Automated Theorem Proving

Scott Sanner, Guest Lecture
Topics in Automated Reasoning
Thursday, Jan. 19, 2006

Introduction

• Def. Automated Theorem Proving: *Proof of mathematical theorems by a computer program.*

• Depending on underlying logic, task varies from trivial to impossible:
 – Simple description logic: Poly-time
 – Propositional logic: NP-Complete (3-SAT)
 – First-order logic w/ arithmetic: Impossible
Applications

- **Proofs of Mathematical Conjectures**
 - Graph theory: Four color theorem
 - Boolean algebra: Robbins conjecture

- **Hardware and Software Verification**
 - Verification: Arithmetic circuits
 - Program correctness: Invariants, safety

- **Query Answering**
 - Build domain-specific knowledge bases, use theorem proving to answer queries

Basic Task Structure

- **Given:**
 - Set of axioms (KB encoded as axioms)
 - Conjecture (assumptions + consequence)

- **Inference:**
 - Search through space of valid inferences

- **Output:**
 - Proof (if found, a sequence of steps deriving conjecture consequence from axioms and assumptions)
Many Logics / Many Theorem Proving Techniques

Focus on theorem proving for logics with a model-theoretic semantics (TBD)

- Logics:
 - Propositional, and first-order logic
 - Modal, temporal, and description logic

- Theorem Proving Techniques:
 - Resolution, tableaux, sequent, inverse
 - Best technique depends on logic and app.

Example of Propositional Logic Sequent Proof

- Given:
 - Axioms: None
 - Conjecture: \(A \lor \neg A \) ?

- Inference:
 - Gentzen Sequent Calculus

- Direct Proof:
 \[
 \begin{align*}
 (I) & \quad A \vdash A \\
 (\neg R) & \quad \vdash \neg A, A \\
 (\lor R_2) & \quad \vdash A \lor \neg A, A \\
 (PR) & \quad \vdash A, A \lor \neg A \\
 (\lor R_1) & \quad \vdash A \lor A, A \lor \neg A \\
 (CR) & \quad \vdash A \lor A, A \lor \neg A \\
 \end{align*}
 \]
Example of First-order Logic Resolution Proof

- **Given:**
 - **Axioms:**
 - \(\forall x \text{ Man}(x) \Rightarrow \text{Mortal}(x) \)
 - \(\text{Man}(\text{Socrates}) \)
 - **Conjecture:**
 - \(\exists y \text{ Mortal}(y) \) ?

- **Inference:**
 - **Refutation Resolution**

- **CNF:**
 - \(\neg \text{Man}(x) \lor \text{Mortal}(x) \)
 - \(\text{Man}(\text{Socrates}) \)
 - \(\neg \text{Mortal}(y) \) [Neg. conj.]

- **Proof:**
 1. \(\neg \text{Mortal}(y) \) [Neg. conj.]
 2. \(\neg \text{Man}(x) \lor \text{Mortal}(x) \) [Given]
 3. \(\text{Man}(\text{Socrates}) \) [Given]
 4. \(\text{Mortal}(\text{Socrates}) \) [Res. 2, 3]
 5. \(\bot \) [Res. 1, 4]
 - Contradiction \(\Rightarrow \text{Conj. is true} \)

Example of Description Logic Tableaux Proof

- **Given:**
 - **Axioms:**
 - None
 - **Conjecture:**
 - \(\neg \exists \text{ Child.} \neg \text{Male} \Rightarrow \forall \text{ Child.} \text{Male} \) ?

- **Inference:**
 - **Tableaux**

- **Proof:**
 - Check unsatisfiability of \(\exists \text{Child.} \neg \text{Male} \land \forall \text{ Child.} \text{Male} \)
 - \(x: \exists \text{Child.} \neg \text{Male} \land \forall \text{ Child.} \text{Male} \)
 - \(x: \forall \text{ Child.} \text{Male} \) [\(\land \)-rule]
 - \(x: \exists \text{Child.} \neg \text{Male} \) [\(\land \)-rule]
 - \(x: \text{Child} \ y \) [\(\exists \)-rule]
 - \(y: \neg \text{Male} \) [\(\exists \)-rule]
 - \(y: \text{Male} \) [\(\forall \)-rule]
 - <CLASH>
 - Contradiction \(\Rightarrow \text{Conj. is true} \)
Lecture Outline

• Common Definitions
 – Soundness, completeness, decidability

• Propositional and first-order logic
 – Syntax and semantics
 – Tableaux theorem proving
 – Resolution theorem proving
 • Strategies, orderings, redundancy, saturation optimizations, & extensions

