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Data Mining

Part 2: Association rule
mining



Lecture outline

« What is association mining?

» Market basket analysis and association rule examples
 Basic concepts and formalism

 Basic rule measurements

* The Apriori algorithm

* Performance bottlenecks in Apriori

« Multi-level and multi-dimensional association mining
 Quantitative association mining

« Constraint based mining

e Visualising association rules



N
What is association mining?

 Association mining is the task of finding frequent rules /
associations / patterns / correlations / causual structures within
(large) sets of items in transactional (relational) databases

» Unsupervised learning techniques (descriptive data
mining, not predictive data mining)

* The main applications are
» Market basket analysis (customers who buys X also buys Y)
* Web log analysis (click-stream)
» Cross-marketing
« Sale campaign analysis
* DNS sequence analysis



Market basket analysis

Which items are frequently
purchased together by my customers?
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Source: Han and Kamber, DM Book, 2™ Ed. (Copyright © 2006 Elsevier Inc.)



Association rules examples

* Rules form: body = head [support, confidence]

« Market basket:
buys(X, beer') = buys(X, snacks') [1%, 60%]

« If a customer X purchased "beer', in 60% she or he also purchased
“snacks'

* 1% of all transactions contain the items "beer' and "snacks'

« Student grades:
major(X, MComp') and takes(X, COMP8400’') =
grade(X, ‘D) [3%, 60%)] "
* If a student X, who's degree is MComp', took the course "COMP8400' she

or he in 60% achieved a grade D'

* The combination " MComp', COMP8400' and D' appears in 3% of all
transactions (records) in the database



Basic concepts

* Given:
* A (large) database of transactions

« Each transaction contains a list of one or more items (e.g. purchased by a
customer in a visit)

 Find the rules that correlate the presence of one set of
items with that of another set of items

* Normally one is only interested in rules that are frequent

* For example, 70% of customers who buy tires and car accessories also get
their car service done

Question: How can this be improved to 80%? Possibly offer special deals
like a 15% reduction of tire costs when the service is done



Formalism

« Set of items X = (X, X, s X,

e Database D containing transactions
e Each transaction T is a set of items, such that T is a subset of X

e Each transaction is associated with a unique identifier,
called TID (for example, a unigue number)

* Let A be a set of items (a subset of X)

* An association rule is an implication of the form A = B,
where A s a subset of X and Bis a subset of X, and the
intersection of A and B is empty

* No item in A can be in B, and vice versa

* No rule of the form: { beer', “chips'} = { chips', “peanuts'}



"
Basic rule measurements

* Arule A = Bholds in a database D with support s,
with s being the percentage of transactions in D that
contain A and B

support(A = B) = P(AU B)

* The rule A = B has a confidence ¢ in a database Dif cis
the percentage of transactions in D containing A that also
contain B

confidence(A = B) = P(B|A) = P(A U B) / P(A)
confidence(A = B) = support(A = B) / support(A)



Rule measurements example

Customer
buys diaper

* Find all the rules {X, Y} = Z with
minimum confidence and support

* Support, s, is the probability that a
transaction contains {X, Y, Z}

» Confidence, ¢, is the conditional
probability that a transaction having

f;l;:;::: {X, Y} also contains Z
Transaction ID Items Bought Let minimum support = 50%, and
2000 a,b, ¢ minimum confidence = 50%, so
1000 a,c we have ([s, cl):
4000 a,d e<a=c [50%, 66.67%]
5000 b,e,f «c=a [50%, 100%]

Source: Han and Kamber, DM Book, 1st Ed.



