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I. Inductive Inference

Learner reading data and outputting hypotheses.

Data Hypotheses

2 Set of even numbers;
2,3 Set of all numbers;
2,3,5 Set of prime numbers;
2,3,5,13 Set of prime numbers;
2,3,5,13,1 Set of Fibonacci numbers;
2,3,5,13,1,8 Set of Fibonacci numbers.
2,3,5,13,1,8,21 Set of Fibonacci numbers.

Learner outputs a sequence of conjectures which
eventually stabilizes on the correct one.
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General Setting

Class C of sets to be learnt; all sets are r.e. subsets of a
base set like N and {0,1}∗.

Learner reads more and more data from an infinite
sequence (called text) containing all members of some set
L ∈ C and perhaps some pause symbols.

Learner conjectures hypothesis en for data a0 a1 . . . an.

In general: from some time onwards, all en are the same
correct hypothesis e describing the set L to be learnt. Gold
called this model “explanatory learning”.

Description is index in a chosen hypothesis space
{Le : e ∈ I} where I is a suitable index set and every
member of C equals to some Le. Often, the hypothesis
space is some fixed acceptable numbering W0,W1, . . . of
all r.e. sets.
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Choices for this talk

I+III: Learners are recursive; II: learners are automatic.

Instead of classes of r.e. sets, one can also look at spaces
of recursive functions, co-r.e. sets, regular sets and so on.
I+III: Classes of r.e. sets; II: Classes of regular sets.

Besides texts, there are also input presentations like a text
plus an upper bound of the index; an informant providing
both, positive and negative data; a text plus only some
selected negative data; a teacher which answers explicit
questions of the learner. I-III: mostly learning from text.

Hypotheses spaces are indexing of all the objects which are
contained in the class to be learnt plus perhaps some other
ones. Much work has been done on relations between
learnability and hypothesis space. I+III: Mostly an
acceptable numbering of all r.e. sets; II: automatic families.
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I.1. Examples

The following examples use the hypothesis space
{W0,W1, . . .} of all r.e. sets.

Class of Finite Sets
On input a0 a1 . . . an, the learner produces an index for the
set {a0, a1, . . . , an} (repetitions removed) of the data seen
so far. The hypothesis is only revised when a new datum
has been observed and therefore the learner converges to
some correct hypothesis.

Class of Co-Single Sets
On input a0 a1 . . . an, the learner computes the value

bn = min(N − {a0, a1, . . . , an})

and outputs an index f(bn) with Wf(bn) = N − {bn}.
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Learning by Enumeration

Assume that the hypothesis space {Le : e ∈ I} is uniformly
recursive and that Ld 6⊂ Le for all d, e. Then one can learn
the class C by the following algorithm called “Learning by
Enumeration”.

On input a0 a1 . . . an, the hypothesis en is the first e in I

such that either {a0, a1, . . . , an} ⊆ Le or e > n.

In the case that the set Le has to be learnt, the algorithm
will converge to the first d with Ld = Le; the indices below d

will all be abandoned eventually when some counter
example is observed in the input.
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Learning by Self-Reference

Consider the class C = {We : e = min(We)}.

This class has an easy learner with respect to the
hypothesis space {W0,W1, . . .}: On input a0 a1 . . . an, the
learner conjectures min{a0, a1, . . . , an}.

This learner converges to the miminum of the data
observed which is the minimum of the set to be learnt and
by choice of C then also the index of the set to be learnt.

Wiehagen observed that the class C is quite large: It
contains for every r.e. set E a finite variant of E. For this, let
f be chosen such that

Wf(e) = {e} ∪ E − {d : d < e}.

By Kleene’s Fixed-Point Theorem there is an e with
We = Wf(e) and then We ∈ C.
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Gold’s Unlearnable Class

Theorem [Gold 1967]
Let C contain all finite sets and N. Then C is not learnable.

Proof
To see this, assume that M learns every finite set in C.
Now construct inductively a text σ0σ1 . . . such that each σn

consists of so many repetitions of n that M on input
σ0σ1 . . . σn outputs a conjecture for {0,1, . . . ,n}.

Each σn has to exist as M on the text σ0σ1 . . . σn−1 nnnn . . .
learns the set {0,1, . . . ,n} and therefore also outputs an
index for that set. As a consequence, M outputs on the text
σ0σ1 . . . for N infinitely many wrong indices and so does not
learn N.

Inductive Inference – p.



A Computationally Difficult Class

Theorem
Let C contain all r.e. sets which, for every n, contain exactly
one of 2n,2n + 1. Then C is not explanatorily learnable.

Proof
Assume now by way of contradiction that M is an explan-
atory learner for C. Now one constructs a text T such that M

makes infinitely many mind changes on T and T is a text for
a set in C. Let σ0 be 02. For n = 0,1, . . . let σn+1 such that

• σn+1 contains either 2m or 2m + 1 and, for some k,
2m+22m+42m+6 . . . 2k for the least m such that
2m,2m + 1 do both not occur in σ0 σ1 . . . σn;

• M(σ0 σ1 . . . σn σn+1) 6= M(σ0 σ1 . . . σn).

Each extension can be found as otherwise M would
converge on two different sets from C to the same index.
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I.2. Locking Sequences

Theorem [Blum and Blum 1975, Fulk 1990]
Let M be an explanatory learner learning a set L. Then
there exists a sequence σ of data in L such that for all
further sequences τ from data in L it holds that
M(στ) = M(σ).

Such a sequence is called a stabilising sequence. If it
furthermore holds that WM(σ) = L then σ is called a locking
sequence for L.

Observation [Fulk 1990]
Whenever M learns L then every stabilising sequence for L

is also a locking sequence for L.
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Properties of Learners

Let M be a learner for a class C.

Order Independence (Blum and Blum 1975): M is order
independent iff for every L ∈ C and every two texts for L, M

converges on both texts to the same index for L.

Rearrangement Independence (Fulk 1990): M is
rearrangement independent iff for all finite sequences σ, τ
with |σ| = |τ | ∧ content(σ) = content(τ) it holds that
M(σ) = M(τ).

