
Automated Text Classification in the DMOZ
Hierarchy

Lachlan Henderson

November 6, 2009

Abstract

The growth in the availability of on-line digital text documents has prompted
considerable interest in Information Retrieval and Text Classification. Automation
of the management of this wealth of textual data is becoming an increasingly im-
portant endeavor as the rate of new material continues to grow at its substantial
rate. The open directory project (ODP) also known as DMOZ is an on-line service
which provides a searchable and browsable hierarchically organised directory to
facilitate access to the Internets’ resources. This resource is considerably useful
for the construction of intelligent systems for on-line content management.

In this report the utility of the publicly available Open Directory Project data
for the classification of World Wide Web (WWW) text documentsis investigated.
The resource is sampled and a range of algorithms are appliedto the task namely,
Support Vector Machines (SVM), Multi-class Rocchio (Centroid), k-Nearest Neigh-
bour, and Naı̈ve Bayes (NB). The theoretical and implementation details of the four
text classification systems are discussed. Results from thetuning and performance
of these algorithms are analysed and compared with published results. Related
work from the areas of both text classification and classification in general is sur-
veyed. Some of the unique issues of large scale multi-class text classification are
identified and analysed.

1

1 Introduction

The digitization of text information has equipped corporations, governments and in-
dividuals the ability to publish, store and share information in new ways previously
not possible. Particularly the World Wide Web (WWW) is an enormous source of in-
formation, additionally large document repositories exist in patent offices, government
departments, and within large corporate entities. Despitethis growth in computerised
information, methods for accessing and organising it have been lagging. Automated
information retrieval and particularly text classification provide a means of addressing
this task.

Text classification is a supervised learning technique where a model is constructed
from labeled example documents. This model can then be applied to new, previously
unseen documents to determine their most appropriate label. Supervised learning is
an active area of research where many new and significant innovations are being made
every year. Currently, there is already a broad range of techniques available many of
which can be applied to the text classification problem.

Open Directory Project (ODP) is a collaborative effort of over 56,000 volunteers
who contribute and renew links to WWW content for a growing list of over 760 thou-
sand categories. This represents a considerable convenience for users of the Internet
and also a valuable resource for Data Mining applications. The directories hierarchi-
cal structure provides a simple and effective way for information to be organised and
accessed.

The Open Directory Project was first made available in 1998 when Richard Skrenta
and Bob Truel published on-line a hand crafted directory based on Usenet news groups.
Originally the directory was named GnuHoo, this name was soon abandoned due to
complaints from Richard Stallman the GNU Software Foundation originator and the
web search company Yahoo!. The directory was purchased by Netscape in 1998, over
time though various corporate shuffles the directory is now in the ownership of Time-
Warner. The ODP remains a not for profit organisation where content is overseen by
a considerable community of volunteer editors. The ODP alsogoes under the name of
DMOZ (or Dmoz) [DMO], an acronym for Directory Mozilla. Datafrom the ODP
constitutes the basis of many other on-line directories including those provided by
Google, Lycos, HotBot.

The size and number of topics in the ODP, and document databases like it provide
a challenging task for researchers in finding scalable systems which can fully take ad-
vantage of their potential. Different types of hierarchical classification schemes have
been applied to the ODP data and similar directories with differing levels of success
[CM07, DC00, YZK03, GM05]. Successful large scale systems on hierarchical docu-
ment repositories have been constructed, the United StatesPatent office uses one such
system [Lar99] which operates on over 5 million patents consisting of 100-200 giga-
bytes of text.

2

2 The Data Set

The complete content of the DMOZ on-line directory is available as a compressed
Resource Description Framework (RDF) file. Where each WWW resource provided in
the on-line directory is available as a XML entry with the Uniform Resource Locator’s
(URL) title, description, and topic. The data is provided inUnicode with the UTF8
encoding to cater for its multilingual content of over 75 languages.

Hierarchy Level Topic Count Document Count Topic (non-empty) Count
0 1 0 0
1 17 88 3
2 656 6421 335
3 7764 128888 5974
4 39946 472830 33364
5 89934 778173 77495
6 109847 785585 89268
7 167528 737462 128985
8 165460 663991 125173
9 107407 520592 86859
10 56265 332234 50205
11 15903 147529 15097
12 3906 34436 3750
13 648 5674 537
Total 765282 4613903 617045

Table 1: Frequency of Topics and Documents at Hierarchy Level

The directory organises approximately 4,613,903 URLs over765,282 hierarchical
categories. Table 1 shows the document counts at each level in the directory hierarchy.
The hierarchy commences at level 0, the root called Top, at each successive level the
topic is appended with an extra label separated by a / symbol.Labels at the second level
are of the form Top/Shopping/Music, Top/Society/Holidays, Top/Shopping/Holidays.
Document occurrence count peaks around the middle of the hierarchy at level 6, topic
count peaks at level 7, beyond these points in the directory the counts decrease con-
sistently. Not all of the topics are populated with documents, the ’Topic (non-empty)
Count’ column in table 1 shows the number of topics actually with documents at a
particular level.

3 Algorithms

Classifier Types Text classification is the assignment of a Boolean value to the tuple
< dj , ci >∈ D × C whereD is the domain of documents andC = {c1, c2, . . . c|C|}
a set of predefined categories. This is a task of approximating a target function̂Φ :
D × C → {T, F}, which corresponds as close as possible the real function which
assigns the tuple< dj , ci > the correct Boolean value. This target function is called

3

a classifier and the difference between the approximated andactual target functions is
termed the effectiveness of the classifier.

