ANU MLSS 2010: Data Mining

Part 2: Association rule mining

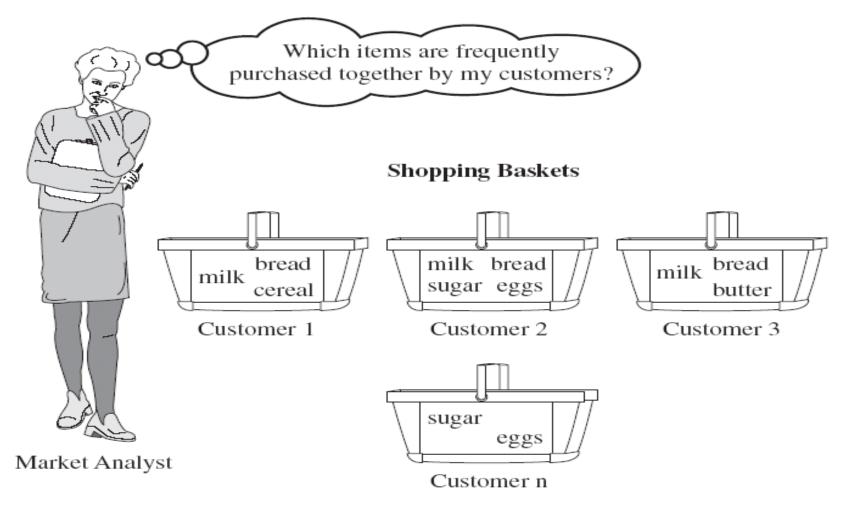
Lecture outline

- What is association mining?
- Market basket analysis and association rule examples
- Basic concepts and formalism
- Basic rule measurements
- The Apriori algorithm
- Performance bottlenecks in *Apriori*
- Multi-level and multi-dimensional association mining
- Quantitative association mining
- Constraint based mining
- Visualising association rules

What is association mining?

- Association mining is the task of finding frequent rules / associations / patterns / correlations / causual structures within (large) sets of items in transactional (relational) databases
- Unsupervised learning techniques (descriptive data mining, not predictive data mining)
- The main applications are
 - Market basket analysis (customers who buys X also buys Y)
 - Web log analysis (click-stream)
 - Cross-marketing
 - Sale campaign analysis
 - DNS sequence analysis

Market basket analysis



Source: Han and Kamber, DM Book, 2nd Ed. (Copyright © 2006 Elsevier Inc.)

Association rules examples

- Rules form: body ⇒ head [support, confidence]
- Market basket:
 - $buys(X, `beer') \Rightarrow buys(X, `snacks')$ [1%, 60%]
 - If a customer X purchased `beer', in 60% she or he also purchased `snacks'
 - 1% of all transactions contain the items `beer' and `snacks'
- Student grades:
 - major(X, `MComp') and takes(X, `COMP8400') \Rightarrow grade(X, `D') [3%, 60%] *
 - If a student X, who's degree is `MComp', took the course `COMP8400' she or he in 60% achieved a grade `D'
 - The combination `MComp', `COMP8400' and `D' appears in 3% of all transactions (records) in the database

Basic concepts

- Given:
 - A (large) database of transactions
 - Each transaction contains a list of one or more items (e.g. purchased by a customer in a visit)
- Find the rules that correlate the presence of one set of items with that of another set of items
- Normally one is only interested in rules that are frequent
 - For example, 70% of customers who buy tires and car accessories also get their car service done

Question: How can this be improved to 80%? Possibly offer special deals like a 15% reduction of tire costs when the service is done

Formalism

- Set of items $X = \{x_1, x_2, ..., x_k\}$
- Database D containing transactions
- Each transaction T is a set of items, such that T is a subset of X
- Each transaction is associated with a unique identifier, called TID (for example, a unique number)
- Let A be a set of items (a subset of X)
- An association rule is an implication of the form $A \Rightarrow B$, where A is a subset of X and B is a subset of X, and the intersection of A and B is empty
 - No item in A can be in B, and vice versa
 - No rule of the form: {`beer', `chips'} ⇒ {`chips', `peanuts'}