• Modal, temporal, & description logics
 – Quick overview of logics / TP techniques

Entailment vs. Truth

• For each logic and theorem proving approach, we’ll specify:
 – Syntax and semantics
 – Foundational axioms (if any)
 – Rules of inference

• Entailment vs. Truth
 – Let KB be the conjunction of axioms
 – Let F be a formula (possibly a conjecture)
 – We say KB |- F (read: KB entails F) if F can be derived from KB through rules of inference
 – We say KB |= F (read: KB models F) if semantics hold that F is true whenever KB is true
Model-theoretic semantics

- Model-theoretic semantics for logics
 - An interpretation is a truth assignment to atomic elements of a KB: \(I(C,D) \equiv \langle \langle F, F \rangle, \langle F, T \rangle, \langle T, F \rangle, \langle T, T \rangle \rangle \)
 - A model of a formula is an interpretation where it is true: \(I(C,D) \equiv \langle F, T \rangle \) models \(C \lor D \), but not \(C \land D \)
 - Two properties of a formula \(F \) w.r.t. axioms of KB:
 - Validity: \(F \) is true in all models of KB
 - Satisfiability: \(F \) is true in \(\geq 1 \) model of KB

- Think of truth in a set-theoretic manner

\[
\begin{align*}
\text{KB} & \models C \\
\text{C} & \subseteq \text{Models of KB} \\
\text{KB} & \subseteq \text{Models of C}
\end{align*}
\]

Soundness, Completeness, and Decidability

- Two properties of ATP inference systems:
 - Soundness: If KB |- C then KB |= C
 - Completeness: If KB |= C then KB |- C

- For a given logic, an ATP decision procedure returns true or false for KB |- C

- For a logic, a sound and complete decision procedure has one of following properties:
 - Decidable: Decision procedure guaranteed to terminate in finite time
 - Semidecidable: Decision procedure guaranteed to terminate for either true or false, but not both
 - Undecidable: No termination guarantee
Prop. Logic Syntax

- Propositional variables: p, rain, sunny
- Connectives: ⇒ ⇔ ¬ ∧ ∨
- Inductive definition of well-formed formula (wff):
 - Base: All propositional vars are wffs
 - Inductive 1: If A is a wff then ¬A is a wff
 - Inductive 2: If A and B are wffs then A ∧ B, A ∨ B, A ⇒ B, A ⇔ B are wffs
- Examples:
 - rain, rain ⇒ ¬ sunny
 - (rain ⇒ ¬ sunny) ⇔ (sunny ⇒ ¬ rain)

Prop. Logic Semantics

- For a formula F, the truth I(F) under interpretation I is recursively defined:
 - Base:
 - F is prop var A then I(F)=true iff I(A)=true
 - Recursive:
 - F is ¬C then I(F)=true iff I(C)=false
 - F is C ∧ D then I(F)=true iff I(C)=true & I(D)=true
 - F is C ∨ D then I(F)=true iff I(C)=true or I(D)=true
 - F is C ⇒ D then I(F)=true iff I(¬C ∨ D)=true
 - F is C ⇔ D then I(F)=true iff I(C ⇒ D)=true & I(D ⇒ C)=true
- Truth defined recursively from ground up!
CNF Normalization

- Many prop. theorem proving techniques req. KB to be in clausal normal form (CNF):
 - Rewrite all $C \iff D$ as $C \implies D \land D \implies C$
 - Rewrite all $C \implies D$ as $\neg C \lor D$
 - Push negation through connectives:
 - Rewrite $\neg(C \land D)$ as $\neg C \lor \neg D$
 - Rewrite $\neg(C \lor D)$ as $\neg C \land \neg D$
 - Rewrite double negation $\neg \neg C$ as C
 - Now NNF, to get CNF, distribute \lor over \land:
 - Rewrite $(C \land D) \lor E$ as $(C \lor E) \land (D \lor E)$
- A clause is a disj. of literals (pos/neg vars)
- Can express KB as conj. of a set of clauses