In the case of Supervised Learning the target function is modeled from labeled
document examples. Documents must be preprocessed to transform them into a form
which simplifies the computational task in a stage called feature extraction. Semi-
supervised and unsupervised learning techniques which discover patterns within par-
tially and totally unlabeled data respectively, this topicis not discussed here. Parametric
methods utilise a model to describe the way the data is distributed, the task of learning
is the determination of the parameters to the model. In non-parametric approaches data
distributions are measured directly from the training data, and no functional form is
assumed.

Classifier Desirable Properties The properties a text classification algorithm should
have are computational efficiency, robustness, and statistical stability. Computational
efficiency ensures that the algorithm is able to scale to larger real-world problems.
Robustness refers to the requirement that the algorithm must be tolerant to a level of
noise in the input data. Statistical stability is the requirement that any pattern detected
by the algorithm should not be due to random associations in the data That is, the
algorithm should generalise well and when applied to a new training set from the same
source, the same pattern should be detected. Algorithms that do not generalise well
either over-fit, or under-fit. Over-fitting occurs when the algorithm produces a model
which describes the training well but test data poorly. Under-fitting is encountered
when the model applied is too simple and cannot detect distinctly the patterns in the
subsequent test samples.

Text classification is a well studied topic, to which many machine learning tech-
niques have been applied. There is no algorithm that will universally provide the best
performance for all classification problems. This is best encapsulated in what is termed
the bias/variance trade off. Bias is due to the assumptions in the domain knowledge
built into the algorithm. A large bias will produce consistently wrong classifiers if the
model cannot describe the complexity of the decision surfaces within the data. Low
bias may allow over fitting to occur, the classifier will work on one testing set but not
another. Low variance is manifest in learning methods that produce similar decision
surfaces with different training data sets. The existence of high variance on the other
hand is manifest by considerable changes in the decision surfaces with different train-
ing data from the same source.

Document and Feature Representation Document representation is a central con-
cern in classification. Typically texts cannot be used directly by classification algo-
rithms. Documents are transformed by a procedure to represent the semantic content
in a compact way optimised for numeric processing. Elementsnot holding any se-
mantic relevance are typically removed from the representation. There are two main
forms of representation in text classification, the vector space (VSM) and the term
occurrence vector [MN98] (binary or multinomial). In the vector space model docu-
ments are vectors with one real valued element for each selected term in the document.
Commonly the elements of the vector are weighted, and normalised using the TF-IDF

4

[SB87, HKP06] weighting scheme which in addition to weighting terms frequent in
the document, also penalises terms frequent across many documents. The resulting
vectors all extend as points on a unit hypersphere, the cosine of the angle between the
document vectors is the typical measure of judging their similarity or dissimilarity. In
the term occurrence vector each element refers either in thebinary case the existence or
non-existence of a term in the document, in the multinomial case the value represents
the number of times the term is seen in the document. The lateris often called a bag
of words representation. In some cases authors [STC04] makeno distinction between
the two representations. It is fair to say that they are both vectorial models however the
term VSM has been applied predominately to the representation where term weights
are a heuristic measure of term importance that distributespoints of differing classes at
differing cosine angles and not a probabilistic measure of term distribution.

3.1 Centroid Based Classification

Centroid text classification is a variation of the Rocchio relevance feedback method
adapted for multi-class classification [Roc71, Joa97]. It utilises the vector space model
to represent documents in aRn metric space. Each class is represented by a mean or
centroid vector. The approach taken here is that of Han and Karypis (2000) [HK00]
who have reported good accuracy in their implementation over a broad range of data
sets. Documents are firstly represented by the TF-IDF schemeshown in equation 1, the
term frequency here is the simple raw counts of the terms in the document. The vector
is then normalized by dividing each term by the euclidean vector length||dtd−idf ||2.

The decision boundary between classes is a hyperplane, and so is a linear classifier.
This type of classification assumes that the class regions are spherical with similar
radii. Distributions that are multimodal do not perform well in centroid or Rocchio
classification. The centroid approach can also be extended through the use of kernel
functions and so benefit from all the advantages of using kernels [STC04].

dtf−idf = (tf1log(n/df1), tf2log(n/df2), . . . , tfnlog(n/dfn)) (1)

cos(di, dj) =
di · dj

||di||2 ∗ ||dj ||2
(2)

The cosine similarity is given by equation 2 this maps the similarity of documents
with a real value ranging between 0 and 1. As the document vectors are already nor-
malised the cosine function in equation 2 when applied to thevector here becomes the
dot productcos(di, dj) = di · dj .

Each centroid is the mean vector located in the middle of the cloud of vectors
representing the documents for a class.

C =
1

||S||
∑

d (3)

The cosine similarity function for a test documentd with a centroidC for a partic-
ular class is expressed in equation 4. As the document vectors are already normalised
the cosine measure can be further simplified.

5

cos(d, C) =
d · C

||d||2 ∗ ||C||2
=

d · C
||C||2

(4)

The decision rule for classifying a document then becomes equation 5.

argmax
j=1,...,k

(cos(x, Cj)) (5)

The algorithm for the centroid classification is shown below. Simply the input
data is sorted by label, then for each class calculate the mean of the TF-IDF weighted
vectors. This approach is roughly linear in the input data.