Basic rule measurements

A rule A ⇒ B holds in a database D with support s, with s being the percentage of transactions in D that contain A and B

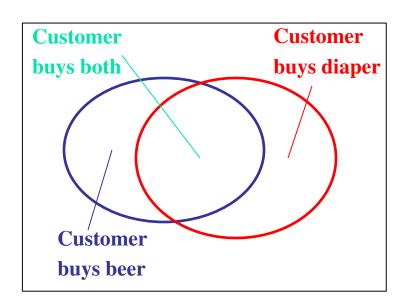
$$support(A \Rightarrow B) = P(A \cup B)$$

• The rule $A \Rightarrow B$ has a *confidence* c in a database D if c is the percentage of transactions in D containing A that also contain B

confidence
$$(A \Rightarrow B) = P(B|A) = P(A \cup B) / P(A)$$

confidence $(A \Rightarrow B) = \text{support}(A \Rightarrow B) / \text{support}(A)$

Rule measurements example



- Find all the rules $\{X, Y\} \Rightarrow Z$ with minimum confidence and support
- Support, s, is the probability that a transaction contains {X, Y, Z}
- Confidence, c, is the conditional probability that a transaction having {X, Y} also contains Z

Transaction ID	Items Bought
2000	a, b, c
1000	a, c
4000	a, d
5000	b, e, f

Let minimum support = 50%, and minimum confidence = 50%, so we have ([s, c]):

- a \Rightarrow c [50%, 66.67%]
- c \Rightarrow a [50%, 100%]

Source: Han and Kamber, DM Book, 1st Ed.

Rule measurements example (2)

Transaction ID	Items Bought
2000	a, b, c
1000	a, c
4000	a, d
5000	b, e, f

Itemset	
a	75.00%
b	50.00%
С	50.00%
a, c	50.00%

- Minimum support = 50% and confidence = 50%
- Rule $a \Rightarrow c$
 - support (a \Rightarrow c): 50%
 - confidence (a \Rightarrow c) = support(a \Rightarrow c) / support(a) = 50% / 75% = 66.67%

Mining frequent item sets

- Key step: Find the *frequent sets of items* that have *minimum support* (appear in at least xx% of all transactions in a database)
- Basic principle (*Apriori* principle): A sub-set of a frequent item set must also be a frequent item set
 - For example, if {a,b} is frequent, both {a} and {b} have to be frequent (if `beer' and 'chips' are purchased frequently together, then `beer' is purchased frequently and `chips' are also purchased frequently)
- Basic approach: Iteratively find frequent item sets with cardinality from 1 to k (k-item sets), k > 1
- Use the frequent item sets to generate association rules
 - For example, frequent 3-item set $\{a,b,c\}$ contains rules: $a \Rightarrow c, b \Rightarrow c, a \Rightarrow b, \{a,b\} \Rightarrow c, \{a,c\} \Rightarrow b, \{b,c\} \Rightarrow a, etc.$
- We are normally only interested in longer rules (with all except one element on the left-hand side)

The Apriori algorithm (Agrawal & Srikant, VLDB'94)

C_k: Candidate item set of size k
 L_k: Frequent item set of size k

Pseudo-code:

```
L_1 = \{ \text{frequent items} \};

for (k = 1; L_k! = \square \{ \}; k++) do begin

C_{k+1} = \text{candidates generated from } L_k;

for each transaction t in database do

increment the count of all candidates in C_{k+1}

that are contained in t

L_{k+1} = \text{candidates in } C_{k+1} \text{ with min\_support}

end do

return \square_k L_k;
```

