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Abstract

The growth in the availability of on-line digital text docemts has prompted
considerable interest in Information Retrieval and TextsSIfication. Automation
of the management of this wealth of textual data is becominimpereasingly im-
portant endeavor as the rate of new material continues to gtats substantial
rate. The open directory project (ODP) also known as DMOaisr&line service
which provides a searchable and browsable hierarchicatfgrised directory to
facilitate access to the Internets’ resources. This resoisr considerably useful
for the construction of intelligent systems for on-line tamt management.

In this report the utility of the publicly available Open Batory Project data
for the classification of World Wide Web (WWW) text documeisténvestigated.
The resource is sampled and a range of algorithms are applibe task namely,
Support Vector Machines (SVM), Multi-class Rocchio (Ceid}, k-Nearest Neigh-
bour, and Naive Bayes (NB). The theoretical and implentemtaletails of the four
text classification systems are discussed. Results frotutireg and performance
of these algorithms are analysed and compared with publisbsults. Related
work from the areas of both text classification and clasgifican general is sur-
veyed. Some of the unique issues of large scale multi-ceeg<lassification are
identified and analysed.



1 Introduction

The digitization of text information has equipped corpuamas, governments and in-
dividuals the ability to publish, store and share informatin new ways previously
not possible. Particularly the World Wide Web (WWW) is an enous source of in-
formation, additionally large document repositories eixigpatent offices, government
departments, and within large corporate entities. Desbpisegrowth in computerised
information, methods for accessing and organising it haentdagging. Automated
information retrieval and particularly text classificatiprovide a means of addressing
this task.

Text classification is a supervised learning technique ehanodel is constructed
from labeled example documents. This model can then beeapfdinew, previously
unseen documents to determine their most appropriate. |&hedervised learning is
an active area of research where many new and significantatioas are being made
every year. Currently, there is already a broad range ofiigoles available many of
which can be applied to the text classification problem.

Open Directory Project (ODP) is a collaborative effort o£0%6,000 volunteers
who contribute and renew links to WWW content for a growirsg 6f over 760 thou-
sand categories. This represents a considerable coneerfienusers of the Internet
and also a valuable resource for Data Mining applicatiortee directories hierarchi-
cal structure provides a simple and effective way for infation to be organised and
accessed.

The Open Directory Project was first made available in 1998mRichard Skrenta
and Bob Truel published on-line a hand crafted directorgbdam Usenet news groups.
Originally the directory was named GnuHoo, this name was sdfzandoned due to
complaints from Richard Stallman the GNU Software Fourmgatriginator and the
web search company Yahoo!. The directory was purchased tscljge in 1998, over
time though various corporate shuffles the directory is notheé ownership of Time-
Warner. The ODP remains a not for profit organisation wheraest is overseen by
a considerable community of volunteer editors. The ODP gdses under the name of
DMOZ (or Dmoz) [DMO], an acronym for Directory Mozilla. Dafaom the ODP
constitutes the basis of many other on-line directorietuging those provided by
Google, Lycos, HotBot.

The size and number of topics in the ODP, and document dasltifie it provide
a challenging task for researchers in finding scalable systehich can fully take ad-
vantage of their potential. Different types of hierarchidassification schemes have
been applied to the ODP data and similar directories witfedifg levels of success
[CMO7, DCOO0, YZKO03, GMO05]. Successful large scale systemsierarchical docu-
ment repositories have been constructed, the United SRatest office uses one such
system [Lar99] which operates on over 5 million patents i=timg) of 100-200 giga-
bytes of text.



2 The Data Set

The complete content of the DMOZ on-line directory is avaléaas a compressed
Resource Description Framework (RDF) file. Where each WW¥guece provided in
the on-line directory is available as a XML entry with the tmim Resource Locator’s
(URL) title, description, and topic. The data is provideddnicode with the UTF8
encoding to cater for its multilingual content of over 75daages.

Hierarchy Level| Topic Count| Document Counf Topic (non-empty) Coun
0 1 0 0

1 17 88 3

2 656 6421 335

3 7764 128888 5974

4 39946 472830 33364
5 89934 778173 77495
6 109847 785585 89268
7 167528 737462 128985
8 165460 663991 125173
9 107407 520592 86859
10 56265 332234 50205
11 15903 147529 15097
12 3906 34436 3750
13 648 5674 537
Total 765282 4613903 617045

Table 1: Frequency of Topics and Documents at HierarchylLeve

The directory organises approximately 4,613,903 URLs @6&x,282 hierarchical
categories. Table 1 shows the document counts at eachtetved directory hierarchy.
The hierarchy commences at level 0, the root called Top, @t saccessive level the
topic is appended with an extra label separated by a / syrhhbkls at the second level
are of the form Top/Shopping/Music, Top/Society/HolidaVsp/Shopping/Holidays.
Document occurrence count peaks around the middle of tmarbley at level 6, topic
count peaks at level 7, beyond these points in the direct@ycbunts decrease con-
sistently. Not all of the topics are populated with docursetite "Topic (non-empty)
Count’ column in table 1 shows the number of topics actualihwlocuments at a
particular level.