Algorithm 1 centroid-train
Input: set of vectors representing the problem
Output: classifier

1: sort samples by labely
2: ncentroid← 0
3: for s ∈ samples do
4: if s.y 6= yprev ∨ ncentroid = 0 then
5: if ncentroid 6= 0 then
6: centroid[ncentroid].x← centroid[ncentroid].x/n
7: centroid[ncentroid].y ← yprev
8: ncentroid← ncentroid + 1
9: end if

10: centroid[ncentroid].n← 1
11: yprev ← s.y
12: else
13: z ← TF-IDF(s.x)
14: centroid[ncentroid].x← centroid[ncentroid].x + z

15: centroid[ncentroid].n← centroid[ncentroid].n + 1
16: end if
17: end for
18: centroid[ncentroid].x← centroid[ncentroid].x/n
19: centroid[ncentroid].y ← yprev
20: ncentroid← ncentroid + 1
21: return classifiercentroid

To classify an example iterate through each centroid and measure the distance with
the test vector, choose the class with the smallest distance.

3.2 k-Nearest Neighbour

The k-Nearest Neighbour (k-NN) algorithm is one of the simplest algorithms to imple-
ment and always represents a good datum for comparison with other more sophisticated
algorithms. It is an example of instance based learning, on-line or lazy learning. There
are a number of different approaches, the one used here is themajority vote method

6

Algorithm 2 centroid-predict
Input: modelcentroid, vectorx unlabelled
Output: label from closest centroid

1: x← TF-IDF(x)
2: bestprev ← 0
3: bestcentroid← 0
4: for c ∈ centroid do
5: curr ← c · x
6: if curr > bestprev then
7: bestprev ← curr
8: end if
9: end for

10: return centroid[bestcentroid]

where the most frequent class is chosen from K nearest neighbours. Other approaches
include weighting each nearest neighbour inverse proportionally by the distance to the
test point and weighting the nearest neighbours by their ability to classify. The k-
NN algorithm is bounded by twice the Bayes error, and asymptotically approaches the
Bayes error.

The algorithm is linear with the number of example vectors orexemplars used, as-
suming that the distance measure is inexpensive to calculate. This is often not the case
for problems expressed in high dimensional spaces. There are a number of variations
to improve the run time of prediction they roughly form tttwogroups, either removing
exemplars which do not contribute to describing the decision surfaces in the data or
faster means of finding the nearest neighbours by performinga metric search [Yia93].
The k-NN approach is a localised approximation of target function, no attempt is made
to form a target function over the entire instance space, this has advantages when the
the target function is extremely complex.

Algorithm 3 knn-train
Input: samples
Output: classifierexemplar

1: nexemplar← 1
2: for s ∈ samples do
3: exemplar[nexemplar].x← s.x
4: exemplar[nexemplar].label← s.label)
5: nexemplar← nexemplar + 1
6: end for
7: return classifierexemplar

7

Algorithm 4 knn-predict
Input: Vectorx to be classified, parameterk
Output: Most frequent label of k-Nearest Neighbours

1: for i ∈ [1 . . . nexemplar] do
2: exemplar[i].similarity← similarity(exemplar[i].vector, x)
3: exemplar[i].count← 0
4: end for
5: sort exemplar lengthnexemplar by similarity descending
6: sort exemplar lengthk by label descending
7: lastlabel← none
8: for i ∈ [1 . . . k] do
9: if exemplar[i].label 6= lastlabel then

10: j ← i
11: exemplar[j].count←= 1
12: else
13: exemplar[j].count← exemplar[j].count + 1
14: end if
15: end for
16: sort exemplar lengthk by count descending
17: return exempar[1].label

3.3 Näıve Bayes

Naı̈ve Bayes (NB) classifiers provide a probabilistic modelwith an explicit statement
of simplifying assumptions. NB has two common types of document representation,
the Bernoulli and multinomial. The Bernoulli approach is torepresent documents by
the binary occurrence of features, the multinomial approach utilises feature counts. It
has been shown that typically the multinomial approach out-performs the Bernoulli
one [MN98]. Both approaches assume that documents can be modelled as probability
distributions of independent term events. The task is then to estimate the parameter
of these distributions by observing there occurrence in thetraining data. The Naı̈ve
assumption is that each word event is independent of its context within the document.
This assumption although contrary to intuition does not typically affect the effective-
ness of the algorithm significantly. Generally it has been observed that word n-grams
although have good semantic properties have poor statistical properties.

Both the train and predict run times are proportional to the term space and not with
training data set size. Bayes theorem can be written as shownin equation 6

P (Y = yi|X = xk) =
P (X = xk|Y = yi)P (Y = yi)

P (X = xk)
(6)

According to the theory of total probability theP (X = xk) term can be expressed
as shown in equation 7.

P (Y = yi|X = xk) =
P (X = xk|Y = yi)P (Y = yi)

∑

j P (X = xk|Y = yj)P (Y = yi)
(7)

8

In the case of text classification we are interested in estimating the probabilities
over termsP (X1 . . .Xn|Y = yi) which represent the conditional probability of a set
of termsX occurring given a classY . The NB assumption is that the probability of
P (X1 . . .Xn|Y = yi) can be approximated by the expression

∏

i P (Xi|Y = yi). The
assumption is that the occurrence of a term is conditionallyindependent of all the other
terms.

P (Y = yk|X1 . . .Xn) =
P (Y = yk)

∏

i P (Xi|Y = yk)
∑

j P (Y = yj)
∏

i P (Xi|Y = yj)
(8)

The task in generating a naı̈ve Bayes model is to estimate theprobabilities by count-
ing the terms for documents of a category, the set of parameters are of the form shown
in equations 9 and 10 where i,j and k are indexes for terms, documents, and labels
respectively.

