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ABSTRACT
As urban traffic congestion is on the increase worldwide, it is critical to maximize capacity and
throughput of existing road infrastructure through optimized traffic signal control. To this end, we
build on the body of work in mixed integer linear programming (MILP) approaches that attempt to
jointly optimize traffic signal control over an entire traffic network and specifically on improving
the scalability of these methods for large numbers of intersections. Our primary insight in this work
stems from the fact that MILP-based approaches to traffic control used in a receding horizon con-
trol manner (that replan at fixed time intervals) need to compute high fidelity control policies only
for the early stages of the signal plan; therefore, coarser time steps can be employed to “see” over
a long horizon to preemptively adapt to distant platoons and other predicted long-term changes
in traffic flows. To this end, we contribute the queue transmission model (QTM) which blends
elements of cell-based and link-based modeling approaches to enable a non-homogeneous time
MILP formulation of traffic signal control. We then experiment with this novel QTM-based MILP
control in a range of traffic networks and demonstrate that the non-homogeneous MILP formula-
tion achieves (i) substantially lower delay solutions, (ii) improved per-vehicle delay distributions,
and (iii) more optimal travel times over a longer horizon in comparison to the homogeneous MILP
formulation with the same number of binary and continuous variables.
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INTRODUCTION
As urban traffic congestion is on the increase worldwide with estimated productivity losses in the
hundreds of billions of dollars in the U.S. alone and immeasurable environmental impact (1), it is
critical to maximize capacity and throughput of existing road infrastructure through optimized traf-
fic signal control. Unfortunately, many large cities still use some degree of fixed-time control (2)
even if they also use actuated or adaptive control methods such as SCATS (3) or SCOOT (4).
However, there is further opportunity to improve traffic signal control even beyond adaptive meth-
ods through the use of optimized controllers (that incorporate elements of both adaptive and actu-
ated control) as evidenced in a variety of approaches including mixed integer (linear) program-
ming (5, 6, 7, 8, 9, 10), heuristic search (11, 12), queuing delay with pressure control (13) and
linear program control (14), to scheduling-driven control (15, 16), and reinforcement learning (2).
Such optimized controllers hold the promise of maximizing existing infrastructure capacity by
finding more complex (and potentially closer to optimal) jointly coordinated intersection policies
in comparison to heuristically-adaptive policies such as SCATS and SCOOT. However, optimized
methods are computationally demanding and often do not guarantee jointly optimal solutions over
a large intersection network either because (a) they only consider coordination of neighboring in-
tersections or arterial routes or (b) they fail to scale to large intersection networks simply for com-
putational reasons. We remark that the latter scalability issue is endemic to many mixed integer
programming approaches to optimized signal control.

In this work, we build on the body of work in mixed integer linear programming (MILP) ap-
proaches that attempt to jointly optimize traffic signal control over an entire traffic network (rather
than focus on arterial routes) and specifically on improving the scalability of these methods for
large urban traffic networks. In our investigation of existing approaches in this vein, namely exem-
plar methods in the spirit of (7, 9) that use a (modified) cell transmission model (CTM) (17, 18) for
their underlying prediction of traffic flows, we remark that a major drawback is the CTM-imposed
requirement to choose a predetermined homogeneous (and often necessarily small) time step for
reasonable modeling fidelity. This need to model a large number of CTM cells with a small time
step leads to MILPs that are exceedingly large and often intractable to solve.

Our primary insight in this work stems from the fact that MILP-based approaches to traffic
control used in a receding horizon control manner (that replan at fixed time intervals) need to
compute high fidelity control policies only for the early stages of the signal plan; therefore, coarser
time steps can be employed to “see” over a long horizon to preemptively adapt to distant platoons
and other predicted long-term changes in traffic flows. This need for non-homogeneous control in
turn spawns the need for an additional innovation: we require a traffic flow model that permits non-
homogeneous time steps and properly models the travel time delay between lights. To this end,
we might consider CTM extensions such as the variable cell length CTM (19), stochastic CTM
(20, 21), CTM extensions for better modeling freeway-urban interactions (22) including CTM
hybrids with link-based models (23), assymmetric CTMs for better handling flow imbalances in
merging roads (24), the situational CTM for better modeling of boundary conditions (25), and
the lagged CTM for improved modeling of the flow density relation (26). However, despite the
widespread varieties of the CTM and usage for a range of applications (27), there seems to be no
extension that permits non-homogeneous time steps as proposed in our novel MILP-based control
approach.

