector sizes, and form the clusters of 31*x mod 5 with 3

distinct words surround it.

English Word 31*x mod 5 31*x mod 6 Original
APPLE (0, 1, 4) (1, 4, 5) (1, 5, 12, 16)

ALE (0, 1, 4) (1, 5) (1, 5 12)

PLE (0, 1, 4) (4, 5) (5, 12, 16)
Table 2-4 Combined Hash ID for English Alphabets

The useful property of partition large set of document into small sets for NN, and it

motivates the NN-ZDD Multi-hash in Section 3.2.1.

2.5 Zero-Suppressed Decision Diagram

The Zero-suppressed Decision Diagram (ZDD) is a canonical directed acyclic graph

(DAG) [0] compactly represents a set of objects S. ZDD represents the sparse set

efficiently and makes it a potential candidate for the representation of document. ZDD

consists of one root node, a set of decision nodes (circle) and two terminal nodes (box)

as shown in Figure 2-2. The terminal node 0 (represents the empty set 'Ø' and

terminal node 1 (represents '{Ø}'.

9

Figure 2-2 Basic Elements of ZDD

An object can be represented by an k-bit Boolean vector where

 . Each path from the root node to the terminal node 1 represent an object

 . A variable is present in object if the path go through the 1-edge of the node

represents it.

Each decision node for a variable xi and two subset

 and

 denoted as

 representing the Boolean function

 . The

decision node contains 1-edge (solid line) and 0-edge (dash line) for variable

or on the path representing . In Figure 2-3 a), ZDD set S represents 3 object

set {{A, C}, {B, C}, {A, B, C}} corresponding to all 3 paths from the root decision

node to terminal node 1.

ZBDD has an important property [3], i.e. all the equivalent decision nodes are shared

and reusable. If two decision nodes Ni and Nj represent variable xi with two subsets N0

and N1, they are considered equivalent, canonical and shared, i.e.

 Therefore a vector space of 2

k
 can be represented by lesser nodes

compactly.

Figure 2-3 Examples of ZDD Basic Operations

10

The basic operation of the ZDD is shown in Table 2-5. A simple example in Figure 2-3

b) to e) illustrates how the set S3 is constructed using the ZDD basic operations. In

Figure 2-3 f), set S4 are the union of set S1 and S3. Note that ZDD for S1 and S4 have

the same number of decision nodes even though they represent different sets as some of

the decision nodes are reused.

Operation Description

Empty() Return empty set Ø

Base() Return set contains empty set {Ø}

Change(,) If set does not contain , return the set of subset of with , else

return the set of subset of without

Subset0(,) Return set of subsets of not containing variable

Subset1(,) Return set of subsets of containing variable

Union(,) Return set of

Intersec(,) Return set of

Diff(,) Return set of \

Table 2-5 ZDD Basic Operations

Variable ordering affects the size of the ZDD of the same sets as demonstrate in Figure

2-4 a) and b). Effective variable ordering for compact ZDD [3] should, 1) groups of

variables with high co-occurrence rate should be put together; 2) Variables are ordered

by their frequency. It’s a hard problem to find out the optimal variables ordering,

especially in the text domain where new documents incrementally adding to the ZDD,

and influence the relative frequency of variables. One of the heuristics used [3] is to

order the variables by their frequency. We show in the experiments (section 4.4.1.2) the

variable ordering has slightly influences on the ZDD node sizes.

Figure 2-4 ZDD with variable ordering

11

The theoretical maximum number of decision node for the ZDD is the total number of

variables presented in all subset of a set. However, the actual sizes of the ZDD nodes

are smaller due to the node reusability.

12

3 Design and Theory

3.1 Exact NNS

3.1.1 Exhaustive NN Model

The exhaustive NN does not pre-process the document set S to build data structure or

index to speed up the searching. In this model, a document and query is

represented as Boolean vector (

)
 .

The model compares the similarity of each document features
 with the query features

 , and return the closest document . The time complexity of the exhaustive NN is

O(nk) where n is the number of documents in document set S, and the k is the number

of feature in the target document.

 ∑

 {

3.1.2 Naïve NN-ZDD Model

The naïve NN-ZDD model is the fundamental NN-ZDD model and serves as a

framework for other NN-ZDD models in the subsequence discussion. In this model, a

document is represented as Boolean vector (

)
 represents the

existence of term in document i. The similarity between the documents and the query

is measured by Hamming distances. In Section 3.1.3, we replace the Hamming Distance

with Idf, and TF-IDF.