θ̂ijk = P (Xi = xij |Y = yk) =
#D{Xi = xij ∧ Y = yk}

#D{Y = yk}
(9)

π̂k = P̂ (Y = yk) =
#D{Y = yk}

|D| (10)

The decision rule is:

Y ← argmax
yk

P (Y = yk)
∏

i

P (Xi|Y = yk) (11)

Algorithm 5 nbayes-train
Input: Labeled samples as sparse vectors with elements< id, value > whereid ∈

[1 . . . nattr]
Output: Classifiermodel

1: for s ∈ samples do
2: for e ∈ s do
3: count[e.id][s.label]← count[e.id][s.label] + e.value
4: count[nattr + 1][s.label]← count[nattr + 1][s.label] + e.value
5: D ← D + e.value
6: model.J ← nattr
7: model.K ← ncat
8: model.D← D
9: model.count← count

10: end for
11: end for
12: return model

9

Algorithm 6 nbayes-predict
Input: modelm, parametersp, and vectorx to be classified
Output: best category

1: for c ∈ [1 . . .m.ncat] do
2: score[c]← log(m.count[m.nattr + 1][c] + p.l)− log(m.D + p.l ∗m.k)
3: end for
4: for e ∈ x do
5: for c ∈ ncat do
6: score[c]← score[c] + log(m.count[e.id][c] + p.l)
7: score[c]← score[c]− log(m.count[m.nattr + 1][c] + p.l ∗m.J)
8: end for
9: end for

10: best← 0
11: for c ∈ [1 . . .m.ncat] do
12: if score[best] < score[c] then
13: best← c
14: end if
15: end for
16: return best

3.4 Support Vector Machines

The technique of support vector machines (SVM) was first introduced by Vapnik. It is
based on the computational learning theory principle of structural risk minimization.
In the operational setting this is the solving of a quadraticprogramming problem (QP)
to find what is termed a soft margin separating two classes. The soft margin refers to
a maximal margin that envelopes the hyperplane defined by keyvectors called support
vectors. Allowance is made for the non linearly separable case by penalising examples
lying on the wrong side of the hyperplane. Several approaches to generalising this
method to the multi-class setting fall generally into two types: one against one or one
against many. Generally the one against one approach is used, of which there is also
two types the directed acyclic graph approach [PCSt00] and avoting scheme where
each ofn(n− 1)/2 outcomes is a vote for a particular class.

Given a set of examples(Xi, y), i = 1, . . . , l wherevi ∈ R
nany ∈ {1,−1}l a

maximal margin hyperplane separating the data into different regions representing the
different classes is defined as the following optimization problem shown in equation
12.

min
w,b,ξ

1

2
wT w + C

l
∑

i=1

ξi

subject to yi(wφ(xi) + b) ≤ 1− ξi

ξi ≤ 0

(12)

10

The dual is.

min
α

1

2
α

T Qαw − eT α

subject to yT α = 0

0 ≤ αi ≤ C, i = 1, . . . l

(13)

Wheree is a vector of all ones, C is the upper bound, Q is an l by l positive semi-
definite matrix,Qij ≡ yiyj andK(xi, xj) ≡ Φ(xi)

T Φ(xj) is the kernel.
The decision function is,

sgn

(

l
∑

i=1

yiαiK(xi, x) + b

)

(14)

The SVM implementation used here is LibSVM [CL01] which can perform multi-
class classification using a fast QP approach called sequential minimal optimization
(SMO).

3.5 Kernelised k-Nearest Neighbour and p-Spectrum Kernel

The simplest form of the k-NN algorithm uses the euclidean distance equation 15 for
ranking documents according to similarity.

d(x1, x2) = ||x1 − x2||2 =
√

x1 · x1 − 2 ∗ x1 · x2 + x2 · x2 (15)

The dot products in this equation can be substituted with kernel functions via the
kernel trick [SS01] as shown in the equation 16

d(x1, x2) =
√

K(x1, x1)− 2 ∗K(x1, x2) + K(x2, x2) (16)

If x1 represents the test string, the first dot product is constantfor the test string,
the last dot product term is constant for each exemplar in thek-NN model. The first
and last terms can be stored and reused at differing times as an optimisation.

In the context of document classification the bias of the document lengths forx1

andx2 can be reduced by normalising the kernel functions as in equation 17 to give
equations of the form 18.

K̂(x1, x2) =
< Φ(x1), Φ(x2) >

||Φ(x1)|| ∗ ||Φ(x2)||
(17)

K̂(x1, x2) =
K(x1, x2)

√

K(x1, x1) ∗K(x2, x2)
(18)

The use of character n-grams in formulations to compute document similarity has
been studied in a number of publications and have shown to offer a way to language
independent text classification [KSSI05, OVS03, TV06, STC04]. Essentially this is
encapsulated as a kernel function of the form shown in 19

11

K̂(x, x′) =
∑

s⊑x,s′⊑x′

ssδs,s′ =
∑

s∈A∗

wsnums(x)nums(x
′) (19)

That is, counting the number of occurrences of every substring in bothx andx′

weighted byw It has been observed that in document classification it is sufficient to
only compare substrings to a smaller lengthp, this is the p-spectrum kernel. The use
of suffix arrays to improve computational performance provide a simple to implement
equivalent means to perform the required substring matching. An algorithm for the
required processing is given in algorithms 7 and 8.