For this reason, as a major contribution of this work to enable our non-homogeneous
time MILP-based model of joint intersection control, we contribute the queue transmission model
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FIGURE 1 (a) Example of a real traffic network modeled using the QTM. (b) A preview
of different QTM model parameters as a function of non-homogeneous discretized time in-
tervals indexed by n. For each n, we show the following parameters: the elapsed time t,
the non-homogeneous time step length �t, the cumulative duration d of two different light
phases for l

6

, the phase p of light l
6

, and the traffic volume of different queues q linearly in-
terpolated between time points. There is technically a binary p for each phase, but we abuse
notation and simply show the current active phase: NS for north-south green and EW for
east-west green assuming the top of the map is north. Here we see that traffic progresses from
q
1

to q
7

to q
9

according to light phases and traffic propagation delay with non-homogeneous
time steps only at required changepoints. We refer to the QTM model section for precise
notation and technical definitions.

(QTM) that blends elements of cell-based and link-based modeling approaches as illustrated and
summarized in Figure 1. The QTM offers the following key benefits:

• Unlike previous CTM-based joint intersection signal optimization (7, 9), the QTM is
intended for non-homogeneous time steps that can be used for control over large horizons.

• Any length of roadway without merges or diverges can be modeled as a single queue
leading to compact QTM MILP encodings of large traffic networks (i.e., large numbers of
cells and their associated MILP variables are not required between intersections). Further,
the free flow travel time of a link can be modeled exactly, independent of the discritizaiton
time step, while CTM requires a further increased discretization to approach the same
resolution.

• The QTM accurately models fixed travel time delays critical to green wave coordination
as in (5, 6, 8) through the use of a non-first order Markovian update model and further
combines this with fully joint intersection signal optimization in the spirit of (7, 9, 10).

In the remainder of this paper, we first formalize our novel QTM model of traffic flow
with non-homogeneous time steps and show how to encode it as a linear program for computing
traffic flows. Next we proceed to allow the traffic signals to become discrete phase variables that
are optimized subject to a delay minimizing objective and standard minimum and maximum time
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constraints for cycles and phases; this results in our final MILP formulation of traffic signal control.
We then experiment with this novel QTM-based MILP control in a range of traffic networks and
demonstrate that the non-homogeneous MILP formulation achieves (i) substantially lower delay
solutions, (ii) improved per-vehicle delay distributions, and (iii) more optimal travel times over a
longer horizon in comparison to the homogeneous MILP formulation with the same number of
binary and continuous variables.

THE QUEUE TRANSMISSION MODEL (QTM)
A Queue Transmission Model (QTM) is the tuple (Q,L, ~�t, I), where Q and L are, respectively,
the set of queues and lights; ~

�t is a vector of size N representing the homogeneous, or non-
homogeneous, discretization of the problem horizon [0,T] and the duration in seconds of the n-th
time interval is denoted as �t

n

; and I is a matrix |Q| ⇥ T in which I

i,n

represents the flow of
vehicles requesting to enter queue i from the outside of the network at time n.

A traffic light ` 2 L is defined as the tuple ( 

min

`

, 

max

`

,P
`

,

~

�

min

`

,

~

�

max

`

), where:

• P
`

is the set of phases of `;

•  min

`

( max

`

) is the minimum (maximum) allowed cycle time for `; and

• ~

�

min

`

(~�max

`

) is a vector of size |P
`

| and �min

`,k

(�max

`,k

) is the minimum (maximum) allowed
time for phase k 2 P

`

.