3.1.2.1 Build Phase

In the build phase, each document is converted to a ZDD denoted as

 where is the set of document features for using ZDD Change

operation (Algorithm 2) for each document feature ,

13

an example is illustrated in Figure 3-1. The number of nodes in
 define

number of document features.

Figure 3-1 ZDD Change Operation on Text Doc

A Naïve NN-ZDD model is built by union all the
 (Algorithm 1),

 ⋃

and illustrated Figure 3-2 which union set S1 and S2 to form S3, and also union set S3

and S4 to form S5.

Figure 3-2 Example of ZDD Union for document set

3.1.2.2 Query Phrase

Finding a nearest neighbour for a query document in naïve NN-ZDD model is

equivalent to finding the path from root node of ZDD(S) to terminal node with

maximum score. Dynamics programming calculates the maximum score from the

14

terminal nodes and back to the root node . Each node gets the maximum

score from its 0-edge node (

) and 1-edge node (

) with additional hamming

similarity score if the term

 represented by matches query term . The

 () is the child branch with maximum score (Algorithm 3 and Algorithm 4).

 (

) (

)

 (

) {

 ()

The document features (terms) of the nearest neighbour document to query can be

extracted from the 1-edge (with maximum score (()) from

terminal node to root node of ZDD(S). is the set of extracted document

features for (Algorithm 5 and Algorithm 6).

 {

 ()

 ()

Algorithm 1: BuildNNZDD (D)

1

2

3

4

5

6

7

8

NNZDDTopic = ZDDBase // Initialize ZDD structure

ZDDFeatureDict = {} // Initialize ZDD Node Feature dictionary

while D is not empty do

 d  D.current() // Assign document from set of documents

 ZDDTopic  DocumentToZDD(d, ZDDFeatureDict) // Convert document to ZDD

 NNZDDTopic = ZDDUnion(NNZDDTopic, ZDDTopic)

 remove d from D

return NNZDDTopic

Algorithm 1 : Building NN-ZDD from documents

Algorithm 2: DocumentToZDD(d, ZDDFeatureDict)

1

2

3

4

5

6

7

8

9

10

ZDDTopic = ZDDBase // Initialize ZDD structure

featues  extractFeature(d) // Convert the document to a list of features

while feature is not empty do:

 f  feature.current() // Assign feature from a list of features

 if not ZDDMember(ZDDFeatureDict, f) then // If the feature not already the existing node

 ZDDadd(ZDDFeatureDict, f) // Create a new node for this feature

 ZDDNode  ZDDLookup(ZDDFeatureDict, f) // Assign the node for the feature.

 ZDDTopic = ZDDChange(ZDDTopic, ZDDNode) // Use ZDD Change operation

 // to add ZDDNode to ZDD Structure

 remove f from features

return ZDDTopic

Algorithm 2 : Convert document to ZDD

15

Algorithm 3: ReduceScoreMain (Z, q)

1

2

MaxChild = {} // Initialize dictionary to store high score edge

return ReduceScore(Z.root, q, MaxChild) // Recursive call ReduceScore

Algorithm 3 : ReduceScore Main

Algorithm 4: ReduceScore (z, q, MaxChild)

1

2

3

4

5

6

7

8

9

10

11

if z is ZDDEmpty return ZDDEmptyCost // If z reaches Terminal node 0 return the

if z is ZDDBase return ZDDBaseCost // If z reaches Terminal node 1 return the

zLow  0-Edge of z // Assign 0-edge of z to zLow

zLowScore  ReduceScore(zLow, q, MaxChild) // Recursive call ReduceScore follow 0-edge

zHigh  1-Edge of z // Assign 1-edge of z to zHigh

zHighScore  ReduceScore(High, q, MaxChild) // Recursively call ReduceScore follow 1-edge

 + ZDDContain(z, q) // Give score if this node represent a doc feature

if zHighScore > zLowScore then // If the 1-edge score higher than 0-edge

 MaxChild(z) = High // Set the child node to 1-edge

else

 MaxChild(z) = Low // Set the child node to 0-edge

return Max(zHighScore, zLowScore) // Return the score.