3 Algorithms

Classifier Types Text classification is the assignment of a Boolean valueddtple

< dj,c¢; >€ D x C whereD is the domain of documents adtl= {ci, ca,...c|c|}

a set of predefined categories. This is a task of approximatitarget functionb :

D x C — {T, F}, which corresponds as close as possible the real functiachwh
assigns the tuple: d;, ¢; > the correct Boolean value. This target function is called



a classifier and the difference between the approximate@etudl target functions is
termed the effectiveness of the classifier.

In the case of Supervised Learning the target function isefeatifrom labeled
document examples. Documents must be preprocessed téotrartkem into a form
which simplifies the computational task in a stage calledufeaextraction. Semi-
supervised and unsupervised learning techniques whiclowbs patterns within par-
tially and totally unlabeled data respectively, this tapioot discussed here. Parametric
methods utilise a model to describe the way the data is blig&dl, the task of learning
is the determination of the parameters to the model. In remaspetric approaches data
distributions are measured directly from the training datad no functional form is
assumed.

Classifier Desirable Properties The properties a text classification algorithm should
have are computational efficiency, robustness, and statistability. Computational
efficiency ensures that the algorithm is able to scale toelargal-world problems.
Robustness refers to the requirement that the algorithnt beutolerant to a level of
noise in the input data. Statistical stability is the regment that any pattern detected
by the algorithm should not be due to random associationeéndata That is, the
algorithm should generalise well and when applied to a neimitrg set from the same
source, the same pattern should be detected. Algorithmslthaot generalise well
either over-fit, or under-fit. Over-fitting occurs when thgaithm produces a model
which describes the training well but test data poorly. Urdeng is encountered
when the model applied is too simple and cannot detect dtbtithe patterns in the
subsequent test samples.

Text classification is a well studied topic, to which many imiae learning tech-
niques have been applied. There is no algorithm that wilensially provide the best
performance for all classification problems. This is besegsulated in what is termed
the bias/variance trade off. Bias is due to the assumptiotisei domain knowledge
built into the algorithm. A large bias will produce consistlg wrong classifiers if the
model cannot describe the complexity of the decision sedasithin the data. Low
bias may allow over fitting to occur, the classifier will work one testing set but not
another. Low variance is manifest in learning methods thatlpce similar decision
surfaces with different training data sets. The existeridégh variance on the other
hand is manifest by considerable changes in the decisidacaswith different train-
ing data from the same source.

Document and Feature Representation Document representation is a central con-
cern in classification. Typically texts cannot be used diyelay classification algo-
rithms. Documents are transformed by a procedure to repr#se semantic content
in a compact way optimised for numeric processing. Elemaatsholding any se-
mantic relevance are typically removed from the repregiemaThere are two main
forms of representation in text classification, the vecpace (VSM) and the term
occurrence vector [MN98] (binary or multinomial). In thecter space model docu-
ments are vectors with one real valued element for eachtsdleerm in the document.
Commonly the elements of the vector are weighted, and nigetalising the TF-IDF



[SB87, HKPO06] weighting scheme which in addition to weigltiterms frequent in
the document, also penalises terms frequent across mamnyngots. The resulting
vectors all extend as points on a unit hypersphere, the eadithe angle between the
document vectors is the typical measure of judging theiflanity or dissimilarity. In
the term occurrence vector each element refers either inittaey case the existence or
non-existence of a term in the document, in the multinomaskcthe value represents
the number of times the term is seen in the document. Theitatdten called a bag
of words representation. In some cases authors [STC04] nakéstinction between
the two representations. It is fair to say that they are bettiarial models however the
term VSM has been applied predominately to the representathere term weights
are a heuristic measure of term importance that distritpaes of differing classes at
differing cosine angles and not a probabilistic measuremfitdistribution.

