
MIE354 Assignment 5: Workflow Management
Due: Monday, Oct. 17, 2005 (in class)

No group work – all assignments deemed sufficiently similar to each other
will be given a zero grade. No exceptions. No excuses.

Questions to Scott Sanner
ssanner@cs.toronto.edu

1. (50 pts) In this question, you will work on modeling two views of the interaction
and workflow in a cash machine transaction. For the purpose of this question,
assume the following simplified description of the process:

A user inserts their card into the bank machine and enters their PIN number (the
PIN is not verified until the actual transaction). Then the user chooses between
their checking account and their savings account for withdrawing money. Then
they enter the amount to withdraw. The cash machine then attempts to
transactionally debit the requested amount from the user’s account (assume that
the cash machine and bank account belong to the same bank to simplify things).
Then the system dispenses the cash, and commits or rolls back the debit
transaction based on whether the cash was dispensed (the system can experience
mechanical malfunctions that are detected by sensors). The bank machine then
returns to its ready state where it awaits the next user.

Provide the following diagrams that model different aspects of this interaction:

a) Draw an activity diagram similar to that given in slide 22 of the week 6a
lecture slides to model the states, conditions, and transitions of this
interaction. Clearly label each state (e.g., “Enter PIN”), and provide a label on
each state transition to indicate when it is followed (e.g., “Account
successfully debited”).

b) Draw a sequence diagram similar to that given in slide 26 of the week 6a
lecture slides demonstrating the interactions that take place in a successful
interaction (i.e. assume everything succeeds). Assume there are four modules:
the user, the user interface (keypad and screen), the remote bank database, and
the cash dispenser machinery (which has a sensor for detecting failure).

2. (50 pts) In this programming assignment, you will start to implement the Java
Servlet web interface to the MIE354 EStore. This project is spread over two
weeks: the first week, you will work on the basic Servlet user interface, next week
you will work on specific interactions with the MIE354 EStore.

For this assignment, you will need to make the following modifications to the
class estore.ui.servlet.LoginServlet:

a) Rename LoginServlet to your first name + “LoginServlet”. For example, I
would call my class ScottLoginServlet. This is important because I will
be running your Servlets on eil1.mie.utoronto.ca, and they will each be
invoked by the base URL + class name, e.g..
https://ei11.mie.utoronto.ca/servlet/estore.ui.servlet.ScottLoginServlet

b) User data (i.e., their password, last login date, number of accesses, and remote
host) are stored in four HashMap members of your class. In the constructor
for your Servlet, allocate new synchronized HashMap objects for each of
these. Note: They must be synchronized maps since Servlets are
multithreaded. Use the method Collections.synchronizedMap(…) to make
synchonized maps from non-synchonized maps..

c) Change the String in getServletName(…) to the name of your class.

d) Update the code in doGet(…) and doPost(…) methods to handle the HTTP
request and call the proper handling function. Note that you will be calling
one of login(…), delegate(…), or admin(…), see the JavaDoc comments for
what parameters to pass to each of these methods.

e) delegate(…) and admin(…) have been written for you, but you will need to
implement login(…). This handler method needs to generate an HTML login
page with a form where the user can enter their name and password. The
action for the form should be "/servlet/" + getServletName()… do not
hardcode your Servlet name, it is a polymorphic function that will be
overridden when you inherit from this class in next week’s assignment.

Because the MIE machines cannot run web hosts or Servlet containers, you will
not be able to test your code while you are writing it. Consequently, you need to
ensure that there are no errors in your code (i.e., Eclipse should not show a red X
in the class browser) and you need to double check the control flow of your code
for correctness.

To submit your code, send your single Java file YourNameLoginServlet.java
to ssanner@cs.toronto.edu. Also print it out and submit it with Q1 so that I
can give you feedback. I will install your code in the Servlet container on
eil1.mie.utoronto.ca. See step (a) for how to access your Servlet via a web
browser.