A queue i 2 Q represents a segment of road that vehicles traverse at free flow speed; once
traversed, the vehicles are vertically stacked in a stop line queue. Formally, a queue i is defined by
the tuple (Q

i

,T

prop

i

,F

out

i

,

~

F

i

,

~

Pr

i

,QP
i

) where:

• Q

i

is the maximum capacity of i;

• T

prop

i

is the time required to traverse i and reach the stop line;

• F

out

i

represents the maximum traffic flow from i to the outside of the modeled network;

• ~

F

i

and ~

Pr

i

are vectors of size |Q| and their j-th entry (i.e., F
i,j

and Pr

i,j

) represent the
maximum flow from queue i to j and the turn probability from i to j (where

P
j2Q Pr

i,j

=

1), respectively; and

• QP
i

is the set of traffic light phases controlling the outflow of queue i, where the pair,
(`, k) 2 QP

i

, denotes phase k of light `.

Differently than the CTM (9, 17), the QTM does not assume that�t

n

= T

prop

i

for all n, that
is, the QTM can represent non-homogeneous time intervals (Figure 1(b)). The only requirement
over �t

n

is that no traffic light maximum phase time is smaller than any �t

n

since phase changes
occur only between time intervals; formally, �t

n

 min

`2L,k2P`
�

max

`,k

for all n 2 {1, . . . ,N}.
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Computing Traffic Flows with QTM
In this section, we present how to compute traffic flows using QTM and non-homogeneous time
intervals �t. We assume for the remainder of this section that a valid control plan for all traffic
lights is fixed and given as parameter; formally, for all ` 2 L, k 2 P

`

, and interval n 2 {1, . . . , N},
the binary variable p

`,k,n

is known a priori and indicates if phase k of light ` is active (i.e., p
`,k,n

=

1) or not on interval n. Each phase k 2 P
`

can control the flow from more than one queue, allowing
arbitrary intersection topologies to be modelled, including “all red” phases as a switching penalty
and modeling lost time from amber lights.

We represent the problem of finding the maximal flow between capacity-constrained queues
as a Linear Program (LP) over the following variables defined for all intervals n 2 {1, . . . ,N} and
queues i and j:

• q

i,n

2 [0,Q

i

]: traffic volume waiting in the stop line of queue i at the beginning of
interval n;

• f

in

i,n

2 [0, I

i,n

]: inflow to the network via queue i during interval n;

• f

out

i,n

2 [0,F

out

i

]: outflow from the network via queue i during interval n; and

• f

i,j,n

2 [0,F

i,j

]: flow from queue i into queue j during interval n.

The maximum traffic flow from queue i to queue j is enforced by constraints (C1) and (C2).
(C1) ensures that only the fraction Pr

i,j

of the total internal outflow of i goes to j, and since each
f

i,j,n

appears on both sides of (C1), the upstream queue i will block if any downstream queue j

is full. (C2) forces the flow from i to j to be zero if all phases controlling i are inactive (i.e.,
p

`,k,n

= 0 for all (l, k) 2 QP
i

). If more than one phase p

`,k,n

is active, then (C2) is subsumed by
the domain upper bound of f

i,j,n

.

f

i,j,n

 Pr

i,j

|Q|X

k=1

f

i,k,n

(C1)

f

i,j,n

 F

i,j

X

(l,k)2QP
i

p

`,k,n

(C2)

To simplify the presentation of the remainder of the LP, we define the helper variables
q

in

i,n

(C3), qout
i,n

(C4), and t

n

(C5) to represent the volume of traffic to enter and leave queue i during
interval n, and the time elapsed since the beginning of the problem until the end of interval �t

n

,
respectively.

q

in

i,n

= �t

n

(f

in

i,n

+

|Q|X

j=1

f

j,i,n

) (C3)

q

out

i,n

= �t

n

(f

out

i,n

+

|Q|X

j=1

f

i,j,n

) (C4)

t

n

=

nX

x=1

�t

x

(C5)
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In order to account for the misalignment of the different �t and T

prop

i

, we need to find the
volume of traffic that entered queue i between two arbitrary points in time x and y (x 2 [0,T],
y 2 [0,T], and x < y), i.e., x and y might not coincide with any t

n

for n 2 {1, . . . , N}. This
volume of traffic, denoted as V

i

(x, y), is obtained by integrating q

in

i,n

over [x, y] and is defined in (1)
where m and w are the index of the time intervals s.t. t

m

 x < t

m+1

and t

w

 y < t

w+1

. Because
the QTM dynamics are piecewise linear, qin

i,n

is a step function w.r.t. time and this integral reduces
to the sum of qin

i,n

over the intervals contained in [x, y] and the appropriate fraction of qin
i,m

and q

in

i,w

representing the misaligned beginning and end of [x, y].