CNF Normalization Example

- Given KB with single formula:
 - $\neg (\neg (\neg (\neg \text{rain} \lor \text{wet}) \lor \text{inside} \land \text{warm}))$
- Rewrite all $C \implies D$ as $\neg C \lor D$
 - $\neg \neg (\neg \text{rain} \lor \text{wet}) \lor (\text{inside} \land \text{warm})$
- Push negation through connectives:
 - $(\neg (\neg \text{rain} \lor \neg \text{wet}) \lor (\text{inside} \land \text{warm}))$
- Rewrite double negation $\neg \neg C$ as C
 - $\neg (\text{rain} \lor \text{wet}) \lor (\text{inside} \land \text{warm})$
- Distribute \lor over \land:
 - $(\neg \text{rain} \lor \text{wet} \lor \text{inside}) \land (\neg \text{rain} \lor \text{wet} \lor \text{warm})$
- CNF KB: $\{\neg \text{rain} \lor \text{wet} \lor \text{inside}, \neg \text{rain} \lor \text{wet} \lor \text{warm}\}$
Prop. Theorem Proving

- A ⇒ B iff A ∧ ¬B is unsatisfiable
- Decision procedure for propositional logic is decidable, but NP-complete (reduction to 3-SAT)
- State-of-the-art prop. unsatisfiability methods are DPLL-based

\[\begin{array}{c}
\text{true} & A & \text{false} \\
\text{false} & B & \text{true} & B & \text{false}
\end{array} \]

- Many optimizations, more next week

Prop. Tableaux Methods

Given negated query F (in NNF), use rules to recursively break down:
- α-Rule: Given A ∧ B add A and B
- β-Rule: Given A ∨ B branch on A and B
- ⟨Clash⟩: If A and ¬A occur on same branch
- Clash on all branches indicates unsat!

\[\begin{array}{c}
A ∧ ¬A \ \beta\text{-Rule} \\
A \ \alpha\text{-Rule} \\
¬A \ \alpha\text{-Rule} \\
⟨\text{Clash}⟩ \\
¬B ∧ B \ \beta\text{-Rule} \\
¬B \ \alpha\text{-Rule} \\
B \ \alpha\text{-Rule} \\
⟨\text{Clash}⟩
\end{array} \]

Note: Inverse method is inverse of tableaux - bottom up
Propositional Resolution

- **One rule:**

 Rule: \[A \lor B \quad \neg B \lor C \]

 Example application: \[\neg \text{precip} \lor \neg \text{freezing} \lor \text{snow} \quad \neg \text{snow} \lor \text{slippery} \]

 \[A \lor C \quad \neg \text{precip} \lor \neg \text{freezing} \lor \text{slippery} \]

- **Simple strategy is to make all possible resolution inferences**

- **Refutation resolution is sound and complete**

Resolution Strategies

Need strategies to restrict search:

- **Unit resolution:**
 - Only resolve with unit clauses
 - Complete for Horn KB
 - Intuition: Decrease clause size

- **Set of support:**
 - SOS starts with query clauses
 - Only resolve SOS clauses with non-SOS clauses and put resolvents in SOS
 - Intuition: KB should be satisfiable so refutation should derive from query

- **Input resolution:**
 - At each step resolve only with input (KB or query)
 - I.e., don't resolve non-input clauses
 - Linear input: also allow ancestor \(\Rightarrow \) complete
Ordering Strategies

- Refutation of a clause requires refutation of all literals
- Enforce an ordering on proposition elimination to restrict search
 - Example order: p then r then q
 - General idea behind Davis-Putnam (DP) & directional resolution (Dechter & Rish)
- Effective, but does not work with all resolution strategies, e.g. SOS + ordered resolution is incomplete

Prop. Inference Software

- Mainly DPLL SAT algorithms
 - zChaff – highly optimized & documented DPLL solver, source available
 - siege – best performing DPLL solver, source not available
 - 2clseq – DPLL solver with constraint propagation (balance search / reasoning)
- For some applications: BDDs
 - BDDs maintain all possible models in a canonical data structure
 - CUDD ADD/BDD Package – very efficient
First-order logic

- Refer to objects and relations b/w them
- Propositional logic requires all relations to be propositionalized
 - Scott-at-home, Scott-at-work, Jim-at-subway, etc...
- Really want a compact relational form:
 - at(Scott, home), at(Scott, work), at(Jim, subway), etc...
- Then can use variables and quantify over all objects:
 - $\forall x \text{ person}(x) \Rightarrow \exists y \text{ at}(x,y) \land \text{ place}(y)$

First-order Logic Syntax

- **Terms** (technical definition is inductive b/c of fns)
 - Variables: w, x, y, z
 - Constants: a, b, c, d
 - Functions over terms: $f(a), f(x,y), f(x,c,f(f(z)))$
- **Predicates**: $P(x), Q(f(x,y)), R(x, f(x,f(c,z),c))$
- **Connectives**: $\Rightarrow, \Leftrightarrow, \neg, \land, \lor$
- **Quantifiers**: \forall, \exists
- **Inductive wff definition**:
 - Same as prop. but with following modifications...
 - Base: All predicates over terms are wffs
 - Inductive: If A is a wff and x is a variable term then $\forall x \ A \ & \ \exists x \ A$ are wffs
First-order Logic Semantics