Algorithm 4 : ReduceSore to identify path with highest similarity to a Query

Algorithm 5: ExtractSetMain(Z, MaxChild, ZDDFeatureDict)

1

2

3

4

DocFeatures = {} // Initialize dictionary to store high score edge

z =Z.root // Start from the root node of ZDD

DocFeatures = ExtractSet(z, MaxChild, ZDDFeatureDict, DocFeatures) // Recursively call ExtractSet

return DocFeatures // Recursive call extracted set

Algorithm 5 : Extract Set

Algorithm 6: ExtractSet(z, MaxChild, ZDDFeatureDict, DocFeatures)

1

2

3

4

5

6

7

8

9

10

If z is not ZDDEmpty or ZDDBase then // If z is not terminal node

 If MaxChild(z) = High then // If the child with higher score is 1-edge

 f ZDDFeatureDict(z) // Extract the feature represented by node z

 DocFeatures.add(f) // Add the feature to the Feature set

 zHigh  1-Edge of z // Assign 1-edge of z to zHigh

 DocFeatures = ExtractSet(zHigh, MaxChild, ZDDFeatureDict, DocFeatures) // Recursive call

 else

 zLow  0-Edge of z // Assign 0-edge of z to zLow

 DocFeatures = ExtractSet(zLow, MaxChild, ZDDFeatureDict, DocFeatures) // Recursive call

return DocFeatures

Algorithm 6 : Extract the most similar features to a Query

16

3.1.2.3 Complexity

In this section, we analyse the space and time complexity of the Naïve NN-ZDD model.

3.1.2.3.1 Space Complexity

In the worst case scenario, each document p contains n distinct unique document

features. The space complexity is O(dn) where d is the total number of document in set

S. In the real world, documents share some common features which promote the node

reusability, therefore the space complexity is much smaller than O(dn).

3.1.2.3.2 Time Complexity

3.1.2.3.2.1 Build Phase

Construct a ZDD chain for a document of n features required O(n). Union a document

of n features to a ZDD of total m distinct feature in the worst case required max(O(n),

O(m)). Therefore the complexity of building a Naïve NN-ZDD with d number of

documents, each with n distinct feature would require d * (O(n) + max(O(n), O(m)).

3.1.2.3.2.2 Query Phase

To identify the path with maximum similarity score to the query document, we need to

traverse to all the ZDD nodes in the Naïve NN-ZDD. It’s proportional to the ZDD nodes

size of the Naïve NN-ZDD. In the worst case scenario, the query complexity is O(dn)

where d is the number of document and n is the number of distinct features of each

document.

3.1.3 NN-ZDD Model for Different Metrics

In this section, we introduce two variants of NN-ZDD model with different scoring

metrics, i.e. IDF and TF-IDF.

17

3.1.3.1 IDF

In this model, we replace the hamming similarity score in the naïve NN-ZDD

with IDF score so the rare term get high score. The total number of nodes in ZDD(S) is

same with Naïve NN-ZDD.

 (

) {

3.1.3.2 TF-IDF

Document is represented as (

)
 is the TF-IDF weight of

 in TF-IDF. To integrate the term frequency to the ZDD, we adopt the concept from

Frequent Pattern (FP-tree) [9] to include the frequency information in the ZDD nodes

(Figure 3-3), and represent the variable as .

 (

) {

where

represents the term frequency of node for variable

Figure 3-3 ZDD with Frequency Variables

18

3.2 Approximate NNS

3.2.1 NN Multi-hash Model

The time complexity of the exhaustive NN is where is the number of

documents in document set S, and the k is the number of feature in the target document.

One way to improve the performance of exhaustive NN is to reduce size for both and

 during NN while preserving features for each document. Hash representation has the

nice property of partition the set while preserving (with error) the features as we

discussed in Section 2.4.2.

By hashing the document from (

)
 to

 , is the dimension of , and , we could reduce the dimension

of the document from to . Because of the possible ‘hash collision’ (happened

when mapping higher dimension vector to lower dimension vector), two or more

documents might have the same hash representation, i.e. ()

 the maximum hash document size | | is but normally the actual

| | and the equal hold if no hash collision. The time complexity of the NN query is

reduced from to | | .

However, number of documents which share the same hash representation might still be

large, therefore, we repeating the same process for documents sharing the same hash

representation, we also increase the hash size to separate the less similar from the more

similar documents, i.e. . Each of the increased size new hash representation

 forms the branch of the previous sharing hash representation .

We discuss the details of query phase in section 3.2.1.2.

3.2.1.1 Build Phase

In the build phase, each document is initially hashed to root tree . The

is added to a set of root trees .

The document is then hashed to , and added to the branch of (i.e.

 (())) where the hash size (and) .

19

The same process is repeated for document from to where is the

depth of the tree, and .

 (())

At the leaf, document is added to the branch (()).