Rule measurements example (2)

Transaction ID Items Bought
2000 a,b,c
1000 a, c
4000 a, d
5000 b, e, f

e Minimum support = 50% and confidence = 50%

e Rulea=c

* support (a = ¢): 50%

* confidence (a = c) = support(a = c) / support(a) =
50% / 75% = 66.67%

ltemset Support
a 75.00%

b 50.00%

C 50.00%

a, c 50.00%




Mining frequent item sets

» Key step: Find the frequent sets of items that have
minimum Support (appear in at least xx% of all transactions in a database)

 Basic principle (Apriori principle): A sub-set of a frequent
item set must also be a frequent item set

* For example, if {a,b} is frequent, both {a} and {b} have to be frequent
(if "beer' and 'chips' are purchased frequently together, then "beer' is
purchased frequently and “chips' are also purchased frequently)

« Basic approach: lteratively find frequent item sets with
cardinality from 1 to k (k-item sets), k > 1

» Use the frequent item sets to generate association rules

» For example, frequent 3-item set {a,b,c} contains rules:
a=c,b=c,a=b,{ab} =c,{ac} =Db,{b,c} =a, etc.

 We are normally only interested in longer rules (with all except
one element on the left-hand side)



The Apriori algorithm (Agrawal & Srikant, VLDB'94)

e C,: Candidate item set of size k
L, : Frequent item set of size k

* Pseudo-code:

L, = {frequent items};
for (k=1; L, '=01{}; k++) do begin
C.,, = candidates generated from L;
for each transaction tin database do
increment the count of all candidates in C, _,
that are contained in ¢
L.,, = candidates in C,,, with min_support
end do
return 0, L;;



The Apriori algorithm — An example (sup=50%)

Database D itemset |sup. :
D Terms C, {a} 2 L, ltemset |sup.
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The Apriori algorithm — An example (2)
Database D

TID [ltems 7 |itemset|sup
100 fa,c,d " lb,c el 2
200 b,c,e
300 [a,b,c,e e Minimum support = 50% and minimum
400 b,e confidence = 50%
e Rules:

*b=c [50%, 66.67%)]
*b=e [75%, 100%)]
*c=¢e [50%, 66.67%]
*{b, c} = e [50%, 100%)]
*{b, e} = c [560%, 66.67%]
*{c, e} = b [60%, 100%)]



Important details of the Apriori algorithm

* How to generate candidate sets?
» Step 1: Self-joining L (C, is generated by joining L, ,with itself)

* Step 2: Pruning (any (k-1)-item set that is not frequent cannot be a
subset of a frequent k-item set)

» Example of candidate generation:
- L, ={{abc}, {abd}, {a,cd}, {a,ce}, {bcd}}

- Self-joining: L, * L, ({a,b,c,d} from {a,b,c} and {a,b,d}, and {a,c,d,e} from
{a,c,d} and {a,c,e/)
- Pruning: {a,c,d,e/} is removed because {a,d,e} is notin L,

- G, ={{a,b,c,d}}
* How to count supports for candidates?



How to generate candidate item-sets?

» Suppose the items in L, , are listed in an order (e.g. a < b)

« Step 1: Self-joining L, ,
insert into C,
select p.item,, p.item,, ..., p.item,,, g.item,,
fromL., p,L. Qg
where p.item.= g.item,, ..., p.item, ,=q.item,,, p.item, , < g.item,_,

*Step 2: Pruning
forall item sets c in C, do

forall (k-1)-sub-sets s of c do
if (sis notinL,,) then delete ¢ from C,



Apriori performance bottlenecks

» The core of the Apriori algorithm is to

» Use frequent (k-1) item sets to generate candidate frequent k item sets

» Use database scan and pattern matching to collect counts for candidate
item sets

« Candidate generation is the main bottleneck

- 10* frequent 1-item sets (sets of length 1) will generate 10’ candidate
2-item sets!