- Interpretation $I = (\Delta^I, \cdot^I)$
 - Δ^I is a non-empty domain
 - \cdot^I maps from predicate symbols P of arity n into a subset of $\times_{j=1}^n \Delta^I$ (where P is true)
- Example
 - Δ^I is $\{Scott, Jim\}$
 - \cdot^I maps $at(\cdot, \cdot)$ into $\{\langle Scott, loc(Scott)\rangle, \langle Jim, loc(Jim)\rangle\}$
 - All other ground predicates are false in I, e.g. $at(Scott, loc(Jim))$, $at(Scott, Scott)$
- NB: FOL has ∞ interpretations/models!

Substitution and Unification

- Substitution
 - A substitution list θ is a list of variable-term pairs
 - e.g., $\theta = \{x/3, y/f(z)\}$
 - When θ is applied to an FOL formula, every free occurrence of a variable in the list is replaced with the given term
 - e.g. $(P(x,y) \land \exists x P(x,y))^\theta = P(3, f(z)) \land \exists x P(x, f(z))$
- Unification / Most General Unifier
 - The unifier $UNIF(x, y)$ of two predicates/terms is a substitution that makes both arguments identical
 - e.g. $UNIF(P(x,f(x)), P(y, f(f(z)))) = \{x/f(1), y/f(1), z/1\}$
 - The most general unifier $MGU(x, y)$ is just that... all other unifiers can be obtained from the MGU by additional subst. (MGU exists for unifiable args)
 - e.g. $MGU(P(x,f(x)), P(y, f(f(z)))) = \{x/f(z), y/f(z)\}$
Skolemization

- Skolemization is the process of getting rid of all \exists quantifiers from a formula while preserving (un)satisfiability:
 - If $\exists x$ quantifier is the outermost quantifier, remove the \exists quantifier and substitute a new constant for x
 - If $\exists x$ quantifier occurs inside of \forall quantifiers, remove the \exists quantifier and substitute a new function of all \forall quantified variables for x

- **Examples:**
 - $\text{Skolemize}(\exists w \exists x \forall y \forall z P(w,x,y,z)) = \forall y \forall z P(c,d,y,z)$
 - $\text{Skolemize}(\forall w \exists x \forall y \exists z P(w,x,y,z)) = \forall w \forall y P(w,f(w),y,f(x,y))$

CNF Conversion

- CNF conversion is the same as the propositional case up to NNF, then do:
 - Standardize apart variables (all quantified variables should have different names)
 - e.g. $\forall x A(x) \land \exists y \neg A(x)$ becomes $\forall x A(x) \land \exists y \neg A(y)$
 - Skolemize formula
 - e.g. $\forall x A(x) \land \exists y \neg A(y)$ becomes $\forall x A(x) \land \neg A(c)$
 - Drop universals
 - e.g. $\forall x A(x) \land \neg A(c)$ becomes $A(x) \land \neg A(c)$
 - Distribute \lor over \land
First-order Theorem Proving

- **Tableaux methods**
 - Preferred for some types of reasoning and for subsets of FOL (guarded fragment, set theory)
 - Highly successful for description and modal logics which conform to guarded fragment of FOL
- **Resolution Methods**
 - Most successful technique for a variety of KBs
 - But... search space grows very quickly
 - Need a variety of optimizations in practice
 - strategies, ordering, redundancy elimination
- **FOL TP complete ☺, but semidecidable ☹**
 - Will return in finite time if formula entailed
 - May run forever if not entailed

First-order Tableaux

Given negated query F (in NNF), use rules to recursively break down:

- **α-Rule, β-Rule**: Same as for prop tableaux
- **γ-Rule**: Given \(\forall x \ A(x) \) add \(A(?v) \) for variable \(?v\)
- **δ-Rule**: Given \(\exists x \ A(x) \) add \(A(f) \) for Skolem function \(f\)
- **(Clash)**: If unifiable \(A \) and \(\neg A \) occur on same branch

\[
\forall x \ A(x) \land \exists x \neg A(x) \land \exists x,y \neg B(x,y) \land \forall x,y B(x,y)
\]
First-order Resolution

- **Binary Resolution Rule**

 Rule: \[C \lor D \quad \neg E \lor F \]

 \[\frac{(C \lor F)\theta}{\theta = \text{MGU}(D,E)} \]