Algorithm 7 suffix-array-build
Input: string, n the length of the string
Output: array of suffixes sorted alphabetically

1: for i ∈ [1 . . . n] do
2: s← substring at[i . . . n]
3: l← substring lengthn− (i− 1)
4: tmp[i]←< s, l, i > {parameters required by sort}
5: end for
6: sort tmp alphabetically usings andl
7: for i ∈ [1 . . . n] do
8: array[i]← index of string given by last member of tupletmp[i]
9: end for

10: return array

4 Empirical Evaluation

Four algorithms were used in this study, three of which were implemented by the author
for this project, k-NN, centroid, and NB. The other algorithm, SVM was implemented
by [CL01] and available as a library called LibSVM. LibSVM was interfaced to the
same general frame work as the other implementations to allow a homogeneous treat-
ment of the four. Only the linear kernel for the SVM was trialed.

File
knn centroid nbayes libsvm

Det. Ref. Det. Ref. Det. Ref. Det. Ref.
oh0.wc.arff 87.1±0.2 84.4 90.7±0.2 89.3 89.2±0.2 89.1 89.7±0.1 -
oh5.wc.arff 84.1±0.1 85.6 87.0±0.2 88.2 84.5±0.2 87.1 89.9±0.3 -
oh10.wc.arff 76.8±0.3 77.5 81.0±0.3 85.3 82.0±0.2 81.2 81.5±0.2 -
oh15.wc.arff 79.3±0.3 81.7 82.8±0.3 87.4 81.6±0.3 84.0 83.9±0.1 -

Table 2: Classifier 10-fold Cross Validation % Accuracy on the OHSUMED Collection
Compared With Experimental Results of Karypis et. el. (95 % Confidence Limits)

Table 2 shows a comparison of the determined accuracy of the implemented al-
gorithms with the referenced results reported by Han and Karypis (2000) [HK00] on

12

Algorithm 8 suffix-array-search
Input: string1, n1, string2, n2, sarray (of string2)
Output: count, the number of occurrences of string1 in string2

1: i← 1
2: min← 0
3: max← n2
4: count← 0
5: found← 0
6: repeat
7: i← (min + max)/2
8: if string1[1 . . . n1] = string2[sarray[i] . . . n1] then
9: found← 1

10: count← count + 1
11: j ← i− 1
12: while string1[1 . . . n1] = string2[sarray[j] . . . n1] do
13: count← count + 1
14: j ← j − 1
15: end while
16: j ← i + 1
17: while string1[1 . . . n1] = string2[sarray[j] . . . n1] do
18: count← count + 1
19: j ← j + 1
20: end while
21: else ifstring1[1 . . . n1] > string2[sarray[i] . . . n1] then
22: i← i + 1
23: else
24: i← i− 1
25: end if
26: until min > max ∨ found
27: return count

13

the OHSUMED dataset∗. The parameters used were k=25 (KNN), l=1.1 (NB), C=1.2
(SVM). The algorithms implemented show a similar classification accuracy to those of
Han and Karypis.

The ODP compressed data was downloaded† and sampled vertically down the
sub-topics at a number of sample rates from level 2 of the directory. The second level
of the directory hierarchy contains 656 topics table 1 showsthe general distribution
of the documents under each label. Training data was drawn from the descriptions
provided for each URL in the compressed data. Test samples were downloaded, parsed
using the XML2 parser and the UTF8 strings from the resultanttitle, keywords, and
description tags were extracted and concatenated space separated. Test samples with
fewer than 50 strings were discarded. The final results utilised testing data sampled at
the rate of 1 URL in 1000, resulting in 236 test samples, and 49labels. The training
data was sampled at the rate of 1 in 50 descriptions with a total of 91,337 samples,
and 469 labels. This number of samples was chosen because thelimited time available
for running simulations. They give a reasonable representation of the performance of
algorithms trialed. In a different setting higher sample rates would have been used. All
labels in the test samples were well represented in the training data set.

The distribution of the URLs and their descriptions of the 656 topics at level 2 of
the directory are shown in Figure 1. The topic names are replaced with a sequential
number due to limited space on the plot x-axis. This shows a very irregular distribution
of URLs over the range of topics. Table 3 shows the top ten mostfrequent categories
which account for approximately 56% of the total document count in all 656 level 2
topics‡. The representation of languages other than English shows that the directory
is truly multilingual with Japanese included with some of the more frequently spoken
European languages.

Level 2 Label Document Count
Top/Regional/NorthAmerica 694831
Top/World/Deutsch 501512
Top/Regional/Europe 285859
Top/World/Français 233029
Top/World/Italiano 203114
Top/World/Japanese 184078
Top/World/Español 163367
Top/Society/ReligionandSpirituality 103862
Top/World/Nederlands 97338
Top/Arts/Music 80618
Total 2547608

Table 3: Top 10 Label Document Count

As the distributions of the training and testing data sets are drawn from differ-

∗The OHSUMED data set converted by George Forman, HP Labs intoarff format is downloadable at
http://www.cs.waikato.ac.nz/ml/weka/indexdatasets.html and is the same as that used by Han and Karypis

†Data file content.rdf.u8.gz was downloaded from the ODP web site August 2 2009
‡Top/Adult topics were not included

14

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 100 200 300 400 500

D
oc

um
en

t C
ou

nt

Label

Document Distribution for Topics and Suptopics Under Level 2

Document Count

Figure 1: Document Distribution at and below Level 2 of The Hierarchy

ent sources the usual k-fold cross validation technique can’t be applied, instead a re-
sampling algorithm 9 is used.