V

i

(x, y) = (t

m+1

� x)

q

in

i,m

�t

m

+

 
w�1X

k=m+1

q

in

i,k

!
+ (y � t

w

)

q

in

i,w

�t

w

(1)

Using these helper variables, (C6) represents the flow conservation principle for queue i

where V
i

(t

n�1

�T

prop

i

, t

n

�T

prop

i

) is the volume of vehicles that reached the stop line during�t

n

.
Since ~

�t and T

prop

i

for all queues are known a priori, the indexes m and w used by V

i

can be pre-
computed in order to encode (1); moreover, (C6) represents a non-first order Markovian update
because the update considers the previous w � m time steps. To ensure that the total volume of
traffic traversing i (i.e., V

i

(t

n

�T

prop

i

, t

n

)) and waiting at the stop line does not exceed the capacity
of the queue, we apply (C7). When queue i is full, qin

i,n

= 0 by (C7), which forces f
j,i,n

to 0 in (C3)
and (C4). This in turn allows the queue in i to spill back into the upstream queue j.

q

i,n

= q

i,n�1

� q

out

i,n�1

+ V

i

(t

n�1

� T

prop

i

, t

n

� T

prop

i

) (C6)
V

i

(t

n

� T

prop

i

, t

n

) + q

i,n

 Q

i

(C7)

As with MILP formulations of CTM (e.g. Lin and Wang (9)), QTM is also susceptible to
withholding traffic, i.e., the optimizer might prevent vehicles from moving from i to j even though
the associated traffic phase is active and j is not full, e.g., this may reserve space for traffic from
an alternate approach that allows the MILP to minimize delay in the long-term even though it
leads to unintuitive traffic flow behavior. We address this well-known issue through our objective
function (O1) by maximizing the total outflow q

out

i,n

(i.e., both internal and external outflow) of i
plus the inflow f

in

i,n

from the outside of the network to i. This quantity is weighted by the remaining
time until the end of the problem horizon T to force the optimizer to allow as much traffic volume
as possible into the network and move traffic to the outside of the network as soon as possible.

max

NX

n=1

|Q|X

i=1

(T� t

n

+ 1)(f

out

i,n

+ f

in

i,n

) (O1)

The objective (O1) corresponds to minimizing delay in CTM models, e.g., (O1) is equiva-
lent to the objective function (O3) in Lin and Wang (9) for their parameters ↵ = 1, � = 1 for the
origin cells, and � = 0 for all other cells. Figure 2 depicts this equivalence using the cumulative
number of vehicles entering and leaving a network as a function of time. The delay experienced by
the vehicles travelling through this network (red curve in Figure 2) equals the horizontal difference
at each point between the cumulative departure and arrival curves (less the free flow travel time
through the network). Maximizing f

out

i,n

weighted by (T � t

n

+ 1) in (O1) is the same as forcing
the departure curve to be as close as possible to the arrival curve as early as possible; therefore, the
area between arrival and departure is minimized, which in turn minimizes the delay.
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FIGURE 2 Cumulative arrival (blue) and departure (green) curves, and the delay curve
(red) resulting from the horizontal difference between the arrival and departure curves, less
the free flow travel time. The arrival curve is fixed by the demand profile, and the departure
curve is maximized by the objective function (O1), which has the same effect as minimizing
the area under the delay curve.