 Example application:

 \[P(3) \lor Q(f(x)) \lor R(y) \quad \neg Q(y) \]

 \[\frac{P(3) \lor R(f(x))}{P(3) \lor Q(z)} \]

- **Factoring Rule**

 Rule: \[C \lor D \lor E \]

 \[\frac{C \theta \lor E}{\theta = \text{MGU}(C,D)} \]

 Example application:

 \[P(z) \lor Q(3) \lor Q(z) \]

 \[\frac{P(3) \lor Q(3)}{P(3) \lor Q(3)} \]

Example of First-order Logic Resolution Proof

- **Given:**
 - **Axioms:**
 - \(\forall x \, \text{Man}(x) \Rightarrow \text{Mortal}(x) \)
 - \(\text{Man}(\text{Socrates}) \)
 - **Conjecture:**
 - \(\exists y \, \text{Mortal}(y) \) ?

- **Inference:**
 - **Refutation Resolution**

- **CNF:**

 \(\neg \text{Man}(x) \lor \text{Mortal}(x) \)

 \(\text{Man}(\text{Socrates}) \)

 \(\neg \text{Mortal}(y) \) [Neg. conj.]

- **Proof:**

 1. \(\neg \text{Mortal}(y) \) [Neg. conj.]
 2. \(\neg \text{Man}(x) \lor \text{Mortal}(x) \) [Given]
 3. \(\text{Man}(\text{Socrates}) \) [Given]
 4. \(\text{Mortal}(\text{Socrates}) \) [Res. 2, 3]
 5. \(\bot \) [Res. 1, 4]

 Contradiction \(\Rightarrow \) Conj. is true
Importance of Factoring

- Without the factoring rule, binary resolution is incomplete
- For example, take the following refutable clause set:
 \[- \{ A(w) \lor A(z), \neg A(y) \lor \neg A(z) \}\]
- All binary resolutions yield clauses of the same form
- Clause set is only refutable if one of the clauses is first factored

Search Control

Additional refinements of prop strategies yield goal-directed / bottom-up search:
- SLD Resolution
 - KB of definite clauses (i.e. Horn rules), e.g. Uncle(?x,?y) := Father(?x,?z) \land Brother(?x,?y)
 - Resolution backward chains from goal of rules
 - With negation-as-failure semantics, SLD-resolution is logic programming, i.e. Prolog
- Negative and Positive Hyperresolution
 - All negative (positive) literals in nucleus clause are simultaneously resolved with completely positive (negative) satellite clauses
 - Positive hyperres yields backward chaining
 - Negative hyperres yields forward chaining
Tabled Inference

- Naïve approaches to resolution perform one inference per step
- For SLD or neg. hyperres and KBs with large numbers of constants / functions, can store clause terms and perform tabled res, e.g.
 - CNF KB = \{ R(a,b), R(b,a), R(b,c), R(c,b),
 \neg R(x,y) \lor \neg R(y,z) \lor R(x,z) \}\n - Perform DB-like join during SLD or neg. hyperres:
 \[
 \begin{align*}
 R(x,y) & \leftarrow \{(a,b), (b,a), (b,c), (c,b)\} \\
 R(y,z) & \leftarrow \{(a,b), (b,a), (b,c), (c,b)\} \\
 R(x,z) & \leftarrow \{(a,a), (a,c), (b,b), (c,c), (c,a), (c,b)\}
 \end{align*}
 \]
- Can cache tabled inferences for reuse
- Huge improvement for instance-heavy KBs

Term Indexing

- Term indexing is another general technique for fast retrieval of sets of terms / clauses matching criteria
- Common uses in modern theorem provers:
 - Term \(q \) is unifiable with term \(t \), i.e., \(\exists \theta \text{ s.t. } q\theta = t\theta \)
 - Term \(t \) is an instance of \(q \), i.e., \(\exists \theta \text{ s.t. } q\theta = t \)
 - Term \(t \) is a generalization of \(q \), i.e., \(\exists \theta \text{ s.t. } q = t\theta \)
 - Clause \(q \) subsumes clause \(t \), i.e., \(\exists \theta \text{ s.t. } q\theta \subseteq t \)
 - Clause \(q \) is subsumed by clause \(t \), i.e., \(\exists \theta \text{ s.t. } t\theta \subseteq q \)
- Techniques: (Google for “term indexing”)
 - Path indexing
 - Code, context, & discrimination trees
Age-weight Ratio

- During a resolution strategy, have two sets:
 - Active: Set of active clauses for resolving with
 - Frontier: Candidate clauses to resolve with Active
- Idea: Store the frontier in two queues
 - Age queue: Standard FIFO queue
 - Weight queue: Priority queue where clause priority determined by heuristic measure:
 - Number of literals, number of terms, etc...
- A:W ratio: Choose A clauses from age queue for every W chosen from weight queue
 - Retains completeness of strategy if A is non-zero
 - I.e., fair b/c all clauses eventually selected
 - Can speed up inference by orders of magnitude!

