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Abstract

We present the POND-Hindsight entry in the POMDP track
of the 2011 IPPC. Similar to successful past entrants (such
as FF-Replan and FF-Hindsight) in the MDP tracks of the
IPPC, we sample action observations (similar to how FF-
Replan samples action outcomes) and guide the construc-
tion of policy trajectories with a conformant (as opposed to
classical) planning heuristic. We employ a number of tech-
nical approaches within the planner, namely we i) translate
expected reward to a probability of goal satisfaction crite-
rion, ii) monitor belief states with a Rao-Blackwellized parti-
cle filter, and iii) employ Rao-Blackwellized particles in the
McLUG probabilistic conformant planning graph heuristic.
POND-Hindsight is an action selection mechanism that eval-
uates each possible action by generating a number of looka-
head samples (up to a fixed horizon) that greedily select ac-
tions based on their heuristic value and samples the actions’
observation; the average goal satisfaction probability of the
end horizon belief states are used as the value of each action.

Introduction
Some of the most successful entries in the MDP track of
the IPPC are based on the idea of using classical plan-
ners to evaluate deterministic futures, and either execute the
plans (Yoon, Fern, and Givan 2007) found in this manner,
or evaluate the average quality of several futures prior to se-
lecting an action (Yoon et al. 2008). In adapting the idea
to a POMDP competition setting, there are several unique
challenges/opportunities: 1) POMDPs allow observation un-
certainty in addition to action outcome uncertainty; 2) the
POMDP instances are formulated with rewards instead of
goals (as in past MDP tracks); and 3) the POMDP instances
are finite horizon and not discounted.

Our approach in POND-Hindsight is to formulate a goal-
based belief state MDP, allowing a straight-forward appli-
cation of the outcome sampling ideas made popular in FF-
Replan and FF-Hindsight. In the belief state MDP, the action
outcomes correspond to the POMDP observations, and the
states correspond to the POMDP belief states. Thus, sam-
pling action outcomes in the belief state MDP corresponds
to sampling observations in the POMDP, and computing
successor states corresponds to computing successor belief
states. While sampling observations, we are still planning in
belief state space, and make use of a reachability heuristic

for belief state space based on the McLUG (Bryce, Kamb-
hampati, and Smith 2008). The relaxed planning heuristic
extracted from the McLUG ignores observations but ac-
counts for probabilistic action outcomes – estimating the
number of actions required to support the goal with high
probability under non-observability.

We translate rewards into goals by introducing a goal
proposition whose probability is increased by each action
– the magnitude of the increase is proportional to the re-
ward. In most problems, this translation leads to belief states
where the goal proposition is true with very low probabil-
ity; employing a particle filter for belief state monitoring is
problematic because very few, if any, particles correspond to
states where the goal proposition is true. To more accurately
track the rewards, we use Rao-Blackwellized particles where
each particle assigns a value to each state proposition and re-
tains a distribution over the goal proposition. The same issue
of a low probability goal proposition appears in the McLUG,
and we also use Rao-Blackwellized particles in the planning
graph heuristic.

POND-Hindsight varies the number of particles in its be-
lief state monitoringN , the number of particles in its heuris-
tic M , the number of futures sampled per action during ac-
tion selection F , and the depth of each future D. We limit
the depth of the futures explored for each action to reduce
search cost, and use the McLUG heuristic to bias the search.

In the following, we detail the translation of a POMDP to
a goal-based belief state MDP, the POND-Hindsight algo-
rithm, empirical results for the competition domains, related
work, and a conclusion and future work.

Framework
We base our work within two models of acting in partially
observable, stochastic worlds: expected discounted reward
POMDPs and goal-based POMDPs.