To illustrate the representation tradeoff offered by non-homogeneous time intervals, we
computed flows and queue volumes for a fixed signal control plan derived for homogeneous
�t

n

= 1s (ground truth) using different discretizations. Figure 3(a) shows the approximation
of the ground truth using homogeneous �t = 2.5 and �t = 5.0, and Figure 3(b) using non-
homogeneous time intervals that linearly increases from 1s to 2.5s, i.e., �t

n

⇡ 0.0956n + 0.9044

for n 2 {1, . . . , 17}. As Figure 3(a) shows, large time steps can be rough approximations of the
ground truth. Non-homogeneous discretization (Figure 3(b)) exploit this fact to provide a good
approximation in the initial time steps and progressively decrease precision for points far in the
future.

TRAFFIC CONTROL WITH QTM ENCODED AS A MILP
In this section, we remove the assumption that a valid control plan for all traffic lights is given
and extend the LP (O1, C1–C7) to an Mixed-Integer LP (MILP) that also computes the optimal
control plan. Formally, for all ` 2 L, k 2 P

`

, and interval n 2 {1, . . . , N}, the phase activation
parameter p

`,k,n

2 {0, 1} becomes a free variable to be optimized. In order to obtain a valid control
plan, we enforce that one phase of traffic light ` is always active at any interval n (C8), and ensure
cyclic phase polices where phase changes follow a fixed ordered sequence (C9), i.e., if phase k

was active during interval n � 1 and has become inactive in interval n, then phase k + 1 must be
active in interval n. (C9) assumes that k + 1 equals 1 if k = |P

`

|.

|P`|X

k=1

p

`,k,n

= 1 (C8)

p

`,k,n�1

 p

`,k,n

+ p

`,k+1,n

(C9)

Next, we enforce the minimum and maximum phase durations (i.e., �min

`,k

and �max

`,k

) for
each phase k 2 P

`

of traffic light `. To encode these constraints, we use the helper variable
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(a)

(b)

FIGURE 3 Approximations of a queue volume obtained using homogeneous ~�t =
{1.0, . . . , 1.0} using: (a) homogeneous ~�t = {2.5, . . . , 2.5} and ~�t = {5.0, . . . , 5.0};
and (b) non-homogeneous ~�t = {1.0, 1.05, 1.1, 1.16, . . . , 2.29, 2.41, 2.5} where�tn ⇡
0.0956n + 0.9044 for n 2 {1, . . . , 17}. Here we see that (b) achieves accuracy in the
near-term that somewhat degrades over the long-term, where accuracy will be less critical
for receding horizon control.

d

`,k,n

2 [0,�

max

`,k

], defined by constraints (C10–C14), that: (i) holds the elapsed time since the
start of phase k when p

`,k,n

is active (C10,C11); (ii) is constant and holds the duration of the last
phase until the next activation when p

`,k,n

is inactive (C12,C13); and (iii) is restarted when phase k
changes from inactive to active (C14). Notice that (C10–C14) employs the big-M method to turn
the cases that should not be active into subsumed constraints based on the value of p

`,k,n

. We
use �max

`,k

as our large constant since d

`,k,n

 �

max

`,k

and �t

n

 �

max

`,k

. Similarly, constraint (C15)
ensures the minimum phase time of k and is not enforced while k is still active. Figures 4(a)
to 4(c) present an example of how (C10–C15) work together as a function of the time n for d

`,k,n

;
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(a) (b)

(c) (d)

FIGURE 4 Visualization of constraints (C10–C17) for a traffic light ` as a function of time.
(a–c) present, pairwise, the constraints (C10–C15) for phase k (d`,k,n as the black line) and
the activation variable p`,k,n in the small plot. (d) presents the constraints for the cycle time
of ` (C16 and C17), where T.C.T. is the total cycle time and is the left hand side of both
constraints. For this example, �min

`,k = 1, �max

`,k = 3, min

` = 7, and max

` = 8.

the domain constraint 0  d

`,k,n

 �max

`,k

for all n 2 {1, . . . ,N} is omitted for clarity.

