ANU MLSS 2010: Data Mining

Part 3: Application techniques and privacy aspects of data mining
Lecture outline

• Mining data streams
 • Characteristics of data streams
 • Stream data applications
 • Data stream management system
 • Challenges and methodologies of data stream processing
 • Stream data mining versus stream querying

• Link mining
 • Common link mining tasks
 • Link based object ranking and object classification
 • Link prediction

• Privacy aspects of data mining
 • Privacy and confidentiality
 • Some scenarios
 • Privacy-preserving data mining

• References and resources
Characteristics of data streams

• Data streams
 • Continuous, ordered, changing, fast, huge amount
 • In a traditional DBMS, data is stored in finite, well-defined and persistent tables

• Characteristics
 • Huge volumes of continuous data, possibly infinite
 • Fast changing and requires fast, real-time response
 • Data stream captures nicely our data processing needs of today
 • Random access is expensive — single scan algorithm are required (can only have one look at each record!)
 • Store only the summary of the data seen thus far
 • Most stream data are at pretty low-level or multi-dimensional in nature, needs multi-level (ML) and multi-dimensional (MD) processing
Stream data applications

- Telecommunication calling records
- Business: credit card transaction flows
- Network monitoring and traffic engineering
- Financial market: stock exchange
- Engineering & industrial processes: power supply and manufacturing
- Sensor, monitoring & surveillance: video streams, RFIDs (Radio Frequency IDentification)
- Security monitoring
- Web logs and Web page click streams
- Massive data sets (even saved but random access is too expensive)
Architecture: Stream query processing

DSMS (Data Stream Management System)

Continuous query

Multiple streams

Stream Query Processor

Scratch Space (Main memory and/or Disk)

User/Application

Results

Source: Han and Kamber, DM Book, 2nd Ed. (Copyright © 2006 Elsevier Inc.)
Challenges of stream data processing

- Multiple, continuous, rapid, time-varying, ordered streams
- Main memory computations
- Queries are often continuous
 - Evaluated continuously as stream data arrives
 - Answer updated over time
- Queries are often complex
 - Beyond element-at-a-time processing
 - Beyond stream-at-a-time processing
 - Beyond relational queries
- Approximate query answering
 - With bounded memory, it is not always possible to produce exact answers (high quality approximate answers are desired)
Methodologies for stream data processing

• Major challenge
 • Keep track of a large universe (for example, IP address, not ages)

• Methodology
 • Synopses (trade-off between accuracy and storage)
 • Use synopsis data structure, much smaller ($O(\log^k N)$ space) than their base data set ($O(N)$ space), with N the number of elements in the stream data
 • Compute an approximate answer within a small error range (factor ε of the actual answer)

• Major methods
 • Random sampling (maintain a set of candidates in memory)
 • Histograms (approximate frequency distribution of values in stream)
 • Sliding windows (make decision based on only recent data)
 • Multi-resolution models (balanced trees, wavelets, micro-clusters)
 • Sketches (summarises data, can be done in one pass)
 • Randomised algorithms (Monte Carlo algorithm, bound on run time)
Stream data mining versus stream querying

• Stream mining is a more challenging task in many cases
 • It shares most of the difficulties with stream querying
 • But often requires less *precision*, for example, no join, grouping, sorting
 • Patterns are hidden and more general than querying
 • It may require exploratory analysis (not necessarily continuous queries)
 • Change in data characteristics: *Concept drift*

• Stream data mining tasks
 • Frequent patterns in data streams (approximate frequent patterns only)
 • Mining outliers and unusual patterns in stream data
 • Classification of stream data (approximate decision trees, classifier ensemble)
 • Clustering data streams
Multi-dimensional stream analysis: Examples

• Analysis of Web click streams
 • Raw data at low levels: seconds, Web page addresses, user IP addresses, IP port numbers, …
 • Analysts want: changes, trends, unusual patterns, at reasonable levels of details
 • For example: *Average clicking traffic in North America on sports in the last 15 minutes is 40% higher than that in the last 24 hours*

• Analysis of power consumption streams
 • Raw data: power consumption flow for every household, every minute
 • Patterns one may find: *average hourly power consumption surges up 30% for manufacturing companies in Chicago in the last 2 hours today than that of the same day a week ago*
Link / Network mining

• Heterogeneous, multi-relational data is represented as a graph or network
 • Nodes are objects
 • May have different kinds of objects
 • Objects have attributes
 • Objects may have labels or classes
 • Edges are links
 • May have different kinds of links
 • Links may have attributes
 • Links may be directed, are not required to be binary

• Links represent relationships and interactions between objects - rich content for data mining
What is new for link mining?

• Traditional machine learning and data mining approaches assume:
 • A random sample of homogeneous objects from a single relation

• Real world data sets:
 • Multi-relational, heterogeneous and semi-structured

• Link Mining
 • Newly emerging research area at the intersection of research in social network and link analysis, hypertext and web mining, graph mining, and relational learning
Common link mining tasks

- **Object-Related Tasks**
 - Link-based object ranking
 - Link-based object classification
 - Object clustering (group detection)
 - Object identification (entity resolution)

- **Link-Related Tasks**
 - Link prediction

- **Graph-Related Tasks**
 - Subgraph discovery
 - Graph classification
 - Generative model for graphs
What is a link in link mining?