3.1 Centroid Based Classification

Centroid text classification is a variation of the Rocchitevance feedback method
adapted for multi-class classification [Roc71, Joa97]tilises the vector space model
to represent documents inR* metric space. Each class is represented by a mean or
centroid vector. The approach taken here is that of Han amgpi&(2000) [HKOO]
who have reported good accuracy in their implementatiom av@road range of data
sets. Documents are firstly represented by the TF-IDF sclsboen in equation 1, the
term frequency here is the simple raw counts of the termsamlicument. The vector
is then normalized by dividing each term by the euclideanordength||d;q—iqr||2-

The decision boundary between classes is a hyperplanepasd $inear classifier.
This type of classification assumes that the class regiomsginerical with similar
radii. Distributions that are multimodal do not perform Wiel centroid or Rocchio
classification. The centroid approach can also be exterfdeddh the use of kernel
functions and so benefit from all the advantages of usingatefSTCO04].

dif—iap = (tfrlog(n/df1),tfolog(n/dfa), ... tfnlog(n/dfys)) (1)
d; - d

o) = 2

osldis ) = [+ 14T @)

The cosine similarity is given by equation 2 this maps thdlanity of documents
with a real value ranging between 0 and 1. As the documenbkeare already nor-
malised the cosine function in equation 2 when applied tosfitor here becomes the
dot productos(d;, d;) = d; - d;.

Each centroid is the mean vector located in the middle of thadcof vectors
representing the documents for a class.

1
C_Wzd (3)

The cosine similarity function for a test documeénwith a centroidC for a partic-
ular class is expressed in equation 4. As the document \&eateralready normalised
the cosine measure can be further simplified.



d-C d-C
cos(d,C) = = 4
4.0 = T =T ~ TIoTh )

The decision rule for classifying a document then becomaatamn 5.

argmax(cos(z, C;)) (5)
j=1,...k
The algorithm for the centroid classification is shown belo8imply the input
data is sorted by label, then for each class calculate the wigthe TF-IDF weighted
vectors. This approach is roughly linear in the input data.

Algorithm 1 centroid-train
Input: set of vectors representing the problem
Output: classifier

1: sort samples by labe}

2: ncentroid «— 0

3: for s € samples do

4. if s.y # yprev V ncentroid = 0 then

5: if ncentroid # 0 then

6: centroid[ncentroid].x «— centroid[ncentroid].x/n
7: centroid[ncentroid).y «— yprev

8 ncentroid «— ncentroid + 1

9: end if

10: centroid[ncentroid].n «— 1

11: Yprev «— 8.y

12:  else

13: z «— TF-IDF(sx)

14: centroid[ncentroid].x «— centroidlncentroid].x + z
15: centroid[ncentroid].n «— centroid[ncentroid].n + 1

16:  end if

17: end for

18: centroid[ncentroid].@ «— centroid[ncentroid].x/n
19: centroid[ncentroid].y — yprev

20: ncentroid <+ ncentrotd + 1

21: return classifiercentroid

To classify an example iterate through each centroid anduredhe distance with
the test vector, choose the class with the smallest distance

3.2 k-Nearest Neighbour

The k-Nearest Neighbour (k-NN) algorithm is one of the siesphlgorithms to imple-
ment and always represents a good datum for comparison thign more sophisticated
algorithms. It is an example of instance based learnindiraner lazy learning. There
are a number of different approaches, the one used here isajueity vote method



Algorithm 2 centroid-predict
Input: modelcentroid, vectorz unlabelled
Output: label from closest centroid
x «— TF-IDF(x)
. bestprev «— 0
. bestcentroid — 0
. for ¢ € centroid do
curr «—c-x
if curr > bestprev then
bestprev «— curr
end if
end for
return centroid[bestcentroid)
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where the most frequent class is chosen from K nearest n@igbbOther approaches
include weighting each nearest neighbour inverse prapmaatiy by the distance to the
test point and weighting the nearest neighbours by thelityald classify. The k-
NN algorithm is bounded by twice the Bayes error, and asytigatity approaches the
Bayes error.

The algorithm is linear with the number of example vectorexamplars used, as-
suming that the distance measure is inexpensive to cadculats is often not the case
for problems expressed in high dimensional spaces. Thera aumber of variations
to improve the run time of prediction they roughly form tttgmups, either removing
exemplars which do not contribute to describing the deoisiarfaces in the data or
faster means of finding the nearest neighbours by performimgtric search [Yia93].
The k-NN approach is a localised approximation of targetfiom, no attempt is made
to form a target function over the entire instance spacs,ths advantages when the
the target function is extremely complex.