The k-Nearest Neighbour parameter tuning plot Figure 2 shows initially a reason-
able prediction accuracy at low training data size. The parameter plot show that k-NN
is unstable at low k, indicating poor separation of the different topics at the localised
area around the test sample. This may be in part due to the asymmetry of the test
and train data, in effect the test sample is located badly. With increased k there is an
asymptotic increase in accuracy to approximately 60% for the TF-IDF exemplars and
approximately 55% for the more simpler normalised TF representation. At the 60%
mark and beyond there is little improvement, perhaps at thispoint the capacity of the
feature space is reached. Comparing this with the accuracy shown in the OHSUMED
evaluation where features selection included stemming andstop word removal possi-
bly indicates the feature space is too sparse. The best performance is with TF-IDF and
approximately k=40.

Figure 3 shows the accuracy response with change in the MAP parameterl for
the Dirichlet prior over observed term frequencies. The best accuracy performance is
distinctly seen at al setting of approximately 0.01. This value gives a default setting
for unseen features, such a low setting shows that only little smoothing is required.

The C parameter of SVM is the intolerance given to training samples place the
incorrect side of the trained decision surface. The optimumC parameter sits around
2.0 beyond this point there is no improvement.

15

Algorithm 9 kfold-resample
Input: test, train data sets,ftest, ftrain, test and train sample fractions,ntrials
Input: train-method, predict-method
Output: mean,sd

1: for t ∈ [1 . . . ntrials] do
2: model←train-method(train)
3: correct← 0
4: total← 0
5: test←random-sample(test,ftest)
6: train←random-sample(train,ftrain)
7: for s ∈ test do
8: label←predict-method(s)
9: if s.label = label then

10: correct← correct + 1
11: end if
12: total← total + 1
13: end for
14: outcome[t]← correct/total
15: end for
16: return mean-and-sd(outcome,ntrials)

The kernelised k-NN tuning curve shows no improvement in accuracy for the sub-
string lengths tested. Surprisingly, no advantage is seen,as the word prefixes, suffixes
and other variations in terms should be circumvented by looking into the terms via
substrings, should provided a richer feature space and so higher classification effec-
tiveness. The run-time on the k-fold cross validation on thestring kernel is so long
there is limited opportunity to perform a grid search over the k-NN parameterk and
the maximum substring lengthp which may have been an important factor.

Of the four algorithms applied to the sampled data SVM and NB performed the
best, SVM performed marginally better at higher training data set sizes. The TF-IDF
document representation performed best across all of the algorithms, significantly bet-
ter on k-NN.

The change in training time with training set size in Figure 7shows a relatively
constant NB training time. Also shown is the slow but steady growth of the centroid
and k-NN times indicating only a moderate scalability with training data size. The
SVM implementation shows initially a near exponential increase which then appears
asymptotically level over 100 times that of the Bayesian classifier. With a larger num-
ber of topics the NB run-times and space requirements increase significantly, this is
particularly important for scaling classification over larger samples of the ODP data.

The varying of prediction time with training set size is given in Figure 8. Surpris-
ingly the SVM has a similar profile to that of k-NN indicating very poor scalability.
Using a hierarchical approach, and building a classifier foreach node as suggested by
some authors [DC00, CM07] would be the only way to scale this method. NB os-
cillates around the 1 millisecond mark. This slight varyingis with differing attribute

16

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 20 40 60 80 100 120 140

10
-f

ol
d

R
es

am
pl

e
A

cc
ur

ac
y

The Parameter K

Effect of Parameter K on Accuracy

tf
tfidf

Figure 2: KNN Parameter Tuning

counts over the test and training cross validation samples.The centroids method re-
mains steady with a slight gradient as new labels are discovered in the increasing train-
ing dataset size and is the most scalable of the algorithms.

5 Related Work

Classification Classification as a significant topic in computer science in the early
years is described in Duda and Hart [DH73], where Bayesian methods are described,
and early descriptions of kernel methods are also found. Many recent texts have been
written [HKP06, WF05, Mit97] which give a good account of thepractical task of
implementing and using machine learning methods.

Text Classification Sebastiani [SR02] provides an excellent overview of the whole
topic of text categorization and an excellent start to research in this area, detailing the
complete process in a practical and helpful way. Information Retrieval and classifi-
cation methods overlap in many areas texts in this domain [MRS08] provide helpful
information on classification and document representation. Joachims [Joa98] has in-
vestigated the application of SVM to text classification in his paper 1998 he observes
that in text classification all features are relevant and that dimensionality reduction in
this context will only hurt performance. As SVM can handle very sparse feature vec-

17

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.001 0.01 0.1 1 10 100 1000

10
-F

ol
d

R
es

am
pl

e
A

cc
ur

ac
y

l

Effect of MAP Parameter l on Accuracy

tf

Figure 3: Naı̈ve Bayes Parameter Tuning

tors it is a ideal algorithm to handle the text classificationproblem. Joachims compares
NB, Rocchio, k-Nearest Neighbour and C4.5 decision tree algorithms in a binary clas-
sification setting. McCallum and Nigam [MN98] investigatedthe two main document
representations for NB text classification the Bernoulli and multinomial. They con-
clude that the multinomial approach is superior in accuracyin most cases. In the case
of small training data experiments the Bernoulli model performed marginally better.

Hierarchical Text Classification The problem of text classification in class hierar-
chies has been discussed by a small number of authors. McCallum Et. Al. [MN98]
applied the statistical method of shrinkage to NB text classification. In their approach
using the Yahoo directory they work from leaf nodes back up tothe root in the hier-
archy to smooth maximum likelihood estimates at the leaf nodes. Ceci and Malerba
investigated ways to take advantage of the information encoded in the hierarchy with
a greedy search algorithm which traverses the hierarchy forthe best category fit for a
test sample.