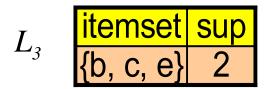
The *Apriori* algorithm – An example (sup=50%)

TID 100 200 300	abase D Items a,c,d b,c,e a,b,c,e b,e b,e	$\begin{array}{c} C_I \\ \underline{\text{Scan D}} \end{array}$	itemset {a} {b} {c} {d} {e}	sup.2313	L_{I}	itemse {a} {b} {c} {e}	t sup. 2 3 3 3	
L_2	itemset s {a, c} {b, c} {b, e} {c, e}	C ₂ 2 2 3 2	itemset {a, b} {a, c} {a, e} {b, c} {b, e} {c, e}	1 2 1 2 3 2	Scan		emset {a, b} {a, c} {a, e} {b, c} {b, e} {c, e}	
C_3	itemset {b, c, e}	Scan D	itemse {b, c, €		•	3	emset s , c, e}	sup 2

The *Apriori* algorithm – An example (2)

Database D

TID	Items
100	a,c,d
200	b,c,e
300	a,b,c,e
400	



- Minimum support = 50% and minimum confidence = 50%
- Rules:
 - b \Rightarrow c [50%, 66.67%]
 - b ⇒ e [75%, 100%]
 - c \Rightarrow e [50%, 66.67%]
 - $\{b, c\} \Rightarrow e [50\%, 100\%]$
 - $\{b, e\} \Rightarrow c [50\%, 66.67\%]$
 - $\{c, e\} \Rightarrow b [50\%, 100\%]$

Important details of the Apriori algorithm

- How to generate candidate sets?
 - Step 1: Self-joining L_k (C_k is generated by joining L_{k-1} with itself)
 - Step 2: Pruning (any (k-1)-item set that is not frequent cannot be a subset of a frequent k-item set)
- Example of candidate generation:
 - $L_3 = \{\{a,b,c\}, \{a,b,d\}, \{a,c,d\}, \{a,c,e\}, \{b,c,d\}\}\}$
 - Self-joining: $L_3 * L_3 (\{a,b,c,d\} \text{ from } \{a,b,c\} \text{ and } \{a,b,d\}, \text{ and } \{a,c,d,e\} \text{ from } \{a,c,d\} \text{ and } \{a,c,e\})$
 - Pruning: {a,c,d,e} is removed because {a,d,e} is not in L₃
 - $C_A = \{\{a,b,c,d\}\}$
- How to count supports for candidates?

How to generate candidate item-sets?

- Suppose the items in L_{k-1} are listed in an order (e.g. a < b)
- Step 1: Self-joining L_{k-1}
 insert into C_k
 select p.item₁, p.item₂, ..., p.item_{k-1}, q.item_{k-1}
 from L_{k-1} p, L_{k-1} q
- where p.item₁ = q.item₁, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
- Step 2: Pruning
 forall item sets c in C_k do
 forall (k-1)-sub-sets s of c do
 if (s is not in L_{k-1}) then delete c from C_k

Apriori performance bottlenecks

- The core of the *Apriori* algorithm is to
 - Use frequent (k-1) item sets to generate candidate frequent k item sets
 - Use database scan and pattern matching to collect counts for candidate item sets
- Candidate generation is the main bottleneck
 - 10⁴ frequent 1-item sets (sets of length 1) will generate 10⁷ candidate 2-item sets!
 - To discover a frequent pattern of size 100 (for example $\{a_1, a_2, ..., a_{100}\}$) one needs to generate $2^{100} = 10^{30}$ candidates
 - Multiple scans of the database are needed (n+1 scans if the longest pattern is n items long)

Methods to improve Apriori's efficiency

Reduce the number of scans of the database

- Any item set that is potentially frequent in the database must be frequent in at least one of the partitions of the database
- Scan 1: Partition database and find local frequent patterns
- Scan 2: Consolidate global frequent patterns