Algorithm 3 knn-train

Input: samples

Output: classifierexemplar

nexemplar «— 1

: for s € samples do
exemplar[nexemplar].x — s.x
exemplar[nexemplar].label — s.label)
nexemplar «— nexemplar + 1

end for

return classifierexemplar

NoakredneE




Algorithm 4 knn-predict
Input: Vectorx to be classified, parameter
Output: Most frequent label of k-Nearest Neighbours
1: for i € [1...nexemplar] do
2:  exemplarli].similarity «— similarity(exemplar[i].vector, x)
3 exemplar(i].count — 0
4: end for
5: sort exemplar lengthnexemplar by similarity descending
6
7
8
9

. sort exemplar lengthk by label descending
. lastlabel <— none
cforie[l...k]do
. if exzemplar[i].label # lastlabel then
10: J—1

11: exemplar(j].count —=1

12:  else

13: exemplar|j].count — exemplar(j].count + 1
14:  end if

15: end for

16: sort exemplar lengthk by count descending
17: return exempar[l].label

3.3 Nave Bayes

Naive Bayes (NB) classifiers provide a probabilistic moaligh an explicit statement
of simplifying assumptions. NB has two common types of doenhrepresentation,
the Bernoulli and multinomial. The Bernoulli approach isépresent documents by
the binary occurrence of features, the multinomial appnagiises feature counts. It
has been shown that typically the multinomial approachpmrferms the Bernoulli
one [MN98]. Both approaches assume that documents can bellenbds probability
distributions of independent term events. The task is tbesstimate the parameter
of these distributions by observing there occurrence intthieing data. The Naive
assumption is that each word event is independent of itegbniithin the document.
This assumption although contrary to intuition does notdsity affect the effective-
ness of the algorithm significantly. Generally it has beeseobed that word n-grams
although have good semantic properties have poor stafigtioperties.

Both the train and predict run times are proportional to érentspace and not with
training data set size. Bayes theorem can be written as simoaquation 6

P(X =ai|Y =) P(Y =y)

According to the theory of total probability the(X = z;) term can be expressed
as shown in equation 7.

P(Y = yi|X =a3) = (6)

P(X =a,|Y =) P(Y =y)

PY =y|X =) = >, P(X = a1]Y = y)P(Y = y)

(7)




In the case of text classification we are interested in estimahe probabilities
over termsP(X; ... X,,|Y = y;) which represent the conditional probability of a set
of terms X occurring given a clas¥. The NB assumption is that the probability of
P(X;...X,|Y = y;) can be approximated by the expressj¢nP(X;|Y = y;). The
assumption is that the occurrence of a term is conditiomadlgpendent of all the other
terms.

_ P =) [L PXGIY = )
> PY =y) L P(XG]Y = y;)

The task in generating a naive Bayes model is to estimae thbilities by count-
ing the terms for documents of a category, the set of paramate of the form shown
in equations 9 and 10 where i,j and k are indexes for termsymeats, and labels
respectively.

P(Y =y X1...X,) (8)

Oijr = P(Xi = 25| = yx) = #D{Y =y} o
Fr=P(Y =) = w 1)

The decision rule is:

Yk

Y — argmaxP(Y = yy) HP(Xi|Y = yi) (11)

Algorithm 5 nbayes-train
Input: Labeled samples as sparse vectors with elementg, value > whereid €
[1...nattr]
Output: Classifiermodel
1: for s € samples do
2z foreesdo
count[e.id][s.label] «— count[e.id][s.label] 4+ e.value
count[nattr + 1][s.label] «— count[nattr + 1][s.label] + e.value
D — D + e.value
model.J «— nattr
model. K «— ncat
model.D «— D
model.count «— count
10:  end for
11: end for
12: return model
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Algorithm 6 nbayes-predict
Input: modelm, parameterg, and vectotr to be classified
Output: best category
: force[1...m.ncat] do
scorelc] « log(m.count|m.nattr + 1][c] + p.l) — log(m.D + p.l x m.k)
end for
for e € £ do
for ¢ € ncat do
score[c] «— score[c] + log(m.count[e.id][c] 4+ p.I)
score[c] «— scorelc] — log(m.count[m.nattr 4+ 1][c] + p.l x m.J)
end for
. end for
s best — 0
:force[l...mmnecat] do
if score[best] < score[c] then
best «— ¢
end if
: end for
: return best

© XN R WDNR

[ R o

3.4 Support Vector Machines

The technique of support vector machines (SVM) was firsbuhiced by Vapnik. It is
based on the computational learning theory principle afcstral risk minimization.
In the operational setting this is the solving of a quadnat@gramming problem (QP)
to find what is termed a soft margin separating two classes.sbft margin refers to
a maximal margin that envelopes the hyperplane defined byée&yrs called support
vectors. Allowance is made for the non linearly separabe tgy penalising examples
lying on the wrong side of the hyperplane. Several appraatheeneralising this
method to the multi-class setting fall generally into twpdg: one against one or one
against many. Generally the one against one approach is ofsethich there is also
two types the directed acyclic graph approach [PCSt00] anatiag scheme where
each ofn(n — 1)/2 outcomes is a vote for a particular class.