d

`,k,n

 d

`,k,n�1

+�t

n�1

p

`,k,n�1

+ �

max

`,k

(1� p

`,k,n�1

) (C10)
d

`,k,n

� d

`,k,n�1

+�t

n�1

p

`,k,n�1

� �max

`,k

(1� p

`,k,n�1

) (C11)
d

`,k,n

 d

`,k,n�1

+ �

max

`,k

p

`,k,n�1

(C12)
d

`,k,n

� d

`,k,n�1

� �max

`,k

p

`,k,n

(C13)
d

`,k,n

 �max

`,k

(1� p

`,k,n

+ p

`,k,n�1

) (C14)
d

`,k,n

� �min

`,k

(1� p

`,k,n

) (C15)

Lastly, we constrain the sum of all the phase durations for light ` to be within the cycle
time limits  min

`

(C16) and  max

`

(C17). In both (C16) and (C17), we use the duration of phase 1
of ` from the previous interval n� 1 instead of the current interval n because (C14) forces d

`,1,n

to
be 0 at the beginning of each cycle; however, from the previous end of phase 1 until n� 1, d

`,1,n�1

holds the correct elapse time of phase 1. Additionally, (C16) is enforced right after the end of the
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each cycle, i.e., when its first phase is changed from inactive to active. The value (C16) and (C17)
over time for a traffic light ` is illustrated in Figure 4(d).

d

`,1,n�1

+

|P`|X

k=2

d

`,k,n

�  min

`

(p

`,1,n

� p

`,1,n�1

) (C16)

d

`,1,n�1

+

|P`|X

k=2

d

`,k,n

  max

`

(C17)

The MILP that encodes the problem of finding the optimal traffic control plan in a QTM network
is defined by (O1, C1–C17).

EMPIRICAL EVALUATION
In this section we compare the solutions for traffic networks modeled as a QTM using homo-
geneous and non-homogeneous time intervals w.r.t. to two evaluation criteria: the quality of the
solution and convergence to the optimal solution vs. the number of time steps. Specifically, we
compare the quality of solutions based on the total travel time and we also consider the third quar-
tile and maximum of the observed delay distribution. The hypotheses we wish to evaluate in this
paper are: (i) the quality of the non-homogeneous solutions is at least as good as the homoge-
neous ones when the number of time intervals N is fixed; and (ii) the non-homogeneous approach
requires less time intervals (i.e., smaller N) than the homogeneous approach to converge to the
optimal solution. In the remainder of this section, we present the traffic networks considered in the
experiments, our methodology, and the results.

Networks
We consider three networks of increasing complexity (Figure 5): an avenue crossed by three side
streets; a 2-by-3 grid; and a 3-by-3 grid with a diagonal avenue. The queues receiving vehicles
from outside of the network are marked in Figure 5 and we refer to them as input queues. The
maximum queue capacity (Q

i

) is 60 vehicles for non-input queues and infinity for input queues to
prevent interruption of the input demand due to spill back from the stop line. The traversal time of
each queue i (Tprop

i

) is set at 9s (a distance of 125m with a free flow speed of 50km/h). For each
street, flows are defined from the head of each queue i into the tail of the next queue j; there is no
turning traffic (Pr

i,j

= 1), and the maximum flow rate between queues, F
i,j

, is set at 5 vehicles/s.
All traffic lights have two phases, north-south and east-west, and lights 2, 4 and 6 of network 3
have the additional northeast-southwest phase to control the diagonal avenue. For networks 1 and
2, �min

`,k

is 1s, �max

`,k

is 3s,  min

`

is 2s, and  max

`

is 6s, for all traffic light ` and phase k. For network
3, �min

`,k

is 1s and �max

`,k

is 6s for all ` and k; and  min

`

is 2s and  max

`

is 12s for all lights ` except
for lights 2, 4 and 6 (i.e., lights also used by the diagonal avenue) in which  min

`

is 3s and  max

`

is
18s.

