~ ICAPS 2012 Tutorial -

Scott Sanner

et
N I CTA THE AUSTRALIAN NATIONAL UNIVERSITY


http://users.rsise.anu.edu.au/~ssanner/

Observation

A Planning languages direct 5+ years of research

I PDDL and variants
I PPDDL

A Why?
I Domain design is time-consuming
A So everyone uses the existing benchmarks

I Need for comparison
A Relatively little planner code is released
A Only means of comparison is on competition benchmarks

A Implication:
I We should choose our | angu



Current Stochastic Domain Language

A PPDDL

I more expressive than PSTRIPS

I for example, probabilistic universal
and conditional effects:

(:action put-all-blue-blockson-table
:parameters()
:precondition ()
.effect(probabilistic 0.9

(forall (?b)

hen' (Blue?b
W (ﬁgt((OLrJ\Ta)ble’?b))))) @

ABut wait, not | ust l.lsWow
I Colored BlocksWorld

|
I Exploding BlocksWorld
I Moving-stacks BlocksWorld

A Difficult problems but where to apply solutions???



More Realistic: Logistics

A Compact relational PPDDL Description:

.

ot A Paris =~
Logistics:  {'sndon \\ __— Moscow

(raction load-boxon-truck-in-city
‘parameters(?b - box?t - truck ?ci city)
:precondition (and (BIn?b ?9 (TIn ?t ?0)
-effect (and (On?b ?) (not (BIn?b ?9)))
A Can instantiate problems for any domain objects

- 3trucks: "B " m: 2 planes: == == 3 boxes:

ABut waité only one truck
A No concurrency, no time: will FedEx care?

C |



What stochastic problems
should we care about?



Mars Rovers

Start 4

ObsPt3
? )
Pt4 o®
2 ‘-
3 oD

\ Unsafe
W
W

Featureless
Obs

ObsPt2

Audience

Mealeau, Benazera,
Brafman, Hansen,
Mausam. JAIR-09.

ObsPt1 U

Far

A Continuous
I Ti me, robot position / pose,

A Partially observable
I Even worse: high-dimensional partially observable



Elevator Control

A Concurrent Actions
I Elevator: up/down/stay
T 6 elevators: 36 actions

A Exogenous / Non-boolean:

I Random integer arrivals
(e.g., Poisson)

A Complex Objective:
I Minimize sum of wait times

I Could even be nonlinear function
(squared wait times)

A Policy Constraints:

I People might get annoyed
If elevator reverses direction



http://www.melsa.com.sa/images/Elevators at Kingdom Centre, Riyadh.JPG
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg

Traffic Control

A Concurrent A Continuous Variables
I Multiple lights I Nonlinear dynamics

A Indep. Exogenous Events A Partially observable
I Multiple vehicles I Only observe stoplines



Can PPDDL model
these problems?

No? What happened?



A Brief History of (ICAPS) Time

ADL (1987)
Pednault
Cond. Effects
Open World

PDDL 2.1, + (2003)
Fox & Long
Numerical fluents,
Conc., Exogenous

ICAPS

PDDL 3.0 (2004)
Gerevini & Long
Traj. Constraints,
Preferences

PDDL 2.2 (2004)

Edelkamp & Hoffmann
Derived Pred, Temporal

STRIPS (1971) PDDL 1.2 (1998)
Fikes & Nilsson McDermott et al
Relational Univ. Effects
PPDDL (2004)

Younes & Littmann
Prob. Effects

>

-

PDDL Evolved, but\
PPDDL du di

Also effects+prob+

—

\ concurrency dlffICU|tj

PDDL history from: http://ipc.informatik.uni-freiburg.de/PddIResources



http://ipc.informatik.uni-freiburg.de/PddlResources
http://ipc.informatik.uni-freiburg.de/PddlResources
http://ipc.informatik.uni-freiburg.de/PddlResources

What would it take to model
more realistic problems?

Let 0s take a dee
traffi ¢c controcc



Birth of RDDL: Solving Traffic Control

Eearing

Scale 1617
P (320850, 1245177, 0.00%




PRIMARY

What 06 s M1 S S | REASONFOR

DEPARTURE

: FROM PPDDL
A Need Unrestricted Concurrency:

I In PPDDL, would have to enumerate joint actions

I In PDDL 2.1: restricted concurrency
A conflicting actions not executable
A when effects probabilistic, some chance most effects conflict
I really need unrestricted concurrency in probabilistic setting

A Multiple Independent Exogenous Events:

I PPDDL only allows 1 independent event to affect fluent
A E.g, what if cars in a queue change lanes, brake randomly?

Need a way to resol ve]| c
solution will be a Relational DBN




What 0s

A Expressive transition
distributions:

I (Nonlinear) stochastic
difference equations
A Gaussian noise

A Partial observability:

I In practice, only
observe stopline

m |

S S

{

HERE

r‘.