Given a set of examplesX;,y),i = 1,...,1 wherev; € R%any € {1,-1} a
maximal margin hyperplane separating the data into differegions representing the
different classes is defined as the following optimizatioolglem shown in equation
12.

l

1T
mins=w*w + C ;
w,b,&2 ;@

(12)
subject to y;(wWo(x;) +b) < 1—¢;

& <0

10



The dual is.

1 T _ T
ming o Qaw —e' «

subject toyTa =0 (13)

0<a; <Cyi=1,...1

Wheree is a vector of all ones, C is the upper bound, Q is an | by | pesgemi-
definite matrix,Q;j = vi;y; andK (z;, ;) = ®(z;)” ®(x;) is the kernel.
The decision function is,

1
sgn(ZyiaiK(mi,m) + b) (14)
i=1

The SVM implementation used here is LibSVM [CLO1] which carfprm multi-
class classification using a fast QP approach called seiquierihimal optimization
(SMO).

3.5 Kernelised k-Nearest Neighbour and p-Spectrum Kernel

The simplest form of the k-NN algorithm uses the euclideatadice equation 15 for
ranking documents according to similarity.

d(xy,@2) = [|@1 — T2||2 = VL1 - @1 — 2% @1 - T2 + T2 - X2 (15)

The dot products in this equation can be substituted withédgunctions via the
kernel trick [SSO1] as shown in the equation 16

d(ml,mz): \/K(wl,iL‘l)—2*K($1,1L‘2)+K($2,w2) (16)

If 1 represents the test string, the first dot product is con$taurthe test string,
the last dot product term is constant for each exemplar irktiN&N model. The first
and last terms can be stored and reused at differing times agtanisation.

In the context of document classification the bias of the doent lengths fore,
andxs can be reduced by normalising the kernel functions as intequa?7 to give
equations of the form 18.

. o ) = <CI)(«T1)7(I)(‘T2)>
Ko 22) = (gl = o)l +

K(z1,22) = K(@1,22) (18)
VE(z1,x1) * K (x2, T2)

The use of character n-grams in formulations to compute mect similarity has
been studied in a number of publications and have shown & affvay to language
independent text classification [KSSI05, OVS03, TV06, SFCEssentially this is
encapsulated as a kernel function of the form shown in 19

11



K(z,2') =

D

sCx,s'Ca’

S50s 50 = Z wsnumg(z)nums(x')
SEA*

(19)

That is, counting the number of occurrences of every sutggsiri bothz and z’
weighted byw It has been observed that in document classification it iScgerit to
only compare substrings to a smaller lengthhis is the p-spectrum kernel. The use
of suffix arrays to improve computational performance paewva simple to implement
equivalent means to perform the required substring magch#n algorithm for the
required processing is given in algorithms 7 and 8.

Algorithm 7 suffix-array-build

Input: string, n the length of the string
Output: array of suffixes sorted alphabetically

cforie|l..

.n] do

s « substring afi . . . n]
 «+ substring length — (i — 1)
tmpli] << s,1,i > {parameters required by sprt

. sort tmp alphabetically using and!

cforie|l..

.n] do

arrayli] < index of string given by last member of tuglepli]

1
2
3
4
5. end for
6
7
8
9

end for

10: return array

4 Empirical Evaluation

Four algorithms were used in this study, three of which wenglémented by the author
for this project, k-NN, centroid, and NB. The other algonthSVM was implemented
by [CLO1] and available as a library called LibSVM. LibSVM winterfaced to the
same general frame work as the other implementations tev alloomogeneous treat-
ment of the four. Only the linear kernel for the SVM was triale

File knn centroid nbayes libsvm
Det. Ref. | Det. Ref. | Det. Ref. | Det. Ref.
ohO.wc.arff | 87.1+0.2 | 84.4| 90.7£0.2 | 89.3 | 89.2+0.2 | 89.1| 89.740.1 | -
oh5.wc.arff | 84.14-0.1 | 85.6 | 87.0+0.2 | 88.2 | 84.5-0.2 | 87.1| 89.9+0.3 | -
oh10.wc.arff| 76.8+0.3 | 77.5| 81.0+0.3 | 85.3 | 82.0+0.2 | 81.2| 81.5+0.2 | -
oh15.wc.arff| 79.3-0.3 | 81.7 | 82.8t0.3 | 87.4 | 81.6-0.3 | 84.0| 83.9+0.1 | -

Table 2: Classifier 10-fold Cross Validation % Accuracy om @HSUMED Collection
Compared With Experimental Results of Karypis et. el. (95 éhfiZlence Limits)

Table 2 shows a comparison of the determined accuracy oftpéemented al-
gorithms with the referenced results reported by Han ang{ar(2000) [HKOO] on
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Algorithm 8 suffix-array-search