 (())

The next document in the document set S goes through the same process from root to

leaf till all the documents in S is placed at one of the leaf. Figure 3-4 illustrates the trees

structure of . The algorithm is shown in Algorithm 7.

Figure 3-4 Build Phase for Multi-Hashing

3.2.1.2 Query Phase

In the query phase, the query is initially hashed to and performed exhaustive

NN on and identified the nearest neighbour . is the dimension of .

 ∑

 Where

20

 ⋃

 {

The query q is then hashed to and performed exhaustive NN with all the hash

values of the branch of () and identified the nearest neighbour . The same

process is repeated till .

 ∑

 {

At the leaf, the query is performed the exhaustive NN search on all the documents

 .

 ∑

 {

An example is illustrated in Figure 3-5, and the algorithm is shown in Algorithm 8.

Figure 3-5 Query Phase for Multi-Hashing

21

Algorithm 7: BuildNNMultiHash(D, L)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

while D is not empty do

 = null // Initialize parent tree

 d  D.current() // Assign document from set of documents

 for each l L do

 if l = 1 and then // if the hash value of d is not exist at Level 1

 // Add hash value of d to the hash set at Level 1

 else if l = L then // if it’s the leaf

 // Add the doc to the branch of parent tree

 else

 // Add hash value to the branch of parent tree

 end if

 // Assign the current hash value as parent tree.

 end for

Algorithm 7 : Build NN Multi-hash

Algorithm 8: QueryNNMultiHash(q)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

for each l L do

 = null // Initialize parent tree

 if l = 1 then then // if Level 1

 t = nn(F(s), // Perform nn on F(S) with

 else if l = L then // if leaf

 p = nnFile(// Perform nn on all the files from branch of parent tree

 with q

 return p // return the closest files to q

 else

 t = nn(// Perform nn on all hash values from branch of parent tree

 with

 end if

 t // Assign the current hash value as parent tree.

end for

Algorithm 8 : Query NN Multi-hash

3.2.1.3 Complexity

In this section, we analyse the space and time complexity of the NN Multi-hash model.

3.2.1.3.1 Space Complexity

In the worst case scenario, all documents n spans all hash values | | (with hash

collision) if | | or of them have its owner hash value if | | in Level .

Therefore, the space complexity in Level is | | .

22

For NN Multi-hash with Level , the space complexity is, ∏ | |
 , which

is much higher than exhaustive NN of O(dn). However, by proper selecting the hash

function which balance the tree to achieve | | .

3.2.1.3.2 Time Complexity

3.2.1.3.2.1 Build Phase

Construct a NN Multi-hash for documents with Level, each document is required to

hashed times only, therefore the overall time complexity for build phase is .

3.2.1.3.2.2 Query Phase

Assume that documents are evenly distributed at each Level during build phase, the

complexity of the query time for performing exhaustive NN for all level is

 | | ∑ | ()|

 () .

The | | is the size of the root of trees, | ()| is the branch which parent branch

has the most similar hash value to the query. is the dimension of hash value at Level

 . is the dimension of the document, and () is the number of documents that

fall under this particular branch.

3.2.2 NN-ZDD Multi-hash Model

In the NN Multi-hash Model, we perform exhaustive NN on each branch of the tree from the

root to leaf. As we’ve seen in Section 3.1.2.2, the Naïve NN-ZDD has better query time than the

exhaustive NN. Therefore, we construct ZDD at each branch during the build phase and perform

query on the ZDD which is more efficient as shown in Section 4.4.3.2

23

4 Evaluation

In this section, we introduce the details of our experiments and show the results.

4.1 Data Set Description

These models are evaluated with the newsgroups data. The newsgroups data set is a

collection of approximate 10,000 newsgroup documents which contains 11 different

newsgroups of different topics in the text file format. The filtering process performs

tokenizing, stop word removal and stemming on text files and passes the result to NN

models.

4.2 Experiment Setup

We construct 3 types of experiments to demonstrate the ZDD properties and the

performances of NN-ZDD models. In section 4.4.1, we demonstrate two important

properties of ZDD, i.e. relationship of ZDD node and file sizes, and variable ordering to

ZDD node sizes. In section 4.4.2, we focus on exact NNS. We evaluate the performance

of NN-ZDD with Exhaustive NN, and also demonstrate NN-ZDD models of various

metrics. In section 4.4.3, we compare the performance of NN-ZDD-MLH with LSH.

