ICAPS 2011

IPPC Results Presentation

Scott Sanner

Sungwook Yoon

Additional domain development by Tom Walsh (ASU)

Main Objective for IPPC 2011

More realistically motivated problems

- PPDDL cannot represent many probabilistic domains
 - Traffic Control
 - Elevator Control
 - Mars Rovers

Needed

- \rightarrow concurrency
- → independent exogenous effects
- → continuing processes and non-goal rewards
- → partial observability
- → distributions that are complex function of state
- → enumerated, integer, continuous variables (no competitors)

- Required a new language

RDDL (new lifted DBN transition semantics)

A Brief History of (ICAPS) Time

PDDL history from: http://ipc.informatik.uni-freiburg.de/PddlResources

What is RDDL?

- Relational Dynamic Influence Diagram Language
 - Relational[DBN + Influence Diagram]
 - Everything is a fluent!
 - states
 - observations
 - actions
 - derived (stochastic) predicates
 - Uniform expression language

Other Objectives for IPPC 2011

- Translations to draw in different communities
 - Factored MDP / POMDP community
 - ICAPS PPDDL community
 - 11 competitors!
- Single normalized evaluation criteria
 - In previous competitions, a mix of...
 - plan length
 - goal %
 - planner time

(skipping hard problems could improve domain averages)

RDDLSim Software

Open source & online at http://code.google.com/p/rddlsim/

RDDL Software Overview

- BNF grammar and parser
- Simulator
- Automatic translations
 - LISP-like format (easier to parse)
 - SPUDD & Symbolic Perseus (boolean subset)
 - Ground PPDDL (boolean subset)
- Client / Server
 - Java and C/C++ sample clients
 - Evaluation scripts for log files
- Visualization
 - DBN Visualization
 - Domain Visualization see how your planner is doing

Domains and Evaluation

8 domains

- Traffic Control: highly exogenous, concurrent
- Elevator Control: highly exogenous, concurrent
- Game of Life: highly combinatoric
- SysAdmin: highly exogenous, complex transitions
- Navigation: goal-oriented, determinization killer
- Crossing Traffic: goal-oriented, deterministic if move far left
- Skill Teaching: few exogenous events
- Reconnaissance: few exogenous events

Conditions

- 24 hours for all runs
- 10 instances per domain, 30 runs per instance
- No discount, finite horizon of 40
- Used average normalized score [0,1]
 - Min: max(random policy, noop policy)
 - Max: best competitor
 - Scores < 0 set to 0

Boolean Traffic

Boolean Elevators

Crossing Traffic (aka Frogger)

Navigation (aka deteminization killer)

Competition Format

- Amazon EC2 (Elastic Compute Cloud)
 - 11 instances on demand running for 24 hours
 - Ensures everyone has same computational power
 - Large EC2 instance (7.5Gb RAM, 2 Cores)
 - Everyone has admin access to their machines
 - Just pay for time used
 - received an Amazon EC2 grant of \$1000 for competition
 MANY THANKS TO AMAZON FOR THEIR GENEROSITY!!!
 - so running it was free
 - → Highly recommended for future competitions!!!

Competitors: Boolean MDP Track

Competitors	Algorithm
PROST	UCT/Single Outcome Determinization, Caching
(Eyerich, Keller – Uni. Freiburg)	Determinization, Caching
Glutton (Kolobov, Dai, Mausam, Weld – UW)	Iterative Deepening RTDP, Caching
MIT-ACL (Ure, Toksoz, Redding, Gemifard – MIT)	RL / Linear Fun. Approx, Feature Discovery
Beaver (Nadamuni, Joshi, Fern, Tadepalli – OSU)	UCT, SPUDD Guidance
SPUDD	SPUDD: Value Iteration
(Zhu, Grzes, Hoey – Uni. Waterloo)	with ADDS (BASELINE)

Results: Boolean MDP Track

1st Place: PROST

2nd Place: Glutton

PROST (Eyerich, Keller)	0.874	± 0.059
Glutton (Kolobov, Dai, Mausam, Weld)	0.795	± 0.066
Beaver (Nadamuni, Joshi, Fern, Tadepalli)	0.245	± 0.066
MIT-ACL (Ure, Toksoz, Redding, Gemifard)	0.107	± 0.055
SPUDD (Zhu, Grzes, Hoey)	COMMUNICATION BUG	
SPUDD (Zhu, Grzes, Hoey)	0.297	± 0.101
(<i>Post-competition</i> results after rddlsim server communication bugs fixed, SPUDD unchanged)		

Competitors: Boolean POMDP Track

Competitors	Algorithm
POMDPX_NUS (Wu, WS Lee, D Hsu – NUS)	SARSOP / UCT (POMCP)
KAIST-AILAB (D Kim, K Lee, K-E Kim – KAIST)	Symbolic HSVI (ADDs), Symmetry Detection
HyPlanClient (Borera, Pyeatt – Texas Tech)	~RTDP-Bel
POND (Bryce, Olsen – USU)	Translation to Conf. Planning, Hindsight Opt
Symbolic Perseus (Poupart, Hoey, Morrison – Uni. Waterloo)	PBVI with ADDs
McGill (Png, Ong, Pineau – McGill)	UCT (POMCP)

Results: Boolean POMDP Track

1st Place: POMDPX_NUS

2nd Place: KAIST-AILAB

POMDPX_NUS (Wu, WS Lee, D Hsu)	0.590	± 0.098
KAIST-AILAB (D Kim, K Lee, K-E Kim)	0.420	± 0.101
HyPlanClient (Borera, Pyeatt)	0.168	± 0.074
POND (Bryce, Olsen)	0.152	± 0.058
Symbolic Perseus (Poupart, Hoey, Morrison)	0.117	± 0.064
McGill (Png, Ong, Pineau)	0.034	± 0.031

Thanks to All Competitors!