Experimental Methodology
For each network, a constant background level traffic is injected in the network in the first 55s to
allow the solver to settle on a stable policy. Then a spike in demand is introduced in the queues
marked as � (Figure 5) from time 55s to 70s to trigger a policy change. From time 70s to 85s,
the demand is returned to the background level, and then reduced to zero for all input queues. We



Guilliard, Sanner, Trevizan, and Williams 11

(a) (b)

(c) (d)

FIGURE 5 (a–c) Networks used to evaluate the QTM performance. (d) Demand profile of
the queues marked as }, |, and � for our experiments.

extend the problem horizon T until all vehicles have left the network. By clearing the network,
we can easily measure the total travel time for all the traffic as the area between the cumulative
arrival and departure curves measured at the boundaries of the network. The background level
for the input queues are 1, 4 and 2 vehicles/s for queues marked as }, | and � (Figure 5(d)),
respectively; and during the high demand period, the queues � receive 4 vehicles/s.

For both homogeneous and non-homogeneous intervals, we use the MILP QTM formula-
tion in a receding horizon manner: a control plan is computed for a pre-defined horizon (smaller
than T) and only a prefix of this plan is executed before generating a new control plan. Figure 6(a)
depicts our receding horizon approach and we refer to the planning horizon as a major frame and
its executable prefix as a minor frame. Notice that, while the plan for a minor frame is being
executed, we can start computing the solution for the next major frame based on a forecast model.

To perform a fair comparison between the homogeneous and non-homogeneous discretiza-
tions, we fix the size of all minor frames to 10s and force it to be discretized in homogeneous
intervals of 0.25s. For the homogeneous experiments, �t is kept at 0.25s throughout the major
frame; therefore, given N, the major frame size equals N/4 seconds for the homogeneous ap-
proach. For the non-homogeneous experiments, we increase�t linearly from the end of the minor
frame for 10s and then hold it constant to the end of the major frame. We use two discretizations as



Guilliard, Sanner, Trevizan, and Williams 12

(a)

(b)

FIGURE 6 (a) Receding horizon control. In this example, the problem horizon T is 40s.
The major frames for MILP optimization are discretized in 12 time intervals (N = 12) and
they span 15s and 30s for homogeneous and non-homogeneous discretizations, respectively.
The minor frames represent the prefix of the major frame MILP optimization that is exe-
cuted. The horizon recedes by the minor frame duration after each execution. (b) The two
non-homogeneous discretizations used in the experiments, shown here with a major frame
duration of 40s. From the end of the minor frame time,�t is linearly interpolated over 10s,
from 0.25 to 0.5 for Non-homogeneous ~�t

1

, and 0.25 to 1.0 for Non-homogeneous ~�t
2

. �t
is then held constant to the end of the major frame time.

shown in Figure 6(b): Non-homogeneous ~

�t

1

from 0.25 to 0.5, and Non-homogeneous ~

�t

2

from
0.25 to 1.0. For a given N > 40, the major frame size used by this non-homogeneous approach
is 10.375 + 1.25(N � 40) seconds for ~

�t

1

, and 10.375 + 0.625(N � 40) seconds for ~

�t

2

. Once
we have generated a series of minor frames, we concatenate them into a single plan and compute
the flow through the network using the QTM LP formulation with a fixed (homogeneous) �t of
0.25s. We also compare both receding horizon approaches against the optimal solution obtained
by computing a single control plan for the entire control horizon (i.e., [0,T]) using a fixed �t of
0.25s.

For all our experiments, we used GurobiTM as the MILP solver with 12 threads on a 3.1GHz
AMD OpteronTM 4334 processor with 12 cores. We limit the MIP gap accuracy to 0.1% and the
time cutoff for solving a major frame to 3000s for the receding horizon approaches and unbounded
in order to determine the optimal minimum travel time solution to which all other solutions are
compared. All our results are averaged over five runs to account for Gurobi’s stochastic strategies.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 7 Increase in the total travel time w.r.t. the optimal solution as a function of N
(a,c,e) and distribution of the total delay of each car for different values of N (b,d,f). For each
row, the Roman numeral on top of the box plots corresponds to points on the travel time plot
marked with the same numeral. The mean of the total delay is presented as a red square in
the box plots. Plots in the i-th row correspond to the results for the i-th network in Figure 5.
Non-homogeneous (NH) achieves much better solutions at smaller N than Homogeneous (H).
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(a) (b) (c)

FIGURE 8 Cumulative arrival and departure curves and delay for queue 1 in the 2-by-
3 network (Figure 5(b)). The labels on top of each plot match the labels in Figures 7(c)
and 7(d). (c) presents the same curves for the optimal solution. Non-homogeneous (NH ~�t

2

)
provides near-optimal signal plans over a longer time horizon than Homogeneous (H) when
the number of time intervals N is small.