4.3 Performance Metrics

Four performance metrics measure and compare the performances of NN models as

defined in Table 4-1.

Performance

Metric

Description

Build Time (ms) Time to build the data structure for effective querying.

Query Time (ms) Time retrieve the nearest neighbour document.

Accuracy (%) The percentage of the nearest neighbour docs correctly matches the queries.

Node Size Number of Nodes in the ZDD (ZDD only).

Table 4-1 Performance Metrics

24

4.4 Results

4.4.1 ZDD Properties

4.4.1.1 ZDD Node Size and No of Files

The ZDD node size is increasing linearly with the number of file. The ZDD search is as

good as linear search in the worst case.

Figure 4-1 ZDD Node Size and number of Files Relation

4.4.1.2 Variable Ordering and ZDD Node Size

We’ve discussed the variable ordering influences ZDD node size in section 2.5. In this

experiment, we are using data set sci.med which contains 16914 distinct document

terms. We sort the variable ordering based on inverse document frequency (IDF) in both

ascending and descending order, and compared with case without ordering. The result is

shown in Table 4-2.

Ordering Number of ZDD Nodes

IDF Descending 97789

IDF Ascending 97795

No Ordering 99727

Table 4-2 : ZDD sizes with various Ordering

In the text document ZDD, the variable ordering has slightly influences on the ZDD

node sizes (2% less than no ordering). Therefore, our NN-ZDD models do not

implement the variable ordering to improve the build time.

0

20000

40000

60000

80000

100000

0 200 400 600 800 1000

Z
D

D
 n

o
d

e
 S

iz
e

No of Files

25

4.4.2 Exact Search

4.4.2.1 Query Time: Exhausting NN vs Naïve NN-ZDD.

We compare the total times required for building and querying 701 files (alt.atheism)

for the exhaustive NN and Naïve NN-ZDD. The Naïve NN-ZDD is order of magnitude

faster than the exhaustive NN (Figure 4-2).

Figure 4-2 Query Time for Exhaustive NN and Naive NN-ZDD

4.4.2.2 Comparison of Exact NNS for different metrics

We compare NN-ZDD models with three different metrics (i.e. Hamming Distance, IDF,

and TF-IDF). The Hamming Distance and IDF have similar query time and identical

number of nodes, and 100% accuracy. However, TF-IDF has slight higher number of

nodes, longer query time, and degraded accuracy. NN-ZDD models are suitable for non-

frequency term.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

101 201 301 401 501 601 701

Q
u

e
ry

 T
im

e
 (

m
s
)

of Docs

Exhaustive NN NN-ZDD
*Doc Size: 701

26

Figure 4-3 Exact NN-ZDD for Different Metrics

The degraded accuracy of NN-ZDD TF-IDF is because the query scores high in certain

documents that the terms matched have higher frequency without containing all the

terms as shown in Figure 4-4. One way to reduce this effect is to multiply the TF-IDF

score with the fraction of all query terms matched (as Apache Lucene does).

Doc1 = {Adam:10, Eve:5}

Doc2= {Adam:5, Love:5, Eve:5}

TF Adam Love Eve

1 10 0 5

2 5 5 5

Idf Adam Love Eve

N = 2 2 1 2

Query = {Adam, Love, Eve}

TF-IDF Adam Love Eve Score

1 6.02 0 3.01 9.03

2 3.01 2.39 3.01 8.4

Figure 4-4 TF-IDF Issues: The similar doc. to query should be D2, but D1 has higher TF-IDF.

4.4.3 Approximate Search

4.4.3.1 Comparison of Approximated NNS for Small Data Set

We compare the accuracy, build and query time for 799 files (alt.atheism) among NN-

ZDD Hash, Idf App(roximate), LSH Minhash (Baseline), Multi-Hash and ZDD Multi-

Hash (Figure 4-5).

The LSH Minhash, Multi-Hash, and ZDD Multi-Hash have 100% accuracy and LSH

Minhash has the lowest query time. But ZDD Multi-Hash has least build time.

90%

92%

94%

96%

98%

100%

0

20000

40000

60000

80000

100000

120000

140000

Hamming Dist. IDF TF-IDF

 BuildTime (ms) QueryTime (ms) NodeSize Accuracy (%)
*Doc Size: 799

27

Figure 4-5 Approximate NNS (Smaller Data Sets)

4.4.3.2 Comparison of Approximated NNS for Large Data Set

We compare the accuracy, build and query time for 2,000 files among LSH Minhash

(Baseline), Multi-Hash and ZDD Multi-Hash (Figure 4-6). The accuracy of LSH

Minhash drops to 99.90%. The query time of ZDD Multi-Hash and LSH MinHash are

comparable.