Input: stringl, n1, string2, n2, sarray (of string2)

Output: count, the number of occurrences of stringl in string2
L1« 1
2: min «— 0

3. mazx < n2
4: count < 0
5. found < 0
6: repeat
7. i« (min+ max)/2
8 if stringl[l...nl] = string2[sarrayli]...n1] then
9 found «— 1
10: count < count + 1
11: je—1—1
12: while stringl[l...nl] = string2[sarray[j] ...nl1] do
13: count < count + 1
14: je—j—1
15: end while
16: je—1+1
17: while stringl[l...nl] = string2[sarray[j] ...n1] do
18: count < count + 1
19: j—j+1
20: end while
21:  elseifstringl[l...nl] > string2[sarrayli]...n1] then
22: 1—1+1
23:  else
24: 1—1—1
25 endif

26: until min > max Vv found
27: return count
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the OHSUMED datasét The parameters used were k=25 (KNN), I=1.1 (NB), C=1.2
(SVM). The algorithms implemented show a similar classifaraaccuracy to those of
Han and Karypis.

The ODP compressed data was downloatlethd sampled vertically down the
sub-topics at a number of sample rates from level 2 of thecttirg. The second level
of the directory hierarchy contains 656 topics table 1 shthvesgeneral distribution
of the documents under each label. Training data was draem fhe descriptions
provided for each URL in the compressed data. Test samplesdegvnloaded, parsed
using the XML2 parser and the UTF8 strings from the resultidlet keywords, and
description tags were extracted and concatenated spaamtah Test samples with
fewer than 50 strings were discarded. The final resultsatllitesting data sampled at
the rate of 1 URL in 1000, resulting in 236 test samples, anthB8ls. The training
data was sampled at the rate of 1 in 50 descriptions with & ®6t31,337 samples,
and 469 labels. This number of samples was chosen becausuithd time available
for running simulations. They give a reasonable represientaf the performance of
algorithms trialed. In a different setting higher sampkesavould have been used. All
labels in the test samples were well represented in tharmdata set.

The distribution of the URLs and their descriptions of th& &&pics at level 2 of
the directory are shown in Figure 1. The topic names are ceglavith a sequential
number due to limited space on the plot x-axis. This showsaiuegular distribution
of URLs over the range of topics. Table 3 shows the top ten fnegtient categories
which account for approximately 56% of the total documentritan all 656 level 2
topicst. The representation of languages other than English shuatstte directory
is truly multilingual with Japanese included with some d# thore frequently spoken
European languages.

Level 2 Label Document Count
Top/Regional/NorttAmerica 694831
Top/World/Deutsch 501512
Top/Regional/Europe 285859
Top/World/Francais 233029
Top/World/Italiano 203114
Top/World/Japanese 184078
Top/World/Espafiol 163367
Top/Society/Religiorand Spirituality | 103862
Top/World/Nederlands 97338
Top/Arts/Music 80618
Total 2547608

Table 3: Top 10 Label Document Count

As the distributions of the training and testing data setesdrawn from differ-

*The OHSUMED data set converted by George Forman, HP Labsaifftéormat is downloadable at
http://www.cs.waikato.ac.nz/ml/weka/indeatasets.html and is the same as that used by Han and Karypis

Data file content.rdf.u8.gz was downloaded from the ODP \iteb’sigust 2 2009

*Top/Adult topics were not included
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Document Distribution for Topics and Suptopics Under Level 2
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Figure 1: Document Distribution at and below Level 2 of Thetdrchy

ent sources the usual k-fold cross validation techniqué banapplied, instead a re-
sampling algorithm 9 is used.

The k-Nearest Neighbour parameter tuning plot Figure 2 shoitially a reason-
able prediction accuracy at low training data size. Thematar plot show that k-NN
is unstable at low k, indicating poor separation of the défe topics at the localised
area around the test sample. This may be in part due to thenaslygnof the test
and train data, in effect the test sample is located badlyh Witreased k there is an
asymptotic increase in accuracy to approximately 60% ferith-IDF exemplars and
approximately 55% for the more simpler normalised TF regméstion. At the 60%
mark and beyond there is little improvement, perhaps atgbist the capacity of the
feature space is reached. Comparing this with the accutemyrsin the OHSUMED
evaluation where features selection included stemmingséomword removal possi-
bly indicates the feature space is too sparse. The bestrpwifwe is with TF-IDF and
approximately k=40.

Figure 3 shows the accuracy response with change in the MA&hyeder! for
the Dirichlet prior over observed term frequencies. Thd besuracy performance is
distinctly seen at & setting of approximately 0.01. This value gives a defatttirsg
for unseen features, such a low setting shows that onlg Bttioothing is required.