Set-Driven (Osherson, Stob and Weinstein 1982): M is
set-driven iff for all finite sequences σ, τ with
content(σ) = content(τ) it holds that M(σ) = M(τ).

Every learner can be replaced by an equivalent learner
which is order independent and rearrangement
independent, but one cannot always obtain set-drivenness.
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Hunting Locking-Seqences

Let M be a learner. Furthermore, for any L and any finite
sequence σ of some elements in L, let τσ be the
length-lexicographic least string with

• content(τσ) ⊆ content(σ);

• M(τση) = M(τσ) for all η with
content(η) ⊆ content(σ) ∧ |τσ| + |η| = |σ|.

Let N(σ) = M(τσ).

If M learns L then there is some sequence ϑ such that
every σ with |ϑ| ≤ |σ| and content(ϑ) ⊆ content(σ) ⊆ L

satisfies τσ = τϑ. N converges on every text for L to M(τϑ)
and τϑ is the length-lexicographic least locking sequence of
L (or very similar to it).

N is rearrangement-independent and order-independent.
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Set-Drivenness is Restrictive

Let b0,b1,b2, . . . be a recursive one-one enumeration of K.
Now let C contain all sets of the form

• {2e} ∪ {1,3,5,7, . . .};

• {2e} ∪ {1,3,5, . . . ,2s + 1} with ∃t > s [bt = e].

This class has a recursive learner but not a set-driven
learner. If M would be a set-driven learner then one can
search for the first s with

M(2e 135 . . . 2s+1) = M(2e 135 . . . 2s+12s+3).

and would have that e ∈ K ⇔ e ∈ {b0,b1, . . . ,bs}.
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I.3. Angluin’s Tell-Tale Sets

An indexed family is a class given by a hypothesis space
{Le : e ∈ I} such that the mapping e,x → Le(x) is recursive.

Theorem [Angluin 1980]
An indexed family {Le : e ∈ I} is explanatory learnable iff
there is a uniformly r.e. family {He : e ∈ I} of finite sets such
that all d, e satisfy He ⊆ Le and He ⊆ Ld ⊆ Le ⇒ Ld = Le.

The finite sets He are called tell-tale sets for Le.

Given a learner M, one can enumerate He by searching
among the finite sequences σ over Le the first stabilising
sequence to be found and enumerating the range of every
candidate considered into He.

For the converse direction, consider a learner N which on
input a0 a1 . . . an outputs the first e with e ≥ n or
He,n ⊆ {a0, a1, . . . , an} ⊆ Le.
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Generalising Angluin’s Criterion

Let {Le : e ∈ I} be a uniformly r.e. class.

Theorem [de Jongh and Kanazawa 1996]
The class {Le : e ∈ I} is explanatorily learnable iff there are
limit-recursive functions mapping each index e to indices i, j
such that Wi is finite and Wj is a set of canonical indices of
finite sets and for all indices d it holds that

• Wi ⊆ Le;

• Wi ⊆ Ld ⊆ Le ⇒ Ld = Le;

• ∀k ∈ Wj [Dk 6⊆ Le];

• Wi ⊆ Ld ∧ Ld 6= Le ⇒ ∃k ∈ Wj [Dk ⊆ Ld].
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Conservative Learning

Definition [Angluin 1980]
A learner M is conservative iff whenever M(στ) 6= M(σ)
then some datum x occurring in στ is not inside the
hypothesis conjectured by M(σ).

Example
(a) The class of all finite sets is conservatively learnable.
(b) The class of all sets N − {b} is conservatively learnable.
(c) Every inclusion-free indexed family is conservatively
learnable; the learner follows the algorithm “Learning by
Enumeration”.

Theorem [Zeugmann, Lange and Kapur 1992]
An indexed family {Le : e ∈ I} has a conservative learner iff
there is a recursive function S such that Le ∩ {0,1, . . . ,S(e)}
is a tell-tale set for each set Le.
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Explanatory versus Conservative Learning

Theorem [Angluin 1980]
There is an indexed family which is explanatorily learnable
but not conservatively learnable.

Let C contain all sets {x,x + 1, . . .} and, whenever x goes
into the halting problem K at time s then let C also contain
every set which has minimum x and contains, besides
perhaps some other elements, those numbers which are
smaller than x + s.

The class C has a class-preserving indexed family
{Le : e ∈ I} as hypothesis space.

There are no recursive functions f ,S such that for all x,
{x} ⊆ Lf(x) ⊆ {x,x + 1, . . .} and Lf(x) ∩ {0,1, . . . ,S(x)}

is a finite tell-tale set for Lf(x). Otherwise, S would satisfy
x ∈ K ⇔ x ∈ KS(x), a contradiction.
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Uniformly Co-r.e. Classes

A hypothesis space {Le : e ∈ I} is uniformly co-r.e. iff
{〈e,x〉 : x /∈ Le} is recursively enumerable.

Theorem [Gao 2010: Angluin’s criterion for co-r.e.]
A class C of co-r.e. sets is conservatively learnable (with
respect to co-r.e. indices) iff there exists a uniformly co-r.e.
hypothesis space {Le : e ∈ I} containing C and a uniformly
r.e. family {He : e ∈ I} such that all indices d, e ∈ I satisfy
He ⊆ Le and He ⊆ Ld ⊆ Le ⇒ Ld = Le.

Theorem [Gao 2010]
An indexed family is conservatively learnable using a
uniformly co-r.e. hypothesis space iff it is explanatorily
learnable using a uniformly recursive hypothesis space.

Theorem [Gao 2010]
There is a uniformly co-r.e. family which is explanatorily but
not conservatively learnable.
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Consistent Learning

Definition
A learner M is called consistent iff for every sequence σ of
data it holds that M(σ) outputs a hypothesis containing all
data-items from σ.

Proposition
Every learnable indexed family C has a consistent learner.

If M is a learner for C, one can make a new consistent
learner N such that N outputs an index for N whenever the
original hypothesis M outputs a conjecture not containing
all the data observed so far. Note that the learner need not
be class-preserving, as N might not be in C.