Could be
added to

PPDDL as

iz E

well

AEEEE

N EEHHE

EEEEE T L T

BEEE

NEEHEE

zps)sp)

-]

f



Could be

What 6s mi ssi n gt

A Distinguish fluents from nonfluents:
I E.g., topology of traffic network
I Lifted planners must know this to be efficient!

A Expressive rewards & probabilities:

I E.g., state and action dependent sums / products over domain
objects (+1 for each computer running)

A Global state-action constraints:
I Concurrent domains need global action preconditions
A E.g., two traffic lights cannot go into a given state

I Inlogistics, vehicles cannot be in two different locations
A Regression planners need state constraints!



Is there any hope?

Yes, but we need to borrow from
factored MDP / POMDP



A Brief History of (ICAPS) Time

ADL (1987)
Pednault
Cond. Effects
Open World

ICAPS

PDDL 2.1, + (2003)
Fox & Long
Numerical fluents,
Conc., Exogenous

PDDL 3.0 (2004)
Gerevini & Long
Traj. Constraints,
Preferences

STRIPS (1971)
Fikes & Nilsson

PDDL 1.2 (1998)
McDermott et al

PDD] 2.2 (2004)

Edelkamp & Hoffmann

Relational Univ. Effects Derived Rred, Temporal
> “
\
PPDDL (2004) \ _
Litmann & Younes v Relational!
Prob. Effects \
UAI “ >
/\
Dynamic Bayes Nets (1989) SPUDD, Sym. Perseus (1999, RDDL (2010)
Dean and Kanazawa 2004) Hoey, Boutilier, Poupart Sanner

Factored Stochastic Processes

DBN + Utility: Fact. (PO)MDP

PDDL 2.2 3 DBN++




What is RDDL?

. . t
A Relational Dynamic

fl Di fKey task: how\
nriuence Liagram to specify lifted
_anguage distributions &

reward?
i Relational ~ -
[DBN + Influence Diagram]

A Think of it as
Relational SPUDD /
Symbolic Perseus

T But lifted




RDDL Grammar

Let 0s examine BN
grammar In infinite tedium!

OK, maybe not.
(Grammar online if you want it.)



http://code.google.com/p/rddlsim/source/browse/

RDDL Examples

Easiest to understand
RDDL I n useeéeé



How to Represent Factored MDP?

Current State and Actions Next State and Reward

_——

lp_[r [P [ P(pollp,r)
true | true | true || 0.9
true | true | false || 0.1
true | false | true || 0.3
true | false | false || 0.7
false | true | true || 0.3
false | true | false || 0.7
false | false | true || 0.3
false | false | false || 0.7




RDDL Equivalent

// Define the state and action variables (not parameterized here)
pvariables A

p : { state-fluent, bool, default = false };
q { state-fluent, ©bool, default = false 1};
r { state-fluent, ©bool, default = false }; (3anthhﬂ<of\\
a : { action-fluent, bool, default = false 1I}; "
}: transition

distributions
// Define the conditional probability function for eac a ssampling

// state variable in terms of previous state and actio i nstr q/9
cpfs {

p’ = if (p ~ r) then Bernoulli(.9) else Bernoulli(.3);

q’ = if (q ° r) then Bernoulli (.9)

else 1if (a) then Bernoulli(.3) else Bernoulli(.8);
r’ = if ("q) then KronDelta(r) else KronDelta(r <=> q);
// Define the reward function; note that boolean functions are

// treated as 0/1 integers in arithmetic expressions
reward = p + q - r;



A Discrete-Continuous POMDP?

Intermediate @ Level 1 Intermediate @ Level 2

Next State and Reward

: Obs t1
Current State and Actions ~ — servation




A Discrete-Continuous POMDP, Part |

// User-defined types

types {
enum_level : {@low, ©@medium, Ghigh}; // An enumerated type

+s

pvariables {

p : { state-fluent, ©bool, default = false 1I};
q : { state-fluent, Dbool, default = false };
r : { state-fluent, bool, default = false };
il { interm-fluent, int, level = 1 };
i2 : { interm-fluent, enum_level, level = 2 };
ol { observ-fluent, bool };
02 { observ-fluent, real };
a : { action-fluent, bool, default = false 1I};
+;
cpfs {

// Some standard Bernoulli conditional probability tables
p’ = if (p ~ r) then Bernoulli(.9) else Bermnoulli(.3);

if (q ~ r) then Bernoulli(.9)
else if (a) then Bernoulli(.3) else Bernoulli(.8);

Q0
I

// KronDelta is a delta function for a discrete argument
r’ = if (7q) then KromnDelta(r) else KronDelta(r <=> q);



A Discrete-Continuous POMDP, Part Il

Multi-
valued

AR A

)

Mixture of
Normals

Variance comes from other
previously sampled variables