The C parameter of SVM is the intolerance given to trainingysias place the
incorrect side of the trained decision surface. The optintuparameter sits around
2.0 beyond this point there is no improvement.
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Algorithm 9 kfold-resample
Input: test, train data setsftest, ftrain, test and train sample fractionstrials
Input: train-method, predict-method
Output: mean,sd
1: for t € [1...ntrials] do
2. model «train-methodf{rain)
. correct — 0

3
4:  total — 0

5. test «—random-sampleést, ftest)

6:  train «random-sampleétain, ftrain)
7. for s € test do
8 label «—predict-methock)
9 if s.label = label then

10: correct < correct + 1
11: end if

12: total < total + 1

13:  end for

14:  outcomelt] < correct/total
15: end for

16: return mean-and-s@{tcome,ntrials)

The kernelised k-NN tuning curve shows no improvement irueacy for the sub-
string lengths tested. Surprisingly, no advantage is seethe word prefixes, suffixes
and other variations in terms should be circumvented byifapknto the terms via
substrings, should provided a richer feature space andgf®htlassification effec-
tiveness. The run-time on the k-fold cross validation ongtrang kernel is so long
there is limited opportunity to perform a grid search over KaNN parametek and
the maximum substring lengghwhich may have been an important factor.

Of the four algorithms applied to the sampled data SVM and KBgmed the
best, SVM performed marginally better at higher trainin¢adset sizes. The TF-IDF
document representation performed best across all of tfueitiims, significantly bet-
ter on k-NN.

The change in training time with training set size in Figurshbws a relatively
constant NB training time. Also shown is the slow but steadyagh of the centroid
and k-NN times indicating only a moderate scalability withining data size. The
SVM implementation shows initially a near exponential gase which then appears
asymptotically level over 100 times that of the Bayesiassiféer. With a larger num-
ber of topics the NB run-times and space requirements igersggnificantly, this is
particularly important for scaling classification overgar samples of the ODP data.

The varying of prediction time with training set size is givia Figure 8. Surpris-
ingly the SVM has a similar profile to that of k-NN indicatingny poor scalability.
Using a hierarchical approach, and building a classifieetmh node as suggested by
some authors [DC00, CM07] would be the only way to scale thishmd. NB os-
cillates around the 1 millisecond mark. This slight varyiagvith differing attribute
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Effect of Parameter K on Accuracy
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Figure 2: KNN Parameter Tuning

counts over the test and training cross validation samplég centroids method re-
mains steady with a slight gradient as new labels are disedve the increasing train-
ing dataset size and is the most scalable of the algorithms.

5 Related Work

Classification Classification as a significant topic in computer sciencéhedarly
years is described in Duda and Hart [DH73], where Bayesiahooks are described,
and early descriptions of kernel methods are also found.yMacent texts have been
written [HKP06, WFO05, Mit97] which give a good account of theactical task of
implementing and using machine learning methods.

Text Classification Sebastiani [SR02] provides an excellent overview of thelesho
topic of text categorization and an excellent start to redem this area, detailing the
complete process in a practical and helpful way. Infornrafketrieval and classifi-
cation methods overlap in many areas texts in this domaing®8} provide helpful
information on classification and document representatimachims [Joa98] has in-
vestigated the application of SVM to text classification is paper 1998 he observes
that in text classification all features are relevant and diraensionality reduction in
this context will only hurt performance. As SVM can handleywsparse feature vec-
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Effect of MAP Parameter | on Accuracy
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Figure 3: Naive Bayes Parameter Tuning

tors it is a ideal algorithm to handle the text classificapoablem. Joachims compares
NB, Rocchio, k-Nearest Neighbour and C4.5 decision treerdlgns in a binary clas-
sification setting. McCallum and Nigam [MN98] investigatbé two main document
representations for NB text classification the Bernoullil anultinomial. They con-
clude that the multinomial approach is superior in accuiacyost cases. In the case
of small training data experiments the Bernoulli model perfed marginally better.

Hierarchical Text Classification The problem of text classification in class hierar-
chies has been discussed by a small number of authors. MoC&t. Al. [MN98]
applied the statistical method of shrinkage to NB text dfasdion. In their approach
using the Yahoo directory they work from leaf nodes back uth&root in the hier-
archy to smooth maximum likelihood estimates at the leafesodCeci and Malerba
investigated ways to take advantage of the information @edan the hierarchy with
a greedy search algorithm which traverses the hierarchthéobest category fit for a
test sample.