Example
In general, consistency is restrictive. The class {K, N} does
not have a consistent learner, as the halting problem K is
undecidable.
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I.4. Convergence

Up to now, the main learning criterion was learning in the
limit where the learner converges syntactically to a correct
hypothesis. In the following, more restrictive notions of
convergence (finite, confident) and more relaxed notions of
convergence (vacillatory, behaviourally correct) will be
introduced.

Note that conservativeness is also related to convergence
constraints, as it says that a hypothesis generating all the
data seen so far cannot be revised. This implies that correct
hypotheses are never revised. In contrast to this,
behaviourally correct learning (as defined later) will permit
to revise a correct hypothesis infinitely often.
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Finite Learning

Definition [Gold 1967]
A learner M is called finite iff it outputs on every sequence
σ of data either a special symbol “?” for “no hypothesis” or
an index e which correctly describes the set to be learnt.

Examples
(a) The class of all sets with 8 elements is finitely learnable;
the learner outputs “?” as long as less than 8 elements have
been seen and conjectures the set of the first 8 elements
seen, otherwise.
(b) The class of all sets We where 2e is the only unique
even element of the set is finitely learnable.
(c) The class {∅, N} is not finitely learnable; in general,
every finitely learnable class has to be inclusion-free.
(d) There are inclusion-free classes which are not finitely
learnable, for example, {N − {m} : m ∈ N}.
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Confident Learning

Definition [Osherson, Stob and Weinstein 1986]
A learner M is confident iff it does on every input text —
whatever set this text is for — converge to some index.

Examples
(a) Every finitely learnable class is confidently learnable.
(b) Every finite class is confidently learnable; hence there
are confidently learnable classes which are not finitely
learnable.
(c) The class {E : ∃e [{e} ⊆ E ⊆ {e, e + 1, . . . ,2e}]} is
confidently learnable.
(d) The class {N − {m} : m ∈ N} is not confidently
learnable.
(e) The class of all finite sets is not confidently learnable.
(f) If a class is confidently learnable then it does not contain
an infinite ascending chain L0 ⊂ L1 ⊂ L2 ⊂ . . . of sets.
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Behavioural Correct Learning

Definition [Barzdins 1974]
A learner M is behaviourally correct iff it outputs on every
text for a set L to be learnt a sequence of indices such that
from some point onwards each index is an index for L.

Remarks
(a) The learner M converges only semantically, and need
not converge syntactically. Note that every expla- natory
learner is behaviourally correct, but not vice versa.
(b) The class {A ∪ D : D is finite} where A is r.e. and not
recursive is behaviourally correctly learnable but not
explantorily learnable. The behaviourally correct learner
conjectures on input a0 a1 . . . an an index for the set
A ∪ {a0, a1, . . . , an}.
(c) If a hypothesis space is uniformly recursive then every
behaviourally correct learner can be replaced by an
explantory one learning the same class.
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Vacillatory Learning

Definition [Case 1999]
A learner M is vacillatory iff it is a behaviourally correct
learner of the given class which outputs on every text for a
language to be learnt only finitely many different indices.

Examples
(a) Every explanatorily learnable class is vacillatorily
learnable.
(b) The class of all sets L for which there is e < min(L) with
We = L is vacillatorily learnable but not explanatorily
learnable.
(c) The class of all sets L with at most 2 even elements
2i,2j with L ∈ {Wi,Wj} is vacillatory learnable in a way
that the learner on every text eventually vacillates among at
most two indices.
(d) The class {A ∪ D : is finite} where A is r.e. and not
recursive is not vacillatorily learnable. Inductive Inference – p. 25



Partial Learning

A partial learner M outputs on every text for a language L

to be learnt exactly one index infinitely often and all other
indices only finitely often; the infinitely often output index is
an index for L.

Theorem [Osherson, Stob and Weinstein 1986]
There is a partial learner which learns the whole class of all
r.e. languages.

Remark
Partial learners for the class of all r.e. sets are not
consistent, that is, every partial learner which learns the
class of all r.e. sets outputs on some data a0 a1 . . . an a
hypothesis e with {a0, a1, . . . , an} 6⊆ We.
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I.5. Memory-Restrictions

An iterative learner is a learner M such that M bases its
new hypothesis only on the previous hypothesis and the
current datum. That is, there is an initial value o and an
update function f such that e0 = f(o, a0), e1 = f(e0, a1), . . .,
en = f(en−1, an).

Example
The class of finite sets has an iterative learner as each
hypothesis eD codes in a easily checkable way the set D of
data seen so far and f(eD,x) = eD∪{x}.

Example
If L0 = {1,2, . . .} and, for e > 0, Le = {0,1, . . . , e} then the
resulting class does not have an iterative learner.
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More General Memory-Restrictions

The learner M is described by two recursive functions f ,g
and an initial memory o.

• f updates the memory by mn = f(mn−1, an) or f(o, a0)
when n = 0.

• g produces the current hypothesis by en = g(mn, an).

The memory mn can be the current hypothesis (iterative
learning), some selected data observed (bounded example
memory), some data bounded by some function
b(a0, a1, . . . , an) and so on. Many different restrictions are
possible, also conjecture “?” might be permitted after
convergence when memory restrictions do not permit to
memorise the full hypothesis.
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The Memory Hierarchy

Theorem [Lange and Zeugmann 1996]
The class consisting of the set {1,2, . . .} and all sets
{0,1, . . . ,b0} ∪ {b1,b2, . . . ,bk} where b0 < b1 < . . . < bk

can be learnt with bounded example memory k + 1 plus
current hypothesis but not with bounded example memory
k plus current hypothesis.

Proof. The learner with example memory converges on
texts not containing 0 to some hypothesis and must then
rely on its bounded example memory to archive the k + 1

largest elements of the data seen so far. When 0 shows up,
it makes a mind change and conjectures from then onwards
always the finite set generated by the members of its
memory. The hypothesis stores whether 0 has been seen.
If the bounded example memory contains only k members
then the learner cannot store enough information to code
up the largest k + 1 elements seen so far.
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Summary

A learner is a machine which reads more and more data
and outputs — in parallel — a sequence of hypotheses
such that en is based on a0 a1 . . . an. In the basic setting of
explantory learning, the en converge syntactically to one
index e such that We is the set to be learnt.