Redundancy Control

- Redundancy of clauses is a huge problem in FOL resolution
 - For clauses C & D, C is redundant if \(\exists \theta \theta \theta \theta \) s.t. \(C\theta \subseteq D \) as a multiset, a.k.a. \(\theta \)-subsumption
 - If true, D is redundant and can be removed
 - Intuition: If D used in a refutation, \(C\theta \) could be substituted leading to even shorter refutation
- Two types of subsumption where N is a new resolvent and A ∈ Active:
 - Forward subsumption: A \(\theta \)-subsumes N, delete N
 - Backward subsumption: N \(\theta \)-subsumes A, delete A
- Forward/backward subsumption expensive but saves many redundant inferences
Saturation Theorem Proving

- Given a set of clauses S:
 - S is saturated if all possible inferences from clauses in S generate forward subsumed clauses
 - Thus, all new inferences can be deleted without sacrificing completeness
 - If S does not contain the empty clause then S is satisfiable
- Saturation implies no proof possible!
- Usually need ordering restrictions to reach saturation (if possible)...

Simplification Orderings

For complete ordered resolution in FOL, must use term simplification orderings:

- Well-founded (Noetherian): If there is no infinitely decreasing chain of terms s.t.
 \[t_0 \gg t_1 \gg t_2 \gg \ldots \gg t_\infty \]
- Monotonic: If \(s \gg t \) then \(f[s] \gg f[t] \) (\(f[s] \) and \(f[t] \) are identical except for [term])
- Stable under Subst.: If \(s \gg t \) then \(s\theta \gg t\theta \)

Examples: (Google for following keywords)
- Knuth-Bendix ordering
- Lexicographic path ordering
Literal Ordering & Selection

- Can extend term ordering to literals \succ_{lit}:
 - If literals equal but opposite sign, then negative literal \succ_{lit} positive literal
 - Otherwise, treat literals as terms (modulo sign) and literal ordering \succ_{lit} is just term ordering \succ

- A selection function selects literals, and must adhere to following rules:
 - At least one literal must be selected
 - Either a negative literal is among the selection, or all maximal positive literals w.r.t. \succ_{lit} are selected

- Show selected literals by underscore
 - e.g., \{ $A \lor \neg B \lor \neg C$, $D \lor E \lor \neg F$, $\neg G \lor H \lor I$ \}

Ordered Resolution w/ Selection

- Binary Ordered Res w/ Selection

 Rule: \[
 \frac{C \lor D \quad \neg E \lor F}{(C \lor F)\theta \quad \theta=\text{MGU}(D,E)}
 \]

 Example application: \[
 \frac{P(3) \lor Q(f(x)) \lor R(y) \quad \neg Q(y)}{P(3) \lor R(f(x))}
 \]

- Ordered Factoring w/ Selection

 Rule: \[
 \frac{C \lor D \lor E}{C\theta \lor E \quad \theta=\text{MGU}(C,D)}
 \]

 Example application: \[
 \frac{P(z) \lor Q(3) \lor Q(z)}{P(3) \lor Q(3)}
 \]
Clause Orderings & Redundancy

- Must define specialized redundancy criterion for forward and backward subsumption / deletion when using ordered resolution:
 - Define bag (clause) extension of literal ordering:
 - \(\{x, y_1, \ldots, y_m\} \succ_{\text{bag}} \{y_1, \ldots, y_m\} \) if \(\forall i \succ_{\text{lit}} x \)
 - Can define redundancy w.r.t. bag ordering:
 - Clause \(C \) is redundant w.r.t. set of clauses \(S \), if \(\exists C_1, \ldots, C_n \in S, n \geq 0 \), s.t. \(\forall i \prec_{\text{bag}} C \) and \(C_1, \ldots, C_n \models C \)
 - Under ordered res, even if \(C \theta \)-subsumes \(D \), \(D \) is not redundant (and can't be deleted) unless \(C \prec_{\text{bag}} D \)

- NB: Search restrictions of ordered res far outweigh weakened notion of redundancy
- Ordered res is effective saturation strategy!