• Link: relationship among data

• Two kinds of linked networks
 • Homogeneous vs. Heterogeneous

• Homogeneous networks
 • Single object type and single link type
 • Single model social networks (e.g., friends)
 • WWW: a collection of hyper-linked Web pages

• Heterogeneous networks
 • Multiple object and link types
 • Medical network: patients, doctors, disease, contacts, treatments
 • Bibliographic network: publications, authors, venues, affiliations; co-authorship relations, published in/at relations, working at relations
Link-based object ranking (LBR)

• LBR: Exploiting the link structure of a graph to order or prioritize the set of objects within the graph
 • Focused on graphs with single object type and single link type

• This is a primary focus of the link analysis community

• Web information analysis
 • PageRank (Google) and Hits (Hyperlink-Induced Topic Search) are typical LBR approaches

• In social network analysis (SNA), LBR is a core analysis task
 • Objective: rank individuals in terms of “centrality”
 • Rank objects relative to one or more relevant objects in the graph vs. ranks object over time in dynamic graphs
Link-based object classification (LBC)

- Predicting the category of an object based on its attributes, its links and the attributes of linked objects
- **Web**: Predict the category of a web page, based on words that occur on the page, links between pages, anchor text, HTML tags, etc.
- **Citation**: Predict the topic of a paper, based on word occurrence, citations, co-citations
- **Epidemics**: Predict disease type based on characteristics of the patients infected by the disease
- **Communication**: Predict whether a communication contact is by email, phone call or mail
Link prediction

• Predict whether a link exists between two entities, based on attributes and other observed links

• Applications
 • **Web**: predict if there will be a link between two pages
 • **Citation**: predicting if a paper will cite another paper
 • **Epidemics**: predicting who a patient’s contacts are

• Methods
 • Often viewed as a binary classification problem
 • Local conditional probability model, based on structural and attribute features
 • Difficulty: sparseness of existing links
 • Collective prediction, e.g., Markov random field model
Use of labeled and unlabeled data

• In link-based domains, unlabeled data provide three sources of information:
 • Links between unlabeled data allow us to make use of attributes of linked objects
 • Links between labeled data and unlabeled data (training data and test data) help us make more accurate inferences

• Knowledge is power, but knowledge is hidden in massive links
Privacy and confidentiality

• Privacy of individuals
 • Identifying information: Names, addresses, telephone numbers, dates-of-birth, driver licenses, racial/ethnic origin, family histories, political and religious beliefs, trade union memberships, health, sexual orientation, income, ...
 • Some of this information is publicly available, other is not
 • Individuals are happy to share some information with others (to various degrees)

• Confidentiality in organisations
 • Trade secrets, corporate plans, financial status, planned collaborations, ...
 • Collect and store information about many individuals (customers, patients, employees)

• Conflict between individual privacy and information collected by organisations
 • Privacy-preserving data mining and data sharing mainly of importance when applied between organisations (businesses, government agencies)
Protect individual privacy

• Individual items (records) in a database must not be disclosed
 • Not only personal information
 • Confidential information about a corporation
 • For example, transaction records (bank account, credit card, phone call, etc.)

• Disclosing parts of a record might be possible
 • Like name or address only (but if data source is known even this can be problematic)
 • For example, a cancer register, HIV database, etc.

• Remove *identifier* so data cannot be traced to an individual
 • Otherwise data is not private anymore
 • But how can we make sure data can't be traced?
Real world scenarios
(based on slides by Chris Clifton, http://www.cs.purdue.edu/people/clifton)

• Multi-national corporation
 • Wants to mine its data from different countries to get global results
 • Some national laws may prevent sending some data to other countries

• Industry collaboration
 • Industry group wants to find best practices (some might be trade secrets)
 • A business might not be willing to participate out of fear it will be identified as conducting bad practice compared to others

• Analysis of disease outbreaks
 • Government health departments want to analyse such topics
 • Relevant data (patient backgrounds, etc.) held by private health insurers and other organisations (can/should they release such data?)
More real world scenarios (data sharing)

• Data sharing between companies
 • Two pharmaceutical companies are interested in collaborating on the expensive development of new drugs
 • Companies wish to identify how much overlap of confidential research data there is in their databases (but without having to reveal any confidential data to each other)
 • Techniques are needed that allow sharing of large amounts of data in such a way that similar data items are found (and revealed to both companies) while all other data is kept confidential

• Geocoding cancer register addresses
 • Limited resources prohibit the register to invest in an in-house geocoding system
 • Alternative: The register has to send their addresses to an external geocoding service/company (but regulatory framework might prohibit this)
 • Complete trust needed in the capabilities of the external geocoding service to conduct accurate matching, and to properly destroy the register’s address data afterwards
Re-identification