Results
Figures 7(a), 7(c) and 7(e) show, for each network, the increase in the total travel time w.r.t. the
optimal solution as a function of N. As we hypothesized, the non-homogeneous discretizations
requires less time intervals (i.e., smaller N) to obtain a solution with the same total travel time,
and ~

�t

2

converges before ~

�t

1

. This is important because the size of the MILP, including the
number of binary variables, scales linearly with N; therefore, the non-homogeneous approach can
scale up better than the homogeneous one (e.g., Figure 7(e)). Also, for homogeneous and non-
homogeneous discretizations, finding the optimal solution of major frames with large N might
require more time than our imposed 3000s time cutoff and, in this case, Gurobi returns a feasible
control plan that is far from optimal. The effect in the total travel time of these poor solutions can
be seen in Figure 7(e) for N > 120.

The distribution of the total delay observed by each vehicle while traversing the network
is shown in Figures 7(b), 7(d) and 7(f). Each group of box plots represents a different value of N:
when the non-homogeneous ~

�t

2

first converges; when the homogeneous �t first converges; and
the final solution itself. In all networks, the quality of the solutions obtained using both of the ~

�t

1

and ~

�t

2

and is better or equal than using homogeneous�t for fixed N in both the total travel time
and fairness, i.e., smaller third quartile and maximum delay.

To further illustrate the differences between homogeneous and non-homogeneous discretiza-
tions, Figure 8 shows the cumulative arrival and departure curves and the how delay evolves
over time for q

1

of network 2 (Figure 5(b)). In Figure 8(a), the comparison is done when non-
homogeneous ~

�t

2

first converges (i.e., point I in Figure 7(c)) and for this value of N, the major
frame size in seconds of the non-homogeneous approach is 19.125s longer than the homogeneous
one. This allows the MILP solver to “see” 19s further in the future when using non-homogeneous
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discretization and find a coordinated signal policy along the avenue to dissipate the extra traffic
that arrives at time 55s. The shorter major frame of the homogeneous discretization does not allow
the solver to adapt this far in advance and its delay observed after 55s is much larger than the
non-homogeneous one. Once the homogeneous �t has converged (Figure 8(b)), it is also able to
anticipate the increased demand and adapt well in advance and both approaches generate solutions
close to optimum (Figure 8(c)).

CONCLUSION
In this paper, we showed how to formulate a novel queue transmission model (QTM) of traffic
flow with non-homogeneous time steps as a linear program. We then proceeded to allow the traf-
fic signals to become discrete variables subject to a delay minimizing optimization objective and
standard traffic signal constraints leading to a final MILP formulation of traffic signal control with
non-homogeneous time steps. We experimented with this novel QTM-based MILP control in a
range of traffic networks and demonstrated that the non-homogeneous MILP formulation achieved
(i) substantially lower delay solutions, (ii) improved per-vehicle delay distributions, and (iii) more
optimal travel times over a longer horizon in comparison to the homogeneous MILP formulation
with the same number of binary and continuous variables. Altogether, this work represents a major
step forward in the scalability of MILP-based jointly optimized traffic signal control via the use of
a non-homogeneous time traffic models and thus helps pave the way for fully optimized joint urban
traffic signal controllers as an improved successor technology to existing signal control methods.

Our future work includes learning the QTM parameters (e.g., turn probabilities Pr

i,j

and
expected incoming flows I

i,n

) from loop detector data, and evaluating the impact in scalability of
different non-homogeneous discretizations and size of the computer cluster used for computing the
control plans.
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