Equality

- A predicate w/ special interpretation
- Could axiomatize:
 - \(x = x \) (reflexive)
 - \(x = y \Rightarrow y = x \) (symmetric)
 - \(x = y \land y = z \Rightarrow x = z \) (transitive)
 - For each function \(f \):
 - \(x_1 = y_1 \land \ldots \land x_n = y_n \Rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n) \)
 - For each predicate \(P \):
 - \(x_1 = y_1 \land \ldots \land x_n = y_n \land P(x_1, \ldots, x_n) \Rightarrow P(y_1, \ldots, y_n) \)
- Too many axioms... better to reason about equality in inference rules
Inference
Rules for Equality

• Demodulation (incomplete)

Rule: \[\frac{x=y \quad L[z] \lor D}{L[y\theta] \lor D} \quad \theta = \text{MGU}(x,z) \]
Example application:
\[\frac{x=f(x) \quad P(3) \lor Q}{P(f(3)) \lor Q} \quad \theta = \{x/3\} \]

• Paramodulation (complete)

Rule: \[\frac{x=y \lor C \quad L[z] \lor D}{(L[y] \lor C \lor D)\theta} \quad \theta = \text{MGU}(x,z) \]
Example application:
\[\frac{x=f(x)\lor C \quad P(3)\lor Q}{P(f(3))\lor C\lor Q} \quad \theta = \{x/3\} \]

Equational Programming

• Used extensively for algebraic group theory proofs

• All axioms and conjectures are unit equality predicates with arithmetic functions on the LHS and RHS, e.g.
 – \(a^\ast(x+y) = a^\ast x + a^\ast y \) ?

• In this case, associative-commutative (AC) unification (Stickel) important for efficiency, e.g.
 – \(\text{MGU}(x+3^\ast y^\ast y, z^\ast 3^\ast z+1) = \{x/1, y/z\} \)
First-order theorem proving software

Many highly optimized first-order theorem proving implementations:

- Vampire (1st place for many years in CADE TP competition)
- Otter (Foundation for modern TP, still very good, usually 2nd place in CADE)
- SPASS (Specialized for sort reasoning)
- SETHEO (Connection tableaux calculus)
- EQP (Equational theorem proving system, proved Robbins conjecture)

First-order TP Progress

- Ever since the 1970s I at various times investigated using automated theorem-proving systems. But it always seemed that extensive human input--typically from the creators of the system--was needed to make such systems actually find non-trivial proofs.

- In the late 1990s, however, I decided to try the latest systems and was surprised to find that some of them could routinely produce proofs hundreds of steps long with little or no guidance. … the overall ability to do proofs--at least in pure operator systems--seemed vastly to exceed that of any human.

--Steven Wolfram, “A New Kind of Science”
On the other hand...

- Success of modern theorem provers relies largely on heuristic tuning
- Input KBs are analyzed for properties which determine strategies and various parameters of inference
- Still an art as much as a science, much room for more principled tuning of parameters, e.g.
 - Automatic partitioning of KBs to induce good literal orderings (McIlraith and Amir)

Gödel’s Incompleteness Theorem

- FOL inference is complete (Gödel)
- So what is Gödel’s incompleteness theorem (GIT) about?
- GIT: Inference in FOL with arithmetic (+,* ,exp) is incomplete b/c set of axioms for arithmetic is not recursively enumerable.
- Read: Inference rules are sound and complete, but no way to generate all axioms required for arithmetic!
Modal Logic

- Logic of knowledge and/or belief, e.g.
 - English: Scott knows that you know that Scott knows this lecture is boring
 - Modal Logic K_n (n agents): $K_{Scott}K_{you}K_{Scott}$ LIB

- Possible worlds (Kripke) semantics
 - Each modal operator K_i corresponds to a set of possible interpretations (i.e., possible worlds)
 - Different axioms (T,D,4,5,...) correspond to relations b/w worlds, Axiom 4: $K_i\phi \Rightarrow K_iK_i\phi$
 - Semantics: $K_i\phi$ iff ϕ is true in all worlds agent i considers possible according to axioms & KB

- Postpone reasoning until DL...