Many variants of this basic settings have been investigated,
with different convergence conditions, additional constraints
on the quality of each hypothesis, the usage of preassigned
hypothesis spaces and constraints on how learners form
and update hypotheses.
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II. Automatic Structures and Learning

Regular Languages
Languages accepted by finite automaton.
Alternative definition: smallest class of languages which
contains all subsets of a finite alphabet Σ and is closed
under concatenation, union, intersection, star-operation and
complementation.
Concatenation: 00 · 1 = 001; A ·B = {α · β : α ∈ A∧ β ∈ B};
A∗ = {λ} ∪ A ∪ (A · A) ∪ (A · A · A) ∪ . . . (Kleene star).

Convolution
Given α, β ∈ Σ∗ and # /∈ Σ∗, conv(α, β) is the sequence all
pairs made of αn and βn for n = 0,1, . . . ,max{|α|, |β|} − 1

with αn = # for n ≥ |α| and βn = # for n ≥ |β|.
Relation R is regular iff {conv(α, β) : R(α, β)} is regular.

Automatic Structures
Domain and all relations of the structure are regular.
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Examples

Functions
A function is automatic iff its graph is an automatic relation;
all functions which are first-order definable in a given set of
automatic relations are automatic.

Fibonacci Numbers and Addition [Tan 2008]
Domain (0∗01)∗, addition +, comparison <; predicate F.
Here a1a2 . . . an represents F1 · a1 + F2 · a2 + . . . + Fn · an

where F1 = 1,F2 = 1,F3 = 2,F4 = 3,F5 = 5.

Various Algebras
There are automatic presentations of the algebra of the
eventually constant functions from N into a given finite field.
Similarly for the algebra of finite and cofinite sets.

Rationals [Tsankov 2009]
The group (Q, +) has no automatic presentation.
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Automatic Classes

Definition
An automatic class is a class of languages each contained
in a regular set S such that there is an indexing with regular
domain I for which {conv(i,x) : x ∈ S ∧ i ∈ I ∧ x ∈ Li} is a
regular relation.

Examples
1. The class of all sets xΣ∗ is automatic where the
parameter x could be used as the index.
2. The class {z ∈ Σ∗ : x ≤lex z ≤lex y} is automatic where
the convolution of x and y can be used as an index for the
corresponding interval.
3. The finite subsets of {2}∗ form an automatic class with
the indices ranging over I = (0∗1)∗ and 2n ∈ Li iff n < |i|
and the symbol in i at position n is 1.
4. The finite subsets of {2,3}∗ do not form an automatic
class. Inductive Inference – p. 33



Learning of Automatic Classes

Let {Li : i ∈ I} be a given automatic class.

General Model
Learner reads data a0, a1, a2, . . . from L such that every
element of L appears in this list.
Learner produces hypothesis en after reading an.
Learner succeeds to learn L iff almost all en are the same
index i with Li = L.
The class is learnable iff some recursive learner learns
every language in the class.

Theorem [Angluin 1980 adapted to autom. classes]
The given class is learnable iff for every i ∈ I there is a finite
set Di ⊆ Li such that there is no j ∈ I with Di ⊆ Lj ⊂ Li.
Di is called a tell-tale set for Li.
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II.1. Automatic Learners

An automatic learner [Jain, Luo and Stephan 2009]
M works by a sequence of updates.
The learner maintains a long term memory where En is the
long term memory before reading an.
M maps conv(En, an) to conv(En+1, en) and this function
has to be automatic.

Restrictions
Iterative: Long term memory is last hypothesis.
Bounded Example-Memory: Long term memory consists of
up to c selected input data.
Example-Bounded: Long term memory is a string of length
bounded by the length of the longest example seen so far
plus a constant.
Hypothesis-Bounded: Long term memory is a string of
length bounded by the length of the hypothesis plus a
constant. Inductive Inference – p. 35



Examples

1. The class of all {z : x ≤lex z ≤lex y} can be learnt by an
automatic learner which always remembers the minimum x

and maximum y of the data seen so far. The learner works
with each of the four types of restrictions on the long-term
memory given above.

2. For given n, let the given class contain all sets
Lx,y1,y2,...,yk

= xΣ∗y1Σ
∗y2Σ

∗ . . .Σ∗yk with |y1y2 . . .yk| ≤ n.
This class is called the class of automatic pattern
languages and is automatically learnable. The long-term
memory can be bounded by hypothesis-size. [Ong]

3. The class of all sets Li = {0,1}∗ − {i} with i ∈ {0,1}∗

does not have an automatic learner.

4. The class of all sets Li = {x ∈ {0,1}∗ : |x| = |i| ∧ x 6= i}
with i ∈ {0,1}∗ does not have an automatic learner.
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Additional Properties

Let a learner produce output en based on a0, a1, . . . , an.
Let {Li : i ∈ I} be the class to be learnt.

Confidence
A learner is confident if it converges on any sequence of
data, even if this sequence of data does not belong to any
language to be learnt.

Consistency
A learner is consistent if Len

contains a0, a1, . . . , an.

Conservativeness
A learner is conservative if {a0, a1, . . . , an, an+1} 6⊆ Len

whenever en+1 6= en.

Example
The class of all sets with up to 5 elements is confidently,
consistently, conservatively and iteratively learnable.
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Unary Classes

Theorem [Jain, Luo, Stephan 2009]
If an automatic class {Li : i ∈ I} satisfies Angluin’s tell-tale
condition and Li ⊆ {0}∗ for all i ∈ I then it has an automatic,
consistent and conservative learner.

Theorem [Jain, Luo, Stephan 2009]
The class consisting of {0m : m ≥ 2} and of all
{0m : m ≤ n} with n ≥ 1 has an automatic learner for which
the long term memory is bounded by example-size. But this
class has no iterative learner.