Expected Discounted Reward POMDPs
We consider the POMDP model (S,A,O, b0, T,R,Ω, γ),
where

• S is a finite set of states

• A is a finite set of actions

• O is a finite set of observations



• b0(s) = Pr(s0 = s), an initial belief distribution

• T (s, a, s′) = Pr(st+1 = s′|at = a, st = s) is a state
transition relation

• R(s, a) is the reward for applying a in s

• Ω(o, s, a) = Pr(ot+1 = o|at = a, st+1 = s) is the prob-
ability of observing o in s after applying a

• γ is a discount factor, where 0 ≤ γ < 1

The belief state after a given history of actions and obser-
vations is defined:
bt = Pr(st|b0, a0, o1, ..., ot−1, at−1, ot)

and is computed incrementally from a prior belief state,
given an action and observation, so that:
bt(s

′) = αΩ(o, s′, a)
∑
s∈S

T (s, a, s′)bt−1(s)

where α is a normalization constant. The transition proba-
bility between belief states bt = b and bt+1 = boa, given an
action and observation is
T (b, a, boa) =

∑
s′∈S

Ω(o, s′, a)
∑
s∈S

T (s, a, s′)b(s)

The reward associated with applying an action in a belief
state is
R(b, a) =

∑
s∈S

R(s, a)b(s)

A policy π is a function π(bt) = at defining which action
to take, given the belief state, so that the expected discounted
reward attainable from a belief state (its value) is defined:
Vπ(b) = R(b, π(b)) + γ

∑
o∈O

T (b, π(b), boπ(b))Vπ(boπ(b))

The value of a policy is defined by Vπ(b0).

Translation to Goal-Based POMDPs
As defined by Majercik and Littman (2003), discounted
expected reward POMDPs can be translated to goal-based
POMDPs of the form (S∗, A,O, b0, T

∗,Ω), where

• S∗ = S ∪ {goal, sink}
• T ∗(s, a, goal) = R∗(s, a)

• T ∗(s, a, sink) = (1− γ)−R∗(s, a)

• T ∗(s, a, s′) = γT (s, a, s′)

where the goal and sink states are absorbing and all rewards
R(s, a) are transformed so that 0 ≤ R∗(s, a) < 1− γ. Then
the value of a belief state, following a policy, is
V ∗π (b) =

∑
s∈S

T ∗(s, π(b), goal)b(s) +∑
o∈O

T ∗(b, π(b), boπ(b))V
∗
π (boπ(b))

POND-Hindsight
A future in POND-Hindsight samples observations as op-
posed to action outcomes, as in FF-Hindsight. By selecting
the action outcome in an MDP, FF-Hindsight knows when
it has reached a goal state with complete certainty. By only
selecting what is observed, and not the action outcome, in
a POMDP, POND-Hindsight performs lookahead over be-
lief states, which consist of real-valued goal satisfaction.
Therefore, POND-Hindsight treats all states on the looka-
head horizon as goal states, during lookahead search.

Like FF-Hindsight, POND-Hindsight produces several
policy trajectories from each immediate action to the goal,
averages the quality of the set of trajectories for an action,
and then selects the action with the best average quality
(shown in Algorithm 1). Also notice that an action is reused
whenever a state is revisited. We even preserve the policy
between trials, which saves greatly on computation time at
the expense of introducing bias.

Algorithm 1 GetBestAction
Input: Belief state, b; Number of lookahead samples, F ;

lookahead depth, D
Output: Best action, a∗

if π(b) = null
for each action a applicable to b

for i = 1 to F
Ri(a)← GreedyLookahead(b, a,D)

end for

R̄(a)←
F∑
i=1

Ri(a)/F

end for
π(b)← arg maxa R̄(a)

end if
a∗ ← π(b)

Algorithm 2 GreedyLookahead
Input: Belief state, b; Action, a; Lookahead depth, D
Output: Probability of goal satisfaction estimate, r
b′ ← RBPF (b, a,N)
t← 0
closed← ∅
open← {〈b, t〉}
while open 6= ∅
〈b, t〉 ← open item with minh(b), maxPr(goal|b)
if t = horizon

r ← Pr(goal|b)
return

end if
closed← closed

⋃
{〈b, t〉}

for each action a′ applicable to b
b′ ← RBPF (b, a′, N)
t′ ← t+ 1
open← open

⋃
{〈b′, t′〉} \ closed

end for
end while

Greedy Lookahead
FF-Hindsight measures quality as the distance to the goal.
However, POND-Hindsight measures quality as the proba-
bility of goal satisfaction (i.e., translated reward). Because
the search space to the horizon can be very large, a greedy
best-first approach was taken (see Algorithm 2). While
searching for the goal, the state with the minimum heuris-
tic value is chosen first. In the case of a tie, the state with the



higher goal satisfaction is chosen. Remaining ties are broken
randomly.