Shrink number of candidates

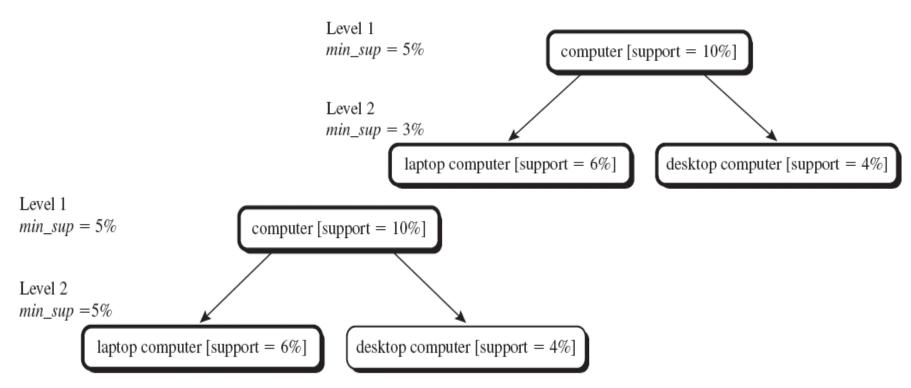
- Select a sample of the database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent item sets found in sample
- Scan database again to find missed frequent patterns

Facilitate support of counting candidates

 For example, use special data structures like Frequent-Pattern tree (FP-tree)

Multi-level association mining

- Items often form hierarchies
- Items at lower levels are expected to have lower support
 - Flexible *support* setting (uniform, reduced, or group-based (user specific))



Source: Han and Kamber, DM Book, 2nd Ed. (Copyright © 2006 Elsevier Inc.)

Multi-level association mining (2)

- Some rules may be redundant due to ancestor relationships between items
- For example: $buys(X, `milk') \Rightarrow buys(X, `bread') [8\%, 70\%]$ $buys(X, `skim milk') \Rightarrow buys(X, `bread') [2\%, 72\%]$
 - The first rule is said to be an ancestor of the second rule
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor
 - For example, if around 25% of all milk purchased is `skim milk', then the second rule above is redundant, as it has a ¼ of the support of the first, more general rule (and similar confidence)

Multi-dimensional association mining

- Single-dimensional rules: $buys(X, `milk') \Rightarrow buys(X, `bread')$
- Multi-dimensional rules: Two or more dimensions or predicates (or attributes)
 - Inter-dimension association rules (no repeated predicates):
 age(X, `19-25') and occupation(X, `student') ⇒ buys(X, `coke')
 - Hybrid-dimension association rules (*repeated predicates*): age(X, `19-25') and $buys(X, `popcorn') \Rightarrow buys(X, `coke')$
- Categorical Attributes: finite number of possible values, no ordering among values (data cube approach)
- Quantitative Attributes: numeric, implicit ordering among values (discretisation, clustering, etc.)

Quantitative association mining

- Techniques can be categorised by how numerical attributes, such as *age* or *income*, are treated
- Static discretisation based on predefined concept hierarchies
- Dynamic discretisation based on data distribution
 - A_{quant1} and $A_{quant2} \Rightarrow A_{cat}$
 - Example: age(X, `19-25') and $income(X, `40K-60K') \Rightarrow \Box buys(X, `HDTV')$
- For quantitative rules, do discretisation such that (for example) the confidence of the rules mined is maximised

Mining interesting correlation patterns

Flexible support

- Some items might be very rare but are valuable (like diamonds)
- Customise support specification and application

Top-k frequent patterns

- It can be hard to specify $support_{min}$, but top-k rules with $length_{min}$ are more desirable
- Achievable using special data structures, like Frequent-Pattern (FP) tree
- Dynamically raise support during FP-tree construction phase, and select most promising to mine