Theorem [Jain, Luo, Stephan 2009]
There is a unary class having a one-one indexing such that
it is not conservatively iteratively learnable in this indexing
although the class has a conservative learner and a
different iterative learner.
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Consistency

Theorem [Jain, Luo, Stephan 2009]
Let Lλ = {0,1}∗, L2 = {0,1,2}∗ and
Ly = {x : x = 2|y| ∨ (x ∈ {0,1}∗ ∧ y is not a prefix of x)} for
y ∈ {0,1}+.
This class has an automatic iterative learner but no
consistent automatic learner.

Theorem [Jain, Luo, Stephan 2009]
Let Lλ = {0,1}∗ and Ly = {2} ∪ {x : x ≤lex y0ω} for
y ∈ {0,1}∗1.
This class has an automatic iterative learner, a consistent
automatic learner but no iterative consistent learner.
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Fat Texts

Fat text is a form of input where every data item occurs
infinitely often and not only once. Such texts are helpful as
they permit to overcome problems caused by forgetting
data.

Theorem [Jain, Luo, Stephan 2009]
An automatic class can be learnt from fat text using an
automatic learner with the long term memory bounded by
example-size iff the class satisfies Angluin’s tell-tale
condition.

Theorem [Jain, Luo, Stephan 2009]
Every automatic class can be partially identified from fat
text by an automatic learner with the long term memory
bounded by example-size.
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II.2. Translations

Jain, Martin and Stephan [upcoming] study the question:
When are all images learnable under a given criterion?
Counterpart to research on robust learning of functions.

What Operators Φ?
Φ given by first-order definition using regular parameters.
Φ is positive: L ⊆ L′ ⇒ Φ(L) ⊆ Φ(L′).
Φ preserves noninclusions from the given class:
Li 6⊆ Lj ⇒ Φ(Li) 6⊆ Φ(Lj).
Such operators are called translators.

Basic Property
If {Li : i ∈ I} is an automatic class so is {Φ(Li) : i ∈ I}.

Text-Preserving Translators
A translator is text-preserving iff
∀L∀x ∈ Φ(L)∃ finite F ⊆ L [x ∈ Φ(F)].
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Examples

Ascending Chain
Let the class contain all Lx = {y ∈ {0,1}∗ : y <ll x} where
x ∈ {0,1}∗ as well. Every translation of this class is
learnable.

The learner conjectures Φ(Lx) for the least x such that
Φ(Lx) contains all the data seen so far.

One top element with antichain below
Let the class contain {0,1}∗ and all singleton sets {x}.
Then the class is learnable but the following text-preserving
translation destroys learnability:

Φ(L) = {y ∈ {0,1}∗ : ∃x 6= y [x ∈ L]}.

The translation contains the full set and all co-single sets;
hence Angluin’s tell-tale condition fails.
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Learnability

Theorem [Jain, Martin, Stephan]
The following is equivalent for an automatic class {Li : i ∈ I}:
(a) Every translation is learnable.
(b) Every text-preserving translation is learnable.
(c) ∀i∃bi∀j [Lj ⊂ Li ⇒ ∃k ≤ll bi [Lj ⊆ Lk ∧ Li 6⊆ Lk]].

To see that (c) implies (a), fix Φ and fix the mapping i to bi.
Now the learner conjectures the length-lexicographic least i

such that Φ(Li) is consistent with the data seen so far such
that for all k ≤ll bi either Φ(Li) ⊆ Φ(Lk) or Φ(Lk) is
inconsistent with the data seen so far.

Note that the learner abstains from conjecturing if no
hypothesis qualifies. When learning a set Φ(Li), the finitely
many Φ(Lk) with k ≤ll maxll{i,bi} ∧ Φ(Li) 6⊆ Φ(Lk) will
eventually all be inconsistent with the input data and from
that onwards i is conjectured.
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Strong-Monotonic Learning

A learner is strong-monotonic iff every new hypothesis is a
superset of the old one.

Theorem [Jain, Martin, Stephan]
The following is equivalent for an automatic class {Li : i ∈ I}:
(a) Every translation is strong-monotonically learnable.
(b) Every text-preserving translation is strong-monotonically
learnable.
(c) ∀i∃bi∀j [Lj 6⊇ Li ⇒ ∃k ≤ll bi [Lj ⊆ Lk ∧ Li 6⊆ Lk]].

Learner as before: Learner conjectures i iff Φ(Li) is
consistent with the data seen so far and for all k ≤ll bi either
Li ⊆ Lk or Φ(Lk) is inconsistent with the data seen so far.

Note that the learner abstains from conjecturing if no
hypothesis qualifies; by assumption on the mapping i 7→ bi

any two subsequent hypotheses i, j satisfy Li ⊆ Lj.
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Consistency

Theorem [Jain, Martin, Stephan]
The following is equivalent for an automatic class:
(a) Every translation is consistently strong-monotonically
learnable.
(b) Every text-preserving translation is consistently
strong-monotonically learnable.
(c) Any two sets in the class are comparable and every set
has only finitely many subsets within the class.

Theorem [Jain, Martin, Stephan]
The following is equivalent for an automatic class:
(a) Every translation is consistently conservatively learnable.
(c) Every translation is learnable and there is no infinite
descending chain.

Condition on text-preserving translations cannot be added,
there is a counter example.
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II.3. Uncountable Classes

Jain, Luo, Semukhin and Stephan [ALT 2009] considered
the following formalisation of the learning of uncountable
classes.

• All sets in the class are subsets of a given regular set;

• The indices are ω-words;

• The indexing is an ω-automatic structure;

• The learner reads more and more positive data from a
set Lα and longer and longer parts of an index β;

• In parallel to this, the learner outputs a sequence
A0,A1,A2, . . . of Muller automata such that, for almost
all n, An accepts β iff Lα = Lβ.
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Formalizing Convergence

Convergence of A0,A1,A2, . . . according to one of the
following criteria.

Explanatory: Almost all An are the same A such that A

accepts β iff Lα = Lβ.