Efficiency Improvements
In order to make POND competitive, the computation of be-
lief states has been changed from an exact computation to
a Rao-Blackwellized particle filter RBPF (b, a,N), for ap-
plying action a to belief state b and using N particles. As
part of the particle filter, we sample one observation based
on its probability of being generated after applying a to b.
We represent the actions as a dynamic Bayesian network
(DBN), and compute the successor belief state by sampling
the original state propositions but analytically computing the
distribution over the goal proposition. Because the McLUG
heuristic samples outcomes, and the goal and sink states
have very low probabilities, the heuristic also had to be al-
tered to analytically compute the goal.

Another improvement, that we report on in the next sec-
tion, is a bound on the number of antecedents for conditional
effects in the McLUG heuristic. As each action is a DBN,
each row in a conditional probability table can be treated
as a conditional effect. As was discovered by Hoffmann
and Brafman (2004), limiting the number of antecedents of
conditional effects significantly reduces the cost of heuristic
construction in conformant planning heuristics.

Results
A portion of the benchmarks presented in this section are ac-
tual results from IPPC-2011. Parameters were adjusted for
the competition in order to maximize performance under a
limited time frame of 24 hours - that is to say, some instances
were poorly approximated for the sake of time. The planner
used a single 2.66 GHz processor and was limited to roughly
7 GB of memory during the competition. The remainder of
the benchmarks are runs or re-runs of instances, outside of
the competition, with sufficient parameters. These were run
on a single 1.99 GHz processor and were also limited to
7 GB of memory. So all benchmarks shown in this section
represent instances that were run with sufficient parameters.
Missing data corresponds to instances that took longer than
3 hours to solve.

There were 8 domains used for IPPC-2011: crossing traf-
fic, navigation, traffic, game of life, sysadmin, skill teach-
ing, elevators, and recon. Each domain has 10 problem in-
stances associated with it. Table 1 shows the parameters that
were used to solve each set of instances. Rewards for each
instance are averaged over 30 trials. These are compared
against an all-”noop” policy and a random action policy, also
averaged over 30 trials, and shown in Figure 1.

Crossing traffic resembles the game of Frogger. A
straight, one-way road separates a robot from its goal. Cars
randomly appear at one end of the road and deterministically
travel forward. Difficulty increases with the rate that cars
appear and the number of lanes of traffic. POND-Hindsight
performed the best on this domain, as can be seen in Fig-
ure 1a.

Navigation requires a robot to cross a sort of mine field
to get to its goal. As with crossing traffic, robot movement

is deterministic. The only exception is the possibility of
the robot disappearing while traveling across the field. The
probability distribution of disappearing in the field is not
uniform, therefore it is to the robot’s advantage to strate-
gically choose where to cross. The difficulty of this domain
comes primarily in the size and shape of the field. Figure 1b
shows the success of POND-Hindsight on this domain.

Game of life consists of locations on a grid that are alive,
that thrive or fail depending on locations surrounding them
which the planner has control in setting as live. With the
expectation that the best policy for this domain is the ran-
dom action policy, a lookahead horizon of 0 and a McLUG
heuristic with only 1 sample were used. In some cases this
performed better than the random action policy, in some
cases worse, but for the most part very similar to random
(see Figure 1c).

Traffic consists of cars lining up at intersections, with the
planner choosing which lights to change to green. SysAdmin
resembles a network of computers that periodically fail and
need to be reset by the planner. Skill teaching attempts to
educate students by asking questions and giving hints. All
three of these domains are shown, in Figures 1d, 1e, and 1f
(respectively), to have performed close to random.