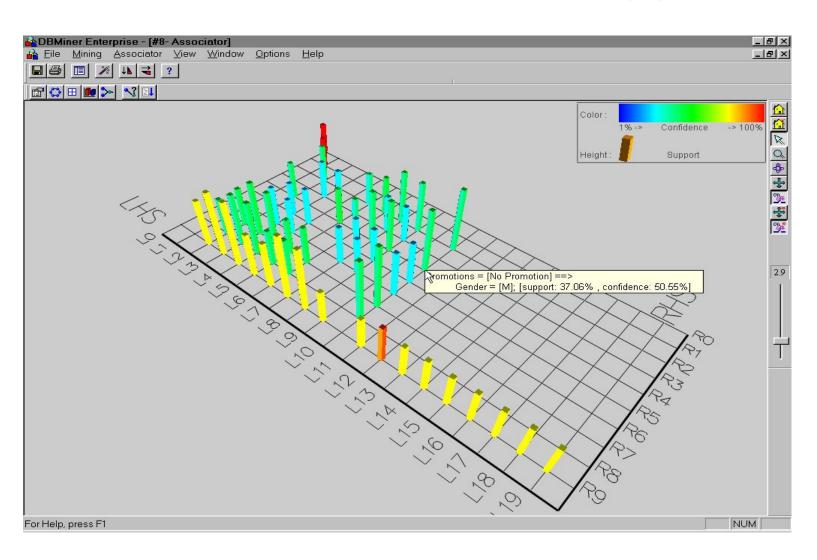
Constraint based data mining

- Finding *all* the frequent rules or patterns in a database autonomously is unrealistic
 - The rules / patterns could be too many and not focussed
- Data mining should be an interactive process
- The user directs what should be mined using a data mining query language or a graphical user interface
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined (and what not)
 - System optimisation: explores such constraints for efficient mining

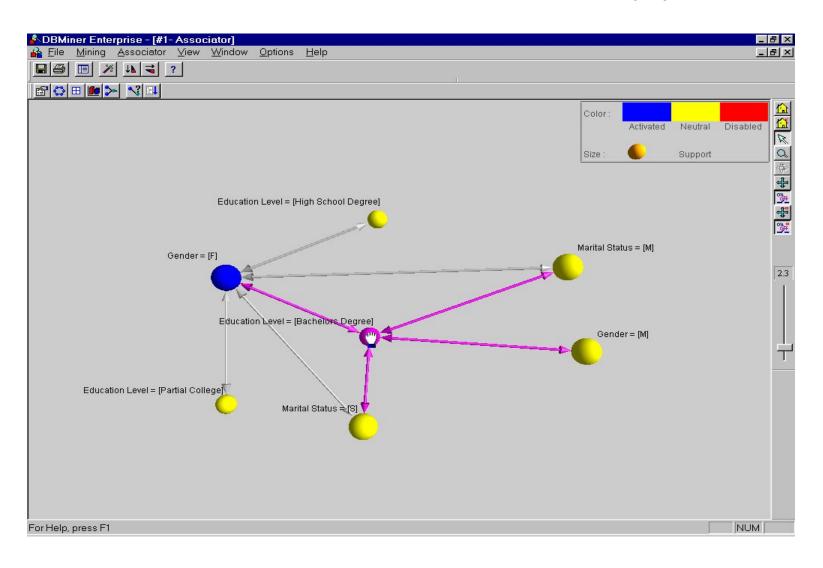
Constraints in data mining

- Knowledge type constraint
 - Correlation, association, etc.
- Data constraint (use SQL like queries)
 - For example: Find product pairs sold frequently in both stores in Sydney and Melbourne
- Dimension / level constraint
 - In relevance to region, price, brand, customer category, etc.
- Rule or pattern constraint
 - Small sales (price < \$10) trigger big sales (sum > \$200)
- Interestingness constraint
 - Strong rules only: $support_{min} > 3\%$, $confidence_{min} > 75\%$

Visualisation of association rules (1)



Visualisation of association rules (2)



Visualisation of association rules (3)