Vacillatory with size k: Almost all An belong to a set
{B1,B2, . . . ,Bk} such that each B in this set accepts β iff
Lα = Lβ.

Behaviourally correct: For almost all n, An accepts β iff
Lα = Lβ.

Partial identification: There is exactly one automaton A

such that A equals to infinitely many An. This automaton A

accepts β iff Lα = Lβ.
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Indexing-Independent Results

Theorem [Jain, Luo, Semukhin, Stephan 2009]
An ω-automatic class {Lα : α ∈ I} is behaviourally correctly
learnable iff it satisfies Angluin’s tell-tale condition:
∀α ∃ finite D ∀β ¬[D ⊆ Lβ ⊂ Lα].

Theorem [Jain, Luo, Semukhin, Stephan 2009]
Every behaviourally correctly learnable ω-automatic class is
also vacillatory learnable with some parameter k.

Theorem [Jain, Luo, Semukhin, Stephan 2009]
Every ω-automatic class is partially identifiable.
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Indexing-Dependent Results

Theorem [Jain, Luo, Semukhin, Stephan 2009]
There is an ω-automatic and inclusion-free class such that
for each k this class has an indexing such that it is
vacillatory learnable with parameter k but not with any
parameter h < k.

Theorem [Jain, Luo, Semukhin, Stephan 2009]
Every behaviourally correctly learnable ω-automatic class
has an indexing such that it is explanatorily learnable with
respect to that new indexing.
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Blind Learning

A learner is blind iff it does not see the index β but only the
data for Lα.

Theorem [Jain, Luo, Semukhin, Stephan 2009]
A class has a blind explanatory learner iff the class satisfies
Angluin’s tell-tale condition and is countable.

Theorem [Jain, Luo, Semukhin, Stephan 2009]
A class has a blind behaviourally correct learner iff it
satisfies Angluin’s tell-tale condition.

Theorem [Jain, Luo, Semukhin, Stephan 2009]
A class has a blind partial learner iff it is countable.
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Summary

Research with the goal to combine automatic structures
with learning.

Basic Principle
Class of languages to be learnt needs to have an automatic
indexing, that is, the relation saying which element is in
which language (represented by an index) is automatic.

Topics considered today:
1. Automatic learners;
2. Learnability of translations;
3. Learning of uncountable classes.

Inductive Inference – p. 51



III. Intrinsic Complexity

Consider the following three collections of languages:
SINGLE = {L : L is a singleton }.
COINIT = {L : (∃n)[L = {x : x ≥ n}]}.
FIN = {L : cardinality of L is finite}.
All these classes are explantorily learnable.

However, the “complexity” of learning them is different.

SINGLE: immediately after seeing one example in the
input, the language is known.
COINIT: after seeing first input, a bounded amount of
uncertainty in the input language.
FIN: will never know when we are at the final language.
Moreover, uncertainity is same all the time.
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Comparing Classes

Reductions: Similar to that in complexity theory.
C → D.

Text for A ∈ C ⇒ Text for B ∈ D

Seq. of Hypotheses for A ⇐ Seq. of Hypotheses for B

Goal: If D is explanatorily learnable and C is reducible to D

then C is also explanatorily learnable.

First done for learning functions by Freivalds, Kinber and
Smith (1995).

We will be mainly concentrating on language identification.

Inductive Inference – p. 53



Operators and Sequences

SEQ: finite sequences
An enumeration operator, Θ, is an algorithmic mapping
from SEQ into SEQ such that for all σ, τ ∈ SEQ, if σ ⊆ τ ,
then Θ(σ) ⊆ Θ(τ).

T denotes the collection of all texts for all r.e. languages.

We further assume that Θ defines a mapping from T into T .

Let G range over infinite sequences of grammars.

G = g0,g1,g2, . . . converges to a grammar for content(T) iff
there is an m such that gm is a grammar for content(T) and
gn = gm for all n ≥ m.
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Reductions

Definition [Jain and Sharma 1996]
Weak Reducibility: C is weak reducible to D iff there is a
recursive operators Θ and Ψ such that for every text T for a
language in C:

(a) Θ translates T to a text Θ(T) for a set in D;
(b) Ψ translates every sequence of grammars converging to
content(Θ(T)) to a sequence converging to a grammar for
content(T).

Strong Reducibility: As weak reducibility with the additional
constraint that whenever T,T′ are texts for the same
language, so are Θ(T),Θ(T′).

Very Strong Reducibility: As strong reducibility with the
additional constraint that Ψ is given as a recursive function f

on indices, that is, Ψ(g0,g1, . . . ,gk) = f(g0), f(g1), . . . , f(gk).
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III.1. Hardness and Completeness

A class C is weak-hard for explanatory learning iff every
explanotorily learnable class is weak-reducible to C.
A class C is weak-complete for explanatory learning iff it is
explanatorily learnable and weak-hard for explanatory
learning.

Similarly for other learning criteria and reducibilities.

Theorem
C ≤vs D ⇒ C ≤strong D ⇒ C ≤weak D.
D is explanatorily learnable ⇒ every C ≤weak D is
explanatorily learnable.
D is behaviourally correctly learnable ⇒ every C ≤vs D is
behaviourally correctly learnable.
The last statement holds also with “finitely learnable” and
“explanatorily learnable” in both places of “behaviourally
corrrectly learnable”.
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Concrete Classes

Let FIN = {A : A is finite};
COSINGLE = {N − {x} : x ∈ N};
INIT = {{y : y < x} : x ∈ N};
WIEHAGEN = {L : Wmin(L) = L};
PATTERN = {L : L is generated by a non-erasing
pattern}.

Theorem [Jain and Sharma 1996]
SINGLE <weak COINIT ≡weak PATTERN <weak

FIN ≡weak COSINGLE ≡weak INIT.

FIN,COSINGLE, INIT are weak-complete for explatory
learning.

COSINGLE <strong INIT ≡strong FIN <strong

{L ⊕ H : L ∈ FIN ∧ H ∈ COINIT}.
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Sample Proof

It is shown that INIT is weak-complete.

Clearly INIT is explanatorily learnable.

Let M be a learner for the class C.