Temporal Logic

- A modal logic where the possible worlds are linked by time:
 - LTL: Linear temporal logic
 - World states evolve deterministically
 - State can involve action
 - CTL: Computation tree logic
 - World states can evolve non-deterministically

- Temporal operators specify conditions on world evolution
- Used for verification, safety checks
LTL Temporal Operators

- **G f**: always f
- **F f**: eventually f
- **X f**: next state
- **f U r**: until
- **f R r**: releases

Temporal Logic Inference

- Because time evolves infinitely, propositional SAT methods won't work for LTL/CTL verification (will branch infinitely)
- However, LTL/CTL inference is monotonic!
 - To check condition, start with set of all worlds
 - Evolve world one step, remove states not satisfying condition
 - Continue evolution until set does not change...
 - this is set of all states for which condition holds
- For propositional temporal logic, number of worlds is finite \(\Rightarrow \) termination \(\Rightarrow \) decidable!
- BDD data structure used to compactly encode sets of worlds and evolve worlds.
Description Logic

• A concept oriented logic:

<table>
<thead>
<tr>
<th>English</th>
<th>FOL</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog with a Spot (DWS)</td>
<td>DWS(x) ↔ Dog(x) ^ (∃y.has(x,y) ^ Spot(y))</td>
<td>DWS ↔ Dog □ has.Spot</td>
</tr>
<tr>
<td>Large Dog with a Dark Spot (LDWDS)</td>
<td>LDWDS(x) ↔ (Dog(x) ^ Large(x)) ^ (∃y.has(x,y) ^ (Spot(y) ^ Dark(y)))</td>
<td>LDWDS ↔ Dog □ Large □ has.(Spot □ Dark)</td>
</tr>
</tbody>
</table>

• Guarded fragment subset of FOL

Description Logic (DL) Inference

• Natural correspondence between ALC DL and modal logic (Schild):
 - Modal propositions are concepts that hold in possible worlds w, e.g. lecture is boring: LIB(w)
 - Modal operators K_i are DL roles that link possible worlds: $K_{scott}(w_1, w_2)$
 - If Scott knows that the lecture-is-boring then $\forall w_2 K_{scott}(w_1, w_2) \Rightarrow LIB(w_2)$ (w_1 is a free variable)
 - Or in DL notation $\forall K_{scott}.LIB$

• Since decidable tableaux methods known for modal logics, these were imported into DL and later extended to expressive DLs

• Benefit of DL: Decidable subset of FOL that is ideal for conceptual ontology reasoning!
Example of Description Logic Tableaux Proof

- Given:
 - Axioms: None
 - Conjecture: \(\neg \exists \text{Child.}\neg\text{Male} \Rightarrow \forall \text{Child.Male} \)

- Inference:
 - Tableaux

- Proof:
 Check unsatisfiability of \(\exists \text{Child.}\neg\text{Male} \land \forall \text{Child.Male} \)

x: \(\exists \text{Child.}\neg\text{Male} \land \forall \text{Child.Male} \)

x: \(\forall \text{Child.Male} \) [\(\land \)-rule]

x: \(\exists \text{Child.}\neg\text{Male} \) [\(\land \)-rule]

x: \(\text{Child} \ y \) [\(\exists \)-rule]

y: \(\neg\text{Male} \) [\(\exists \)-rule]

y: \(\text{Male} \) [\(\forall \)-rule]

<CLASH>

Contradiction \(\Rightarrow \) Conj. is true

DL Reasoner Output (FaCT++)

Taxonomy encodes all \(\Rightarrow \) relations
Modal, Verification, and DL Inference Software

- Modal logic
 - MSPASS (converts modal formula to FOL)
 - By correspondence, also DL reasoners
- Verification (temporal and non-temporal)
 - PVS (interactive TP for HW/SW verification)
 - ALLOY (first-order HW/SW model checker)
 - NuSMV (BDD-based LTL/CTL HW/SW verif.)
- DL Reasoning
 - Classic (limited DL, poly-time inference)
 - Racer (expressive DL, highly optimized)
 - FaCT++ (very expr. DL, highly optimized)

Repositories of TP Problems

Many repositories of theorem proving knowledge bases:
- TPTP: Thousands of Problems for TPs
 - Algebraic group theory, geometry, set theory, topology, software verification, NLP KBs
- SATLIB: Library of Prop. SAT problems
 - Hardware verification, industrial planning problems, hard randomized problems
- Open/ResearchCyc: Public version of Cyc
 - Large common-sense repository expressed in higher-order logic
- Semantic Web: DL ontologies in OWL
 - The web is the limit!
Concluding Thoughts

- Many logics, inference techniques, and computational guarantees
- Have to balance expressivity and computational tradeoffs with task-specific needs (Brachman & Levesque, 1985)
- Woods (1987): Don’t blame the tool!
 - A poor craftsman blames the tool when their efforts fail
 - An experienced craftsman uses the right tool for the job