Regularised Text Classification Genkin, Lewis and Madigan [GAL+07] use reg-
ularized logistic regression to perform text classification. The regularising occurs by
penalising complex model parameters, Genkein et. al. use a method called lasso shrink-
age by using an L1 penalty term on the logistic regression parameter vector. This in

18

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

A
cc

ur
ac

y

Error Term Penalty Parameter C

Effect of Penalty Parameter C on Accuracy

tf
tfidf

Figure 4: SVM Parameter Tuning

effect removes less important features from the logistic model, providing a sort of fea-
ture selection built into the learning process. Ifrim et. al. [IBW08] uses a branch and
bound search in the space of word or character n-grams in an integrated regularised
complex feature selection learning process.

String Kernels String kernels are discussed by Kruengkrai et. al. [KSSI05]in the
context of language recognition. Lodhi et. al. [LSST+02] investigate subsequence
string kernels and compare their performance with word kernels, and n-gram kernels.
Teo [TV06] investigated efficient string n-gram kernels using suffix arrays, integrating
the whole into a linear time string kernel algorithm.

Nearest Neighbour Search Nearest neighbour and k-Nearest Neighbour algorithms
are some of the first machine learning approaches to classification. Extensions to these
algorithms through the use of kernels are offered by a numberof authors [YJZ02,
KSSI05, STC04]. These replace the occurrence of the dot product with a kernel to
map the problem into a higher dimensional space. Making the nearest neighbor search
efficient has been the topic of many papers. Relatively more recent are the vantage
point methods outlined by Yianilos [Yia93] which shows the use of generalised metric
spaces to enable the recursive construction of a tree data structure enabling logarithmic
search performance.

19

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8

3-
fo

ld
 R

es
am

pl
e

A
cc

ur
ac

y

The Parameter p

Effect of Maximum Substring Length [1:p] on Accuracy

string kernel

Figure 5: Kernelised k-NN with p-Spectrum String Kernel Parameter Tuning

6 Conclusions

Four algorithms were applied to the classification task of assigning web pages to topics
of a small subset of the DMOZ topic hierarchy using the topic descriptions as train-
ing data. Three different schemes were feature space mappings were trialed and their
performance noted. The TF-IDF approach was more effective than the TF features,
this corresponds with the literature. Feature selection techniques might offer much
greater improvements. However the richness of the description feature space might not
be adequate to sustain higher classifier performance. The string kernel approach did
not immediately offer a remedy to the limited accuracy of theclassifiers over the data,
however there are still many different parameters and variations left untried.

Tuning of model parameters is an essential task, which ensures optimal classifier
model performance. NB, SVM, and k-NN had each one parametersto tune. SVM
was utilised using a linear kernel, and so no kernel parameter tuning was required.
The Centroids method as implemented had no parameters, and so was the easiest to
use. The NB parameter l only required a limited range of values, where as the SVM C
parameter requires a broad search over many orders. There may have been some drift
in classifier performance with the parameter settings used over different training data
size, this interaction was not investigated.

The effectiveness and run-time of the each algorithm with training set size was
investigated. For the data sampled from the ODP the SVM and k-NN algorithms did

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

10
 fo

ld
 R

es
am

pl
e

A
cc

ur
ac

y

Descriptions Count

Effect of Training Data Count on Accuracy

knn
centroid
nbayes
libsvm

Figure 6: Effect of Training Dataset on Accuracy

not scale. The NB and the centroids approaches performed well. The run time of the
kernelised k-NN with string kernel was very long, with no increase in accuracy. The
advantages seen in the NB approach would soon be lost over even a small percentage
of the total topic count in the ODP. The centroids approach ispossibly the only one of
the four would might scale, particularly with the use of a vantage method or similar
algorithm.

The centroids approach appeared sensitive to the sparsity of the term space. The
classification performance actually dropped with trainingdata set size. A possible ex-
planation for this may due to an increase of the dimensionality of the centroid vector,
with each new vector in the supporting set the sparsity of theterm space pushes the
centroid toward the origin. The signal to noise ratio is in effect lowered and the sim-
ilarity measure does not discriminate the correct topic. Another possibility is that the
topics are multimodal and so with increasing training set size the different modes are
more pronounced and dissipate the centroid’s discriminating power.

NB, centroids and k-NN have the advantage of being incrementally adaptable with
new training instances, this is not available in SVM at leastin its conventional form.
With additional NN searching optimisations the centroids and k-NN methods would
scale well over both the instance and topic count.

The challenge of language independent classification is a critically important chal-
lenge in text classification. The utilisation of word stemming and stop word lists cannot
be applied efficiently if at all to multilingual problems such as web page classification.

21

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
ra

in
in

g
T

im
e

(µ
s)

Sample Count

Effect of Training Data Count on Training Time

knn
centroid
nbayes
libsvm

Figure 7: Train Time During Cross Validation On Training Set

Asian languages such as Japanese and Chinese are not delimited texts, agglutinative
languages such as Turkish and to some extent German are not easily normalised. This
important issue is often ignored in the broad text classification field.

Each classification problem has its unique challenges, there is no general solution
to apply. The results of this investigation highlight the limitations of conventional
classification algorithms on even a small subset of a real-world text corpus.

References

[CL01] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library
for support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[CM07] M. Ceci and D. Malerba. Classifying web documents in ahierarchy of
categories: a comprehensive study.Journal of Intelligent Information
Systems, 28(1):37–78, 2007.