- To discover a frequent pattern of size 100 (for example {a, a,, ..., a b
one needs to generate 2'° = 10% candidates

« Multiple scans of the database are needed (n+1 scans if the longest
pattern is n items long)



Methods to improve Apriori’s efficiency

 Reduce the number of scans of the database

* Any item set that is potentially frequent in the database must be frequent in
at least one of the partitions of the database

» Scan 1: Partition database and find local frequent patterns
» Scan 2: Consolidate global frequent patterns

 Shrink number of candidates

» Select a sample of the database, mine frequent patterns within sample
using Apriori

» Scan database once to verify frequent item sets found in sample
» Scan database again to find missed frequent patterns

 Facilitate support of counting candidates

* For example, use special data structures like Frequent-Pattern tree
(FP-tree)



Multi-level association mining

e [tems often form hierarchies

e ltems at lower levels are expected to have lower support
 Flexible support setting (uniform, reduced, or group-based (user specific))

Level 1
min_sup = 3%

computer [support = 10%]

Level 2
min_sup = 3%

laptop computer [support = 6%] desktop computer [support = 4%]

Level 1
min_sup = 5%

computer [support = 10%]

Level 2
min_sup =3%

laptop computer [support = 6%] desktop computer [support = 4%]

Source: Han and Kamber, DM Book, 2™ Ed. (Copyright © 2006 Elsevier Inc.)



Multi-level association mining (2)

* Some rules may be redundant due to ancestor
relationships between items

* For example:
buys(X, milk') = buys(X, bread') [8%, 70%]
buys(X, skim milk') = buys(X, bread’') [2%, 72%]
» The first rule is said to be an ancestor of the second rule
* A rule is redundant if its support is close to the “expected”
value, based on the rule’s ancestor
® For example, if around 25% of all milk purchased is "skim milk', then the

second rule above is redundant, as it has a % of the support of the first,
more general rule (and similar confidence)



"
Multi-dimensional association mining

 Single-dimensional rules: buys(X, ‘milk') = buys(X, bread’)
e Multi-dimensional rules: Two or more dimensions or

predicates (or attributes)

* Inter-dimension association rules (no repeated predicates):
age(X, 19-25') and occupation(X, ‘student’) = buys(X, coke’)

» Hybrid-dimension association rules (repeated predicates):
age(X, 19-25') and buys(X, popcorn’') = buys(X, coke’)
» Categorical Attributes: finite number of possible values,
no ordering among values (data cube approach)

« Quantitative Attributes: numeric, implicit ordering among
values (discretisation, clustering, etc.)



"
Quantitative association mining

» Techniques can be categorised by how numerical
attributes, such as age or income, are treated

« Static discretisation based on predefined concept
hierarchies

» Dynamic discretisation based on data distribution
.« A and A = A

quantt quant2 cat

« Example: age(X, 19-25') and income(X, 40K-60K') =L1buys(X, HDTV’)
« For quantitative rules, do discretisation such that (for
example) the confidence of the rules mined is maximised



Mining interesting correlation patterns

* Flexible support
» Some items might be very rare but are valuable (like diamonds)
- Customise support _ specification and application

e Top-k frequent patterns
- It can be hard to specify support _, but top-k rules with length__are
more desirable
» Achievable using special data structures, like Frequent-Pattern (FP) tree
- Dynamically raise support during FP-tree construction phase, and
select most promising to mine



Constraint based data mining

* Finding all the frequent rules or patterns in a database
autonomously is unrealistic
 The rules / patterns could be too many and not focussed

» Data mining should be an interactive process
* The user directs what should be mined using a data
mining query language or a graphical user interface

 Constraint-based mining

« User flexibility: provides constraints on what to be mined (and what not)
« System optimisation: explores such constraints for efficient mining



Constraints in data mining

* Knowledge type constraint
» Correlation, association, etc.

» Data constraint (use SQL like queries)

* For example: Find product pairs sold frequently in both stores in Sydney
and Melbourne

* Dimension / level constraint

* In relevance to region, price, brand, customer category, etc.
* Rule or pattern constraint

« Small sales (price < $10) trigger big sales (sum > $200)

* Interestingness constraint
» Strong rules only: support > 3%, confidence > 75%



Visualisation of association rules (1)
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Visualisation of association rules (2
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Visualisation of association rules (3)
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