Φ translates every text on which M converges to e to a text
for some set {0,1, . . . , 〈d, e〉} for a suitable d; note that d

depends on the text T and M’s intermediate hypotheses on
T.

Ψ translates every sequence converging to an index g

enumerating {0,1, . . . , 〈d, e〉} to a sequence converging to
e; note that e can be found in the limit from the index g.
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A vs-Complete Class

Let C = {{〈i,x〉 : x ∈ L} : Mi learns L}

(a) Easily seen to be learnable.

(b) Reduction from C which is learnt by Mi:
Θ: map every element x in the input to 〈i, x〉.
Ψ: map j to f(j) such that Wf(j) = {π2(x) : x ∈ Wj}.
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A Strong-Complete Class

Xr = {code(r) : 0 ≤ x ≤ r,x ∈ rationals }

RINIT = {Xr : 0 ≤ r ≤ 1}.

Theorem [Jain, Kinber, Wiehagen 2001]
RINIT is strong-complete.

The proof is based on some preparing results.

Proposition
There exist a recursive functions F and ε, from R0,1 to R0,1

such that
(a) ∀x ∈ R0,1 [ε(x) > 0];
(b) ∀x [0 ≤ F(x) ≤ 1];
(c) ∀x,y [0 ≤ x < y ≤ 1 ⇒ F(x) + ε(x) < F(y) ≤ 1].

Inductive Inference – p. 60



Proof Continued

Let code(S) =
∑

x∈S 2−x−1.

Let G(〈S, ℓ〉) = F(code(S)) + ε(code(S)) − ε(code(S))
ℓ+2

.
Note that, if min(S − S′) < min(S′ − S) or S = S′ and ℓ > ℓ′,
then G(〈S, ℓ〉) > G(〈S′, ℓ′〉).

Definition
〈S, ℓ〉 is full stabilizing sequence for M on L iff the following
three conditions hold:
(a) ℓ > max(S);
(b) ∀x < ℓ [x ∈ L ⇔ x ∈ S];
(c) 〈S,2ℓ〉 is a stabilizing sequence for M on L (with respect
to content and length).

It can be shown that if a rearrangement independent
machine explanatorily learns L, then it has a full stabilizing
sequence on L.
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Proof Continued

Proposition
Given a rearrangement independent and order independent
machine M, there exists a recursive function H from SEQ

to N such that the following conditions hold:
(a) H(σ) = 〈S, ℓ〉 implies max(S) < ℓ;
(b) For σ, τ with σ ⊆ τ , G(H(σ)) ≤ G(H(τ));
(c) For all texts T, H(T) converges to least full stabilizing
sequence (the one which minimizes ℓ) for M on
content(T), if any.

Inductive Inference – p. 62



Characterising Strong Completeness

Definition [Freivalds 1975]
C is limiting standardisable iff there exists a partial limiting
recursive function F such that (a) For all i with Wi ∈ C, F(i)
is defined; (b) For all i, j with Wi,Wj ∈ C, F(i) = F(j) iff
Wi = Wj.

Theorem [Jain, Kinber, Wiehagen 2001]
C is strong-complete iff there exists a recursive function H

from R0,1 to N such that
(a) {WH(r) : r ∈ R0,1} ⊆ C;
(b) If 0 ≤ r < r′ ≤ 1, then WH(r) ⊆ WH(r′);
(c) {WH(r) : r ∈ R0,1} is limiting-standardisable.

Similar characterisations for strong-reduciblity comparison
of classes like INIT,COINIT,SINGLE,COSINGLE were
done by Jain, Kinber, Wiehagen (2001).
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Characterising Weak Completeness

Definition [Jain, Kinber, Wiehagen 2001]
A non-empty r.e. class T of texts is called quasi-dense iff
(a) For distinct T,T′ ∈ T , content(T) 6= content(T′).
(b) For each σ, either there exists no text in T which extend
σ, or there exist infinitely many texts in T which extend σ.

Theorem [Jain, Kinber, Wiehagen 2001]
For any class C which is explanatorily learnable, C is
weak-complete iff there exists an r.e. quasi dense class of
texts T representing a subclass of C such that
{content(T) : T ∈ T } is limiting standardisable.
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Inclusion-Structure

Theorem [Jain and Sharma 1997]
If C ≤strong D via Θ,Ψ and A,B ∈ C then
A ⊆ B ⇒ Θ(A) ⊆ Θ(B).

For example, SINGLE ≤strong INIT; however, by above
result, INIT 6≤strong SINGLE.

Theorem [Jain and Sharma 1997]
Every finite acyclic graph can be embedded into the
reducibility structure. That is, if ({1,2, . . . ,n},E) is a finite
acyclic graph then there are explanatorily learnable classes
C1,C2, . . . ,Cn such that Ci ≤strong Cj iff there is a path in
the graph from i to j.

Inductive Inference – p. 65



Density

Theorem [Jain and Sharma 1997]
The reduction structure is not dense. That is, there are
C,C′ such that C <strong C′ and no class D satisfies
C <strong D <strong C′.

Proof
Let C = {{0}, {1}} and C′ = {{0}, {0,1}}.

C ≤strong C′ by Θ,Ψ with Θ({0}) = {0} and Θ({1}) = {0,1}.

C′ 6≤strong C as C is inclusion-free.

Let D = {A,B} and C ≤strong D ≤strong C′.
Case D inclusion-free: there are x ∈ A − B and y ∈ B − A.
Make Θ such that sets containing x are mapped to {0} and
sets containing y are mapped to {1}. Hence D ≤strong C.
Case D not inclusion-free, say A ⊂ B: Make Θ such that
Θ({0}) = A and Θ({0,1}) = B. Hence C′ ≤strong D.
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III.2. Mitoticity

In recursion theory, a recursively enumerable set A is
called mitotic if it is the union of two disjoint infinite r.e. sets
B1,B2 such that A,B1,B2 are Turing equivalent. Ladner
[1973] introduced the notion and showed that some but not
all r.e. sets are mitotic.

