ANU MLSS 2010: Data Mining

Part 1: Introduction, data mining challenges, and data issues for data mining

Data Mining module outline

Part 1:

- Very short introduction to data mining
- Data mining process
- Challenges in data mining
- Data cleaning, integration and pre-processing

Part 2:

Association rule mining

Part 3:

- Data mining application techniques: data streams and link mining
- Privacy aspects of data mining
- References and Resources

Many slides are based on 'Data Mining: Concepts and Techniques' by J. Han and M. Kamber, see: http://www.cs.uiuc.edu/~hanj/bk2/

Very short introduction to data mining (1)

- Many government agencies, businesses, and research projects collect massive amounts of data
 - Amazon.com: 42 Terabytes, YouTube (2006): 45 Terabytes, ChoicePoint: 250 Terabyte (information about 250 million people), AT&T: 323 Terabytes (1.9 Trillion phone records), etc. etc.
 - The sizes of databases increases exponentially
 - Source: http://www.focus.com/fyi/operations/10-largest-databases-in-the-world/
 - Also: http://www.businessintelligencelowdown.com/2007/02/top_10_largest_.html

Questions arise:

- Is there any new, unexpected and potentially useful information contained in this data?
- Can we use historical data to predict future outcomes (such as customer purchase behaviour, detect fraud, predict terrorism, etc.)?

Very short introduction to data mining (2)

Data mining involves:

- Database and data warehouse technologies
- Machine learning and artificial intelligence
- Statistics and numerical mathematics
- Parallel and high-performance computing
- Visualisation
- Privacy technologies

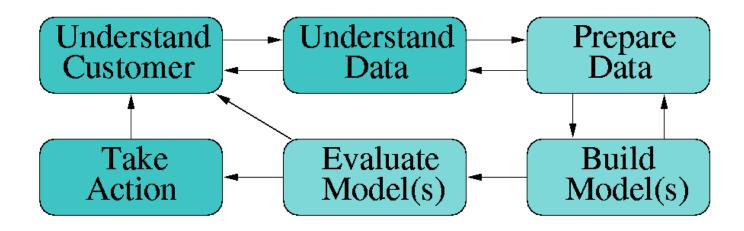
Data mining techniques:

- Data cleaning, pre-processing, and integration
- Cluster analysis (unsupervised learning)
- Rule discovery (association mining)
- Classification and prediction (supervised learning)

Very short introduction to data mining (3)

- Application specific data mining techniques:
 - Spatial and temporal data mining
 - Text and Web mining
 - Outlier detection
 - Data stream, time series and sequence mining
 - Multimedia data mining (audio, images, video)
 - Network, link and graph mining
 - Privacy preservation
- Data mining is applied in many areas, including:
 - Bioinformatics and health
 - Governments (statistics, census, taxation, social welfare)
 - Credit card and insurance companies
 - Terror, crime and fraud detection
 - Networking and telecommunications
 - Marketing and retail

The data mining / KDD process



- Data mining is an interactive process
- Data mining = Build Model(s)
- Typically up to 90% of time and effort are spent in the first three steps!

(Follows: CRoss Industry Standard Process for Data Mining, http://www.crisp-dm.org/)

Major challenges in data mining

Data size

- Size of data collections grows more than linear, doubling around every 18 months (similar to Moore's law of CPU speed)
- Scalable algorithms are needed

Data complexity

- Different types of data (databases, free text, HTML, XML, multimedia)
- Dimensionality of the data increases (more attributes)
- The *curse of dimensionality* affects many algorithms (for example find nearest neighbours in high dimensions)

Privacy and confidentiality

- Data mining can reveal details about people which is not available otherwise
- Linking and matching data is especially critical / controversial

Ten grand challenges in data mining (U. Fayyad)

Technical challenges

- How does the data grow?
- Scalability (of algorithms)
- Complexity/understandability trade-off
- Interestingness
- A theory for what we do

Pragmatic challenges

- Where is the data?
- Embedding algorithms and solutions within operational systems
- Integrating domain knowledge
- Managing and maintaining models
- Effectiveness measurement

(Source: http://www.acm.org/sigs/sigkdd/explorations/, vol 5, no 2, Dec. 2003)

Data size and complexity

- We are drowning in data but starving of knowledge (Jiawei Han)
- Automated data collection and mature database technology
 - Allows data to be stored efficiently, cheap, persistent
 - Using databases, data warehouses and other repositories
 - Data is increasingly stored distributed (storage area networks, grids, etc.)
- Large and massive data collections
 - Millions to billions of records
 - Tens to thousands of attributes (sometimes also called variables)
 - Data is rarely collected for data mining (rather for online transaction processing - OLTP)
- A lot of data is write only (or read once only)

Data sources

Relational databases

 Transactional data, mostly normalised into many tables, with keys between them, continuous and frequent updates on (single) records

Data warehouses

 Decision support data, processed and cleaned, historical data, aggregated, updated at certain intervals (more later)

Internet

Click-stream data, log files, HTML, XML, blogs, e-mails, media files, etc.