Figure 4-6 Approximate NNS (Large Data Sets)

4.4.3.3 Comparison of Approximated NNS for Huge Data Set

We compare the accuracy, build and query time for 10,003 files for LSH Minhash

(Baseline), and Multi-Hash (Figure 4-7). ZDD Multi-Hash is excluded because the data

structure used in the 3
rd

 party packages (initialize large integer array, hash map should

be used instead) is inefficient. However, we could infer the results based on the fact that

86%

88%

90%

92%

94%

96%

98%

100%

0

10000

20000

30000

40000

50000

ZDD Hash-7 bits ZDD IDFAPP-0.05 LSH MINHASH-200 MultiHash-4 ZDD MultiHash-4

 BuildTime (ms) QueryTime (ms) Accuracy (%)

99.85%

99.90%

99.95%

100.00%

0

10000

20000

30000

40000

50000

60000

70000

MultiHash-4 ZDD MultiHash-4 LSH MINHASH-1000

 BuildTime (ms) QueryTime (ms) Accuracy (%)

*Doc Size : 799

*Doc Size : 2000

28

ZDD Multi-Hash performs query more effective than Multi-Hash, and get the glimpse

of ZDD Multi-Hash performance at huge data set. The conclusion is same as the large

data set.

Figure 4-7 Approximate NNS (Huge Data Sets)

99.20%

99.40%

99.60%

99.80%

100.00%

0

200000

400000

600000

800000

1000000

1200000

MultiHash-4 LSH MINHASH-1000

 BuildTime (ms) QueryTime (ms) Accuracy (%)
*Doc Size : 10003

29

5 Conclusion and Future Work

In this paper, we focus on NNS for text. We propose an exact NNS Naïve NN-ZDD

model. Its query time is order of magnitude faster than exhaustive NN for text. We also

propose an approximate NNS ZDD Multi-hash model. The query time is closer to LSH

with less build time and better accuracy.

In the future work, for exact search, we would seek the better heuristic for finding the

path with highest score for Naïve NN-ZDD model using A*Star + DFS. Besides, we

would explore using Weighted Zero-suppressed Binary Decision Diagram (WZDD) [3]

for TF-IDF. For Approximate search, we would explore other hashing functions

(Minhash/Simhash) which preserve more document features than the simple hashing use

for NN-ZDD Multi-hash.

30

6 References

[0] Mishchenko, Alan. "An introduction to zero-suppressed binary decision diagrams."

URL: http://www. ee. pdx. edu/alanmi/research. htm (2001).

[1] Algorithms for Nearest Neighbor Search, tutorial by Yury Lifshits. RuSSIR'07,

Ekaterinburg, September 2007

[2] Minato, Shin-ichi. "Zero-suppressed BDDs for set manipulation in combinatorial

problems." Design Automation, 1993. 30th Conference on. IEEE, 1993.

[3] Loekito, Elsa, and James Bailey. "Are zero-suppressed binary decision diagrams

good for mining frequent patterns in high dimensional datasets?." Proceedings of the

sixth Australasian conference on Data mining and analytics-Volume 70. Australian

Computer Society, Inc., 2007.

[4] “MinHash” Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc., date

last updated (15 April 2013). Web. Date accessed (26 May 2013).

http://en.wikipedia.org/wiki/MinHash

[5] Manku, Gurmeet Singh, Arvind Jain, and Anish Das Sarma. "Detecting near-

duplicates for web crawling." Proceedings of the 16th international conference on

World Wide Web. ACM, 2007.

[6] Das, Abhinandan S., et al. "Google news personalization: scalable online

collaborative filtering." Proceedings of the 16th international conference on World

Wide Web. ACM, 2007.

[7] Goodman, Jacob E., and Joseph O'Rourke, eds. Handbook of discrete and

computational geometry. Chapman and Hall/CRC, 2004.

[8] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. Introduction to

information retrieval. Vol. 1. Cambridge: Cambridge University Press, 2008.

[9] Han, Jiawei, et al. "Mining frequent patterns without candidate generation: A

frequent-pattern tree approach." Data mining and knowledge discovery 8.1 (2004): 53-

87.

[10] Rajaraman, Anand, and Jeffrey David Ullman. Mining of massive datasets. Cambridge

University Press, 2011.

http://en.wikipedia.org/wiki/MinHash