Elevators requires a set of elevators to pick up passengers
and then drop them off at either the top or bottom floor de-
pending on their destination. Recon is similar to the mars
rover scenario where a robot has the task of sampling rocks
but may receive damage in the process and needs to perform
repairs. POND-Hindsight never performed better than ran-
dom and noop in these two cases (see Figures 1g and 1h).

It is likely that failure to perform better than random and
noop comes from the greedy nature of the lookahead algo-
rithm.

Times are shown in Figure 2. The biggest factors in com-
putation time are: 1) the complexity of the problem, 2) the
parameters used to solve the problem, and 3) policy reuse
among trials. Instances can be solved much quicker when
most or all of the policy can be reused in subsequent trials.

Related Work
Work by Yoon, Fern, and Givan (2007) and Yoon et al.
(2008) has shown that deterministic translations of proba-
bilistic problems can be used to quickly find approximate
solutions to the original problem.

FF-Replan
FF-Replan generates partial policies for MDPs in an online
manner (Yoon, Fern, and Givan 2007). First it translates the
problem into a deterministic one. The ”single-outcome” ap-
proach does this by keeping only the most probabilistic out-
come for each action. The ”all-outcome” approach does this
by generating a deterministic action for each probabilistic
outcome of each action in the original problem. At each
state in the online search, FF-Replan sends the determinis-
tic translation of the problem, along with the current state,
to a deterministic planner - such as FF (Hoffmann 2001) -
to generate a policy trajectory. FF-Replan follows the gener-
ated policy trajectories during online search, where possible,



Domain / Instances State
RBPF, N

McLUG
Particles,M

McLUG
Antecedents

Lookahead
Depth, D

Lookahead
Samples, F

Crossing Traffic 8 4 4 4 4
Navigation (1) 64 64 64 40 1
Navigation (2-3) 1 1 1 30 1
Navigation (4-10) 32 32 32 20 2
Traffic 4 1 1 2 2
Game of Life 2 1 1 0 1
SysAdmin 32 1 1 0 2
Skill Teaching (1) 16 16 1 20 2
Skill Teaching (2) 16 16 16 20 2
Skill Teaching (3-10) 8 4 4 4 4
Elevators (1-7) 8 4 4 10 10
Elevators (8-10) 32 32 32 20 2
Recon 4 1 1 2 2

Table 1: Parameters used to solve each domain (particular instances if specified in parenthesis, all instances otherwise)

(a) Crossing Traffic (b) Navigation (c) Game of Life

(d) Traffic (e) SysAdmin (f) Skill Teaching

(g) Elevators (h) Recon

Figure 1: Rewards for 10 instances, along the horizontal axis, of each domain (averaging over 30 trials for each instance)



(a) Quick Domains (b) Slow Domains

Figure 2: Total time (in minutes) to solve 30 trials for each of the 10 instances of each domain

but whenever it is brought to a state that it has not yet solved,
it replans by generating a new policy trajectory for that state.

The simplicity of FF-Replan has proven itself quite suc-
cessful. It was the winner of IPPC-2004 and also would have
won IPPC-2006 except that it was only an unofficial entry
(since the author was also head of the competition). The
paper (Yoon, Fern, and Givan 2007) does mention that one
weakness of FF-Replan is that it discards all probabilistic in-
formation when it determinizes the problem. This weakness
was explored in (Little and Thiébaux 2007), in which FF-
Replan’s success was attributed to the problems of the 2004
and 2006 IPPCs being ”probabilistically uninteresting,” triv-
ial for any planner, or too large for probabilistic planners.

FF-Hindsight
Hindsight Optimization (HOP) (Yoon et al. 2008), later
called FF-Hindsight (Yoon et al. 2010), improves upon FF-
Replan by utilizing the probabilistic information of the prob-
lem. This time the generation of a policy trajectory obeys
a ”future” which is described as the mapping of an action
at time, t, to a sampled outcome. This is different from the
single-outcome approach of FF-Replan in two ways. First,
the sampled outcome may not necessarily be the highest
probability outcome. Second, because an action may have
a different outcome at a different time, policy trajectories
are non-stationary - meaning, a state may map to a different
action depending on the time.