Files

- Portable text (like comma separated, tabulator, fixed column) or non-portable proprietary binary files
- Scientific instruments, experiments and simulations
 - · Astronomy, genomics, seismology, physics, chemistry, etc.
- Sensors (often data streams)

Types and measurements of data (1)

Numerical data

- Integer, floating-point, binary, interval, ratio
- Non-scalar (like velocity: speed and direction)

Non-numerical data

- Nominal data (just naming things, for example personal names)
- Categorical data (grouping things, like postcodes, university course codes)
- Ordinal data (ordering things, for example wine tasting, movie ratings)

Series data

- Ordering is an important feature (otherwise not series data)
- One attribute must always be monotonic (increasing or decreasing)
- Most common are time series

Types and measurements of data (2)

- Multimedia data
 - Images, video, audio
 - Many standard formats used, binary, often compressed
- Different mappings and conversions between data types are possible and often needed
 - Some conversions are loss-less, others are lossy
- Different data mining techniques can handle different types of data
 - Some are restricted to certain types of data, for example only numerical data

Formats of data

- Structured data
 - Relational database tables, integrated data warehouses
 - Images, video, audio (can be compressed), many different formats
- Semi-structured data
 - XML, HTML, e-mails, SMS, log files
- Free-format data
 - Mainly free-format text ASCII or Unicode

Real world data is dirty (1)

- Various sources of errors
 - Misinterpretation of the data
 - Errors during data entry
 - Missing data
 - Out-of date data
 - Data from different sources
- Personal information (like names and addresses) are especially prone to data entry errors
- A great effort is often needed to clean and standardise raw data (data pre-processing)

Real world data is dirty (2)

- What does dirty data mean?
 - Incomplete data (missing attributes, missing attribute values, only aggregated data, etc.)
 - Inconsistent data (different coding, impossible values or out-of-range values)
 - Noisy data (data containing errors, outliers, not accurate values)
- For quality mining results, quality data is needed
 - Garbage-in garbage-out principle
- Transactional database systems should be designed with data quality and data mining in mind
- Pre-processing is an important step for successful data mining and data analysis

Root conditions of data quality problems

- Multiple data sources
- Subjective judgment in data production
- Limited computing resources
- Security/accessibility trade-off
- Coded data across disciplines
- Complex data representations
- Volume of data
- Input rules too restrictive or bypassed
- Changing data needs
- Distributed heterogeneous systems

Data quality measures

- Accuracy
- Completeness
- Consistency
- Timeliness
- Believability
- Interpretability
- Accessibility

Data pre-processing tasks

- Data cleaning
 - Fill-in missing values, smooth noisy data, identify/remove outliers, resolve inconsistencies
- Data transformation
 - Normalise and/or aggregate data
- Data reduction and discretisation
 - Reduce volume of data, but still produce same or similar analytical result, discretisation in particular for numerical data
- Data integration, matching and linking

Data cleaning

- Data cleaning tasks
 - Fill-in (impute) missing values
 - Detect and correct inconsistent data
 - Identify outliers / smooth noisy data
- Missing data may be due to
 - Attributes not considered important
 - Misunderstanding at data entry
 - Inconsistencies with other data and thus deleted
 - Equipment malfunction (for example EFTPOS down, so only cash transactions)
- Missing data may need to be inferred (data imputation)

Data cleaning - Missing values

- How to handle missing data?
 - Ignore the records that contain missing values
 - Fill in missing value manually (often unfeasible)
 - Fill in with a global constant (e.g. *unknown* or *n/a*). Not recommended as a data mining algorithm might see this as a normal value!
 - Fill in with attribute mean or median
 - Fill in with class mean or median (classes need to be known)
 - Fill in with most likely value (using regression, decision trees, most similar records, etc.)
 - Use other attributes to predict value (e.g. if a *postcode* is missing use *suburb* value and external look-up table if one-to-one relationship)
 - Data editing/imputation (rules based)

Data cleaning – Inconsistent data / outliers

Why inconsistent data?

- Due to data entry errors or data integration (different formats, codes, etc.)
- Important to have data entry verification (check both format and values of data entered), most of the time only format is checked
- Correct with help of external reference data (look-up tables, e.g. *Sydney, NSW, 7000 -> Sydney, NSW, 2000*) or rules (e.g. *male / 0 -> M, female / 1 -> F)*

Identify outliers and noisy data

- Noise: Random error or variance in a measurement
- Incorrect attribute values (faulty data collection, data entry problems, data transmission problems, data conversion errors, inconsistent naming, technology limitations, bugs, for example buffer overflow or attribute length limits)
- Handle noisy data through binning, clustering, regression, manual inspection
- Don't remove or modify outliers for outlier detection!