• **L. Sweeney** (Computational Disclosure Control, 2001)
 - Voter registration list for Cambridge (MA, USA) with 54,805 people: 69% were unique on postal code (5-digit ZIP code) and date of birth
 - 87% in whole of population of USA (216 of 248 million) were unique on: ZIP, date of birth and gender!
 - Having these three attributes allows linking with other data sets (quasi-identifying information)

• **R. Chaytor** (Privacy Advisor, SIGIR 2006)
 - A patient living in a celebrity's neighbourhood
 - Statistical data (e.g. from ABS – Australian Bureau of Statistics) says one male, between 30 and 40, has HIV in this neighbourhood (ABS mesh block: approx. 50 households)
 - A journalist offers money in exchange of some patients medical details
 - How much can the patient reveal without disclosing the identity of his/her neighbours?
Goals of privacy-preserving data mining

• Privacy and confidentiality issues normally do not prevent data mining
 • Aim is often summary results (clusters, classes, frequent rules, etc.)
 • Results often do not violate privacy constraints (they contain no identifying information)
 • But, certain rules or classification outcomes might compromise confidentiality
 • But: Certain techniques (e.g. outlier detection) aim to find specific records (fraudulent customers, potential terrorists, etc.)
 • Also, often detailed records are required by data mining algorithms

• The problem is: How to conduct data mining without accessing the identifying data
 • Legislation and regulations might prohibit access to data (especially between organisations or countries)

• Main aim is to develop algorithms to modify the original data in some way, so that private data and private knowledge remain private even after the mining process
Privacy-preserving data mining techniques (1)

• Many approaches to preserve privacy while doing data mining
 • Distributed data: Either horizontally (different records reside in different locations) or vertically (values for different attributes reside in different locations)

• Data modifications and obfuscation
 • Perturbation (changing attribute values, e.g. by specific new values -- mean, average - or randomly)
 • Blocking (replacement of values with for example a '?')
 • Aggregation (merging several values into a coarser category, similar to concept hierarchies)
 • Swapping (interchanging values of individual records)
 • Sampling (only using a portion of the original data for mining)

• Problems: Does this really protect privacy? Still good quality data mining results?
Privacy-preserving data mining techniques (2)

• Data summarisation
 • Only the needed facts are released at a level that prohibits identification of individuals
 • Provide overall data collection statistics
 • Limit functionality of queries to underlying databases (statistical queries)
 • Possible approach: k-anonymity (L. Sweeney, 2001): any combination of values appears at least k times

• Problems
 • Can identifying details still be deducted from a series of such queries?
 • Is the information accessible sufficient to perform the desired data mining task?
Privacy-preserving data mining techniques (3)

• Data separation
 • Original data held by data creator or data owner
 • Private data is only given to a trusted third party
 • All communication is done using encryption
 • Only limited release of necessary data
 • Data analysis and mining done by trusted third party

• Problems
 • This approach secures the data sets, but not the potential results!
 • Mining results can still disclose identifying or confidential information
 • Can and will the trusted third party do the analysis?
 • If several parties involved, potential of collusion by two parties

• Privacy-preserving approaches for association rule mining, classification, clustering, etc. have been developed
Secure multi-party computation

• Aim: To calculate a function so that no party learns the values of the other parties, but all learn the final result
 • Assuming semi-honest behaviour: Parties follow the protocol, but they might keep intermediate results

• Example: Simple secure summation protocol (Alan F. Karr, 2005)
 • Consider $K > 2$ cooperating parties (businesses, hospitals, etc.)
 • Aim: to compute $v = \sum_{j=1}^{k} v_j$ so that no party learns other parties v_j
 • Step 1: Party 1 generates a large random number R, with $R >> v$
 • Step 2: Party 1 sends $(v_1 + R)$ to party 2
 • Step 3: Party 2 adds v_2 to $v_1 + R$ and sends $(v_1 + v_2 + R)$ to party 3 (and so on)
 • Step $K+1$: Party K sends $(v_1 + v_2 + ... + v_k + R)$ back to party 1
 • Last step: Party 1 subtracts R and gets final v, which it then sends to all other parties
References and resources (1)

• Data mining books:
 • *The Elements of Statistical Learning: Data Mining, Inference and Prediction*, T. Hastie, R. Tibshirani and J. Friedman, 2nd Edition (2009) Springer

• Web resources:
 • www.kdnuggets.com (Email newsletter, courses, jobs, conferences)
 • www.kmining.com (conference calendar, people)
 • www.togaware.com (Graham Williams, Australian Taxation Office)
References and resources (2)

• Open source data mining software:
 • *Rattle* (R based): www.togaware.com/rattle
 (Graham Williams, Australian Taxation Office)
 (University of Waikato, NZ and Pentaho)
 • *KNIME* (Java based): www.knime.org
 (University of Konstanz, Germany)

• Conferences and journals
 • *ACM SIGKDD*: www.sigkdd.org (also Explorations news letter)
 • *Springer Data Mining and Knowledge Discovery*: http://www.springerlink.com/content/100254
 • *Springer Knowledge and Information Systems*: http://springerlink.metapress.com/content/105441/
 • *IEEE Transactions on Knowledge and Data Engineering*: http://www.computer.org/tkde