Regularised Text Classification Genkin, Lewis and Madigan [GALO7] use reg-

ularized logistic regression to perform text classificatid he regularising occurs by
penalising complex model parameters, Genkein et. al. ussttaad called lasso shrink-
age by using an L1 penalty term on the logistic regressioarpater vector. This in
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Effect of Penalty Parameter C on Accuracy
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Figure 4: SVM Parameter Tuning

effect removes less important features from the logistidehgroviding a sort of fea-
ture selection built into the learning process. Ifrim et. [#WO08] uses a branch and
bound search in the space of word or character n-grams integrated regularised
complex feature selection learning process.

String Kernels  String kernels are discussed by Kruengkrai et. al. [KSSiO%he
context of language recognition. Lodhi et. al. [LSR] investigate subsequence
string kernels and compare their performance with word édsrrand n-gram kernels.
Teo [TVO06] investigated efficient string n-gram kernelswgssuffix arrays, integrating
the whole into a linear time string kernel algorithm.

Nearest Neighbour Search Nearest neighbour and k-Nearest Neighbour algorithms
are some of the first machine learning approaches to claggific Extensions to these
algorithms through the use of kernels are offered by a nurobauthors [YJZ02,
KSSI05, STCO04]. These replace the occurrence of the dotugtosiith a kernel to
map the problem into a higher dimensional space. Making ¢aeast neighbor search
efficient has been the topic of many papers. Relatively mecent are the vantage
point methods outlined by Yianilos [Yia93] which shows tteewf generalised metric
spaces to enable the recursive construction of a tree datdise enabling logarithmic
search performance.
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Effect of Maximum Substring Length [1:p] on Accuracy
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Figure 5: Kernelised k-NN with p-Spectrum String Kerneldtaeter Tuning

6 Conclusions

Four algorithms were applied to the classification task sitasng web pages to topics
of a small subset of the DMOZ topic hierarchy using the topsdtiptions as train-
ing data. Three different schemes were feature space nggwere trialed and their
performance noted. The TF-IDF approach was more effedtiaa the TF features,
this corresponds with the literature. Feature selectichrtejues might offer much
greater improvements. However the richness of the degmmifgature space might not
be adequate to sustain higher classifier performance. Ting &ernel approach did
not immediately offer a remedy to the limited accuracy ofdlessifiers over the data,
however there are still many different parameters and tiarig left untried.

Tuning of model parameters is an essential task, which essystimal classifier
model performance. NB, SVM, and k-NN had each one paramaiese. SVM
was utilised using a linear kernel, and so no kernel paranteténg was required.
The Centroids method as implemented had no parameterspandssthe easiest to
use. The NB parameter | only required a limited range of \@ludere as the SVM C
parameter requires a broad search over many orders. Thgrhamna been some drift
in classifier performance with the parameter settings used different training data
size, this interaction was not investigated.

The effectiveness and run-time of the each algorithm wiining set size was
investigated. For the data sampled from the ODP the SVM aNt#llkalgorithms did
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Effect of Training Data Count on Accuracy
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Figure 6: Effect of Training Dataset on Accuracy

not scale. The NB and the centroids approaches performeéd Wed run time of the
kernelised k-NN with string kernel was very long, with noriease in accuracy. The
advantages seen in the NB approach would soon be lost overesmall percentage
of the total topic count in the ODP. The centroids approagossibly the only one of
the four would might scale, particularly with the use of ateme method or similar
algorithm.

The centroids approach appeared sensitive to the spafditye derm space. The
classification performance actually dropped with trainilaga set size. A possible ex-
planation for this may due to an increase of the dimensitnafithe centroid vector,
with each new vector in the supporting set the sparsity oft¢he space pushes the
centroid toward the origin. The signal to noise ratio is ifeef lowered and the sim-
ilarity measure does not discriminate the correct topicothar possibility is that the
topics are multimodal and so with increasing training se¢ $he different modes are
more pronounced and dissipate the centroid’s discrintiggidbwer.

NB, centroids and k-NN have the advantage of being increatigratddaptable with
new training instances, this is not available in SVM at léasts conventional form.
With additional NN searching optimisations the centroidd &-NN methods would
scale well over both the instance and topic count.

The challenge of language independent classification igieadly important chal-
lenge in text classification. The utilisation of word stemmand stop word lists cannot
be applied efficiently if at all to multilingual problems suas web page classification.
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Effect of Training Data Count on Training Time
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Figure 7: Train Time During Cross Validation On Training Set

Asian languages such as Japanese and Chinese are notetliexits, agglutinative
languages such as Turkish and to some extent German aresilgtreamalised. This
important issue is often ignored in the broad text clasgifiodield.

Each classification problem has its unique challengesetisano general solution
to apply. The results of this investigation highlight thmitiations of conventional
classification algorithms on even a small subset of a realdtext corpus.
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