Data transformation

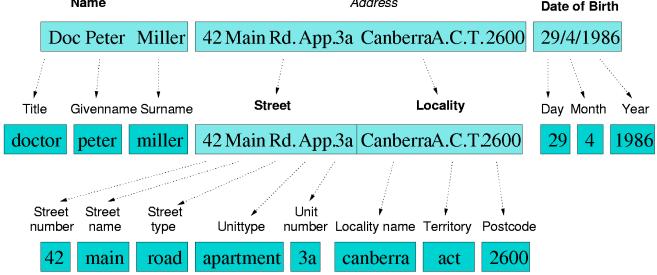
- Consolidate data into forms suitable for data mining
- Smooth data (remove noise)
- Aggregate data (summarisation, e.g. daily sales → weekly sales → monthly sales)
- Generalise data (replace data with higher level concepts, e.g. address details → city → state → country)
- Normalise data (scale to within a specified range)
 - Min-max (for example into [0...1] interval, or 0%..100%)
 - Z-score or zero-mean (based on mean and standard deviation of an attribute)
 - Decimal scaling (move decimal point for all values)
- Important to save normalisation parameters in meta-data repository

Attribute / feature construction

- Sometimes it is helpful or necessary to construct new attributes or features
 - Based on existing attributes in data
 - Helpful for understanding
 - For example: Create attribute *volume* based on attributes *height*, *depth* and *width* (for example in a post or parcel database)
- Construction is based on mathematical or logical operations
- Attribute / feature construction can help to discover missing information about the relationships between the original data attributes

Data parsing and standardisation

- Parse free format data into specific, well defined attributes
- Standardise using rules and look-up tables (correction and replacement tables), or probabilistically (using e.g. hidden Markov models)
- Important for data matching and linkage (for addresses, names, etc.)



Why data parsing and standardisation?

- Real world data is often dirty
 - Typographical and other errors
 - Different coding schemes
 - Missing values
 - · Data changing over time
- Name and addresses are especially prone to data entry errors
 - Scanned, hand-written, over telephone, hand-typed
 - Same person often provides her/his details differently
 - Different correct spelling variations for proper names (for example Gail and Gayle, or Dixon and Dickson)

Data integration and data linkage

- Increasingly, data mining projects require data from more than one data source
- Data is often distributed (different databases or data warehouses)
 - For example an epidemiological study that needs information about hospital admissions and car accidents
- Geographically distributed data or historical data
 - For example, integrate historical data into a new data warehouse
- Enrich data with additional (external) data (to improve data mining accuracy)

Data integration techniques

- Data integration
 - Combines data from multiple sources into a coherent form
 - Schema integration (for example, *A.cust-id <=> B.cust-no*)
 - Integrate Metadata from different sources
- Entity resolution (identification) problem
 - Identify real world entities from multiple data sources (for example, Bill Clinton = William Clinton, or Mr Obama = the president)
 - Also called record linkage or data matching
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources can be different
 - Possible reasons: different representations, different codings, different scales (for example metric vs. British units)

Schema integration

Imagine two database tables

PID	Name	DOB
1234	Mayer	01/01/75
4791	Simmons	21-10-1969

PID	Surname	Age
1234	Meyer	32
4791	Simonds	38

- Integration issues
 - The same attribute may have different names
 - An attribute may be derived from another
 - Attributes might be redundant
 - There can be duplicate records (under different keys)
- Conflicts have to be detected and resolved
- Integration is made easier if unique entity keys are available in all the data sets (or tables) to be linked

Data linkage / matching (1)

- Task of linking together records from one or more data sources that represent the same entity
- If there are no unique entity keys in data, the available attributes have to be used
 - Often personal information (like names, addresses, dates of birth, etc.)
 - Privacy and confidentiality becomes an issue (more later in course)
- Application areas
 - Health (epidemiology)
 - Census, taxation, immigration, social welfare
 - Business mailing lists, collaborative e-Commerce
 - Crime, fraud and terror detection (US: TIA, MATRIX)

Data linkage / matching (2)

- Different parts of the linked records are of interest
 - Personal information (crime, fraud and terror detection, mailing lists)
 - Non-personal information (epidemiology, census, most data mining)
 For example:

Age	Disease	Name
55	Cancer	John Miller
32	Diabetes	Joe Meyer
67	Cancer	Lucy Smith

Name	DoBirth	DoDeath
J. Miller	04/08/47	12/12/02
J. Meier	11/09/69	26/02/01
L. Smith	01/01/34	08/09/01

•			
Disease	DoBirth	DoDeath	Gender
Cancer	04/08/47	12/12/02	М
Diabetes	11/09/69	26/02/01	M
Cancer	01/01/34	08/09/01	F

Data linkage / matching process