FF-Replan is able to choose its own future. In the single-
outcome case, the future chosen is the one in which each ac-
tion’s outcome, at any time, is the most probable one. Some-
times, however, the goal may only be reached from a low
probability outcome - in which case the determinization is a
dead end. In the all-outcome case, the future chosen is the
one in which each action’s outcome is the one that leads
to the goal the soonest, regardless of probability. It is ob-
vious that the all-outcome approach is overly optimistic in
its ability to reach the goal. By choosing a future from the
uniform distribution over all futures, FF-Hindsight is able
to occasionally consider low probability outcomes as well
as produce policy trajectories that are not overly optimistic,

but realistic.
The length of each policy trajectory produced gives a pos-

sible distance to the goal. Averaging over the lengths of mul-
tiple policy trajectories from the same state, but with differ-
ent futures, gives an expected distance to the goal. Of course,
generating more trajectories takes more time but also helps
approximate the distance to the goal better. FF-Hindsight
generates an equal number of policy trajectories for each ac-
tion applicable to the current state, and then averages them
to determine an expected distance to the goal if that action
is taken. During online search, FF-Hindsight uses the policy
trajectories as a heuristic only. It chooses the action with the
minimum expected distance to the goal and then discards the
the policy trajectories that were generated.

FF-Hindsight was later modified in three significant ways,
and called FF-Hindsight+ (Yoon et al. 2010). First, Instead
of sampling an equal number of trajectories for every action,
trajectories are generated from the current state in order to
determine which of that state’s actions show up first in any of
the trajectories (called, ”probabilistically helpful actions” or
PHAs). An equal number of trajectories are then generated
through each of these PHAs only. Second, after selecting the
action with the minimum expected distance to the goal, FF-
Hindsight+ keeps the longest prefix that all trajectories of
that action share in common. Third, it always includes an all-
outcome generated trajectory when calculating the average.

Future Work
While POND-Hindsight performed well on crossing traffic
and navigation, some work needs to be done to get it to suc-
ceed for the remaining domains.

The lookahead algorithm should use A* search instead
of greedy best-first search. With a poor heuristic, that of-
ten plateaus, this would result in more of a breadth-first
search which would take significantly longer to complete
than greedy best-first search. However, with a good heuris-
tic, A* has the potential to reach the horizon almost as
quickly as greedy best-first search but with a much greater
chance at finding a good plan.



Common random numbers should be shared among fu-
tures in the lookahead algorithm, as was done for FF-
Hindsight.

Some problems, such as crossing traffic and navigation,
have absorbing states. Once one of these states has been
reached there is no need to perform any more online plan-
ning - a random or noop policy is just as sufficient. Be-
cause observations are sampled, it’s important that POND-
Hindsight performs lookahead by producing non-stationary
policies, just like FF-Hindsight. This allows different actions
to be performed, at later times, from the same belief state.
However, by simply recognizing absorbing states as ones
that have only one possible outcome, and that the outcome
leads back to itself, online planning can end earlier and sig-
nificantly cut down on computation time.

Conclusion
Extending the concept of hindsight optimization from MDPs
to POMDPs is an appealing approach to applying the ad-
vances in planning heuristics and search algorithms. While
the competition results are promising in a few domains, ad-
ditional work is required to fulfill the potential of HOP in
POMDPs.
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Little, I., and Thiébaux, S. 2007. Probabilistic planning vs
replanning. In ICAPS Workshop on IPC: Past, Present and
Future. Citeseer.
Majercik, S., and Littman, M. 2003. Contingent planning
under uncertainty via stochastic satisfiability. AIJ 147(1-
2):119–162.
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight.
In Proceedings of Conference on Artificial Intelligence
(AAAI).
Yoon, S.; Ruml, W.; Benton, J.; and Do, M. 2010. Improv-
ing Determinization in Hindsight for Online Probabilistic
Planning.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A base-
line for probabilistic planning. In 17th International Con-
ference on Automated Planning and Scheduling (ICAPS-
07), 352–359.