[DC00] Susan Dumais and Hao Chen. Hierarchical classification of web content.
In SIGIR ’00: Proceedings of the 23rd annual international ACMSIGIR
conference on Research and development in information retrieval, pages
256–263, New York, NY, USA, 2000. ACM.

22

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

P
re

di
ct

io
n

T
im

e
(µ

s)

Sample Count

Effect of Training Data Count on Prediction Time

knn
centroid
nbayes
libsvm

Figure 8: Predict Time During Cross Validation On Training Set

[DH73] R.O. Duda and P.E. Hart.Pattern classification and scene analysis. A
Wiley-Interscience Publication, New York: Wiley, 1973, 1973.

[DMO] The open directory project (http://www.dmoz.org/).

[GAL+07] Genkin, Alexander, Lewis, D. David, Madigan, and David.Large-
scale bayesian logistic regression for text categorization. Technometrics,
49(3):291–304, August 2007.

[GM05] Marko Grobelnik and Dunja Mladenic. Simple classification into large
topic ontology of web documents.CIT, 13(4):279–285, 2005.

[HK00] Eui-Hong Han and George Karypis. Centroid-based document classifica-
tion: Analysis and experimental results. InPKDD ’00: Proceedings of the
4th European Conference on Principles of Data Mining and Knowledge
Discovery, pages 424–431, London, UK, 2000. Springer-Verlag.

[HKP06] Jiawei Han, Micheline Kamber, and Jian Pei.Data Mining: Concepts and
Techniques, Second Edition). Morgan Kaufmann, 2006.

[IBW08] Georgiana Ifrim, Gökhan Bakir, and Gerhard Weikum. Fast logistic re-
gression for text categorization with variable-length n-grams. InKDD
’08: Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 354–362. ACM, 2008.

23

[Joa97] Thorsten Joachims. A probabilistic analysis of therocchio algorithm with
tfidf for text categorization. InICML ’97: Proceedings of the Four-
teenth International Conference on Machine Learning, pages 143–151,
San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[Joa98] Thorsten Joachims. Text categorization with support vector machines:
Learning with many relevant features. InMachine Learning: ECML-98,
pages 137–142. Springer Verlag, 1998.

[KSSI05] C. Kruengkrai, P. Srichaivattana, V. Sornlertlamvanich, and H. Isahara.
Language identification based on string kernels. InCommunications and
Information Technology, 2005. ISCIT 2005. IEEE International Sympo-
sium on, volume 2, pages 926–929, Oct. 2005.

[Lar99] Leah S. Larkey. A patent search and classification system. InDL ’99: Pro-
ceedings of the fourth ACM conference on Digital libraries, pages 179–
187, New York, NY, USA, 1999. ACM.

[LSST+02] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and
Chris Watkins. Text classification using string kernels.J. Mach. Learn.
Res., 2:419–444, 2002.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[MN98] A. McCallum and K. Nigam. A comparison of event modelsfor naive
bayes text classification, 1998.

[MRS08] C. D. Manning, P. Raghavan, and H. Schütze.Introduction to Information
Retrieval. Cambridge University Press, 2008.

[OVS03] Vishwanathan Dept Of, S. V. N. Vishwanathan, and Alexander J. Smola.
Fast kernels for string and tree matching. InAdvances in Neural Informa-
tion Processing Systems 15, pages 569–576. MIT Press, 2003.

[PCSt00] John C. Platt, Nello Cristianini, and John Shawe-taylor. Large margin
dags for multiclass classification. InAdvances in Neural Information Pro-
cessing Systems, pages 547–553. MIT Press, 2000.

[Roc71] J. J. Jr. Rocchio.Relevance feedback in Information Retrieval. Prentice-
Hall Inc., 1971.

[SB87] Gerard Salton and Chris Buckley. Term weighting approaches in auto-
matic text retrieval. Technical report, Ithaca, NY, USA, 1987.

[SR02] Fabrizio Sebastiani and Consiglio Nazionale Delle Ricerche. Machine
learning in automated text categorization.ACM Computing Surveys, 34:1–
47, 2002.

[SS01] Bernhard Scholkopf and Alexander J. Smola.Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond. MIT
Press, Cambridge, MA, USA, 2001.

24

[STC04] John Shawe-Taylor and Nello Cristianini.Kernel Methods for Pattern
Analysis. Cambridge University Press, New York, NY, USA, 2004.

[TV06] Choon Hui Teo and S. V. N. Vishwanathan. Fast and spaceefficient string
kernels using suffix arrays. InICML ’06: Proceedings of the 23rd interna-
tional conference on Machine learning, pages 929–936, New York, NY,
USA, 2006. ACM.

[WF05] I.H. Witten and E. Frank. Data mining: Practical machine learning tools
and techniques, 2005.

[Yia93] Peter N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. InSODA ’93: Proceedings of the fourth
annual ACM-SIAM Symposium on Discrete algorithms, pages 311–321,
Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathe-
matics.

[YJZ02] Kai Yu, Liang Ji, and Xuegong Zhang. Kernel nearest-neighbor algorithm.
Neural Process. Lett., 15(2):147–156, 2002.

[YZK03] Yiming Yang, Jian Zhang, and Bryan Kisiel. A scalability analysis of
classifiers in text categorization. InSIGIR ’03: Proceedings of the 26th
annual international ACM SIGIR conference on Research and develop-
ment in informaion retrieval, pages 96–103, New York, NY, USA, 2003.
ACM.

25