Ambos-Spies [1984] transferred the concept to complexity
theory. A set A is p-mitotic if it is the disjoint union of two
infinite sets B1,B2 such that A,B1,B2 are polynomial time
many-one equivalent.

Our Goal is a theory of mitoticity in inductive inference.
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Mitotic Classes

Definition [Jain and Stephan 2008]
A splitting of an infinite class C are disjoint infinite
subclasses C0,C1 whose union is C such that some
classifier M converges on every text of some L ∈ C to
the index a ∈ {0,1} with L ∈ Ca.
A class C is weak / strong mitotic iff there is a splitting
C0,C1 of C such that C, C0, C1 are all weak / strong
equivalent.

Remark
Strong mitotic classes are also weak mitotic, but converse
does not hold.

Example
INIT is strong mitotic by splitting into the class of sets with
even maximum and the class of sets with odd maximum.
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Examples

(1) Let C contain all sets N − {x}. Then C is strong mitotic
by splitting into {N − {2x + a} : x ∈ N} for a = 0,1.

(2) Let D contain {0}, {0,1} and {0,1,2} as well as {x} for
all x > 2. Then D is not weak mitotic.
One half contains A,B with A ⊂ B while other half has only
disjoint finite sets. This makes a reduction from the first half
into the second impossible.

(3) Let E contain N and all finite subsets of {1,2,3,4, . . .}.
Then E is weak mitotic but not strong mitotic.
Idea of not being strong mitotic: If E0,E1 is a splitting with
E0 containing N then the Θ of a strong reduction maps N to
a finite set A and all other sets in E0 to subsets of A in a
one-one manner, a contradiction.
Weak reductions need not to preserve set-inclusion.
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Finite Learning

Theorem [Jain and Stephan 2008]
If {L0,L1,L2, . . .} is a uniformly recursive class (= indexed
family) and finitely learnable then {L0,L1,L2, . . .} is strong
mitotic.

Example
Let A be a maximal set and let La = A for a ∈ A and
La = {a} for a /∈ A. Then {L0,L1,L2, . . .} is finitely
learnable and uniformly r.e. but not weak mitotic.
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Complete Classes

Theorem [Jain and Stephan 2008]
Every strong complete class is strong mitotic.
Every weak complete class is weak mitotic.
Some weak complete class C is not strong mitotic.

Construction of C

Let A be a maximal set, that is, A is r.e. and every r.e.
superset of A is either cofinite or a finite variant of A.
Let C contain all sets {x,x + 1,x + 2, . . .} with x /∈ A and
all sets {x,x + 1,x + 2, . . . ,x + y} with x ∈ A,y ∈ N.

Inductive Inference – p. 71



Types of Splittings

Theorem [Li and Stephan 2010]
An infinite explanatorily learnable class C has either no
splitting or has a splitting C0,C1 such that C0 and C1 are
not weak-equivalent.

Theorem [Li and Stephan 2010]
There is an infinite explantorily learnable class C having a
splitting such that every splitting C0,C1 satisfies either
C0 ≤vs C1 or C1 ≤vs C0.
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Sacks’ Splitting Theorem

In recursion theory, Sacks’ Splitting Theorem says that
every nonrecursive r.e. set is the disjoint union of two
Turing-incomparable r.e. sets.

Theorem (Jain and Stephan 2008)
Every infinite recursively enumerable and explanatorily
learnable class has a splitting into two subclasses which
are incomparable with respect to weak reducibility.

Remark
The property “r.e. class” is necessary as every infinite class
C has an infinite subclass D which cannot be split into two
infinite classes D0,D1 by any recursive classifier.
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Autoreducibility

In recursion theory, Takhtenbrot [1970] defined that a set A

is autoreducible iff one can compute A(x) relative to A

without asking the oracle A at x. Ladner [1973] showed
that an r.e. set is mitotic iff it is autoreducible.

Definition [Jain and Stephan 2008]
A class C is weak / strong autoreducible iff there is a weak /
strong reduction (Θ,Ψ) from C to C such that for all L ∈ C

and all texts T for L, the content of Θ(T) differs from L.

Example
Let A be a maximal set and C contain all sets
{3x}, {3x + 1}, {3x + 2} with x /∈ A as well as {3y : y ∈ A},
{3y + 1 : y ∈ A} and {3y + 2 : y ∈ A}. Then C is strong
autoreducible but not weak mitotic.

Open Problem
Is every strong mitotic set strong autoreducible?
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Behaviourally Correct Learning

Theorem [Jain and Stephan 2008]
If C is strong-complete for behaviourally correct learning
and C0,C1 is a splitting of C then either C ≡strong C0 or
C ≡strong C1.
This also holds with “vs” in place of “strong”.

Theorem [Jain and Stephan 2008]
There is an r.e. behaviourally correct learnable class C

which is not weak mitotic such that for every splitting C0,C1

of C either C0 <strong C1 or C1 <strong C0.

Open Problem
Is every class which is weak complete for behaviourally
correct learning also weak mitotic?
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Symmetric Splittings

Theorem [Li and Stephan 2010]
There is a behaviourally correct learnable class C which
admits some splittings such that every splitting C0,C1 of C

satisfies C ≡vs C0 ≡vs C1.

Here one can choose the class C as both, vs-complete for
behaviourally correct learning and vs-incomplete for it.

As mentioned before, such a result is impossible for
explanatory learning.

Open Problem
Is there a vacillatorily learnable class C which admits some
splittings such that every splitting C0,C1 of C satisfies
C0 ≡vs C1.
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Summary

Weak, strong and very-strong reducibilities are used to
compare the degree of learnability of classes; the
explanatorily learnable classes are closed downward with
respect to these reducibilities.

Strong and very strong reducibility preserve inclusions.

There are weak-complete, strong-complete and
vs-complete classes for explanatory learning.

Splittings and mitoticity can be introduced for learning
theory and it can be shown that weak-complete classes for
explanatory learning are weak-mitotic and strong-complete
classes are strong-mitotic.

Some behaviourally learnable class, which admits a
splitting, satisfies that every splitting of it consists of two
vs-equivalent classes.
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