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Abstract

Coming up with a plan for a team that operates in a non-
deterministic environment is a complex process, and the
problem is further complicated by the need for team mem-
bers to communicate during the process of planning and the
execution of plans. Dialogues can be used to coordinate both
the planning process and the plan execution. In this work I de-
velop a model for constructing joint plans for a team of agents
that takes into account their communication needs while ac-
commodating multiple agents’ inconsistent specifications of
transitions, initial states, and goals. The model builds on re-
cent developments in symbolic non-deterministic planning,
ideas that have not previously been applied to this problem.

Introduction
One of the fundamental problems in multiagent systems is
how to get a team of agents to coordinate their behavior.
While there are situations in which agents can do this with-
out needing to communicate (Genesereth, Ginsberg, and
Rosenschein 1988), in general coordination requires com-
munication. Another important part of coordination is hav-
ing the agents decide what to do. Since (Bratman, Israel,
and Pollack 1988), the process of deciding what to do is
considered to break down into two parts — deciding what
goals to achieve, what (Bratman, Israel, and Pollack 1988)
callsdeliberation, and then deciding how those goals might
best be achieved, which is usually described asplanning. In
this work I am interested in the planning part of the pro-
cess while the problem of establishing joint intentions (Co-
hen and Levesque 1991) is tackled through non-monotonic
reasoning on goals.

I am also greatly concerned with communication. Much
recent work on agent communication uses argumentation-
based dialogue (Parsons and McBurney 2003), and the long
term goal of our work is to extend existing work on mul-
tiagent planning by developing models by which a team of
agents can, in the course of an argumentation-based dialogue
— by which we mean a process during which agents put for-
ward suggested partial plans backed by reasons, as in (Tang
and Parsons 2005) — develop a plan for the team. We want
this to be done in a way that respects the non-deterministic
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nature of the world, and which yields efficient implementa-
tion. This paper takes several steps towards this goal.

In particular, this work gives a mechanism, in both cen-
tralized and decentralized form, by which a multiagent team
can construct plans that take into account the need to com-
municate to ensure that the plan is executed correctly (Par-
sons et al. 2008). By introducing new structures and vari-
ables for multiagent systems and dialogues, extending the
non-deterministic planning, our approach can make use of
new techniques from model-checking to provide efficient
implementations. The extension incorporates the elements
necessary to take multiple agents, and the necessary com-
munication, into account. The use of a symbolic model
makes it possible to turn the plan construction process into
an argumentation-based dialogue in the future.

Building our approach on top of work in planning has ad-
vantages beyond ease and efficiency of implementation. By
appropriating the underlying formal models, it is easy to ac-
quire suitable formal guarantees for the planning model. Itis
straightforward, for example, to show that given an adequate
description of the world, any plan that our planning process
will construct is both a feasible and, in a specific sense an
optimal, way to achieve the goals of the plan.

Multiagent Systems and Dialogues
This work uses a state-space model as a basis for the formal-
isation. This model is an adaptation of a model commonly
used in non-deterministic planning (Cimatti et al. 2003).
Statesare objects that capture some aspect of a system,
and actionsare transitions between states. States and ac-
tions together define astate-space. When action effects are
non-deterministic then what one seeks for any state-space
is a policy: i.e. a state-action table to specify which ac-
tions one should take in a given state. We define a non-
deterministic state transition domain (NSTD) to be a tuple
M = 〈P,S,A,R〉 where:

• P = PS ∪ PA is a finite set of propositions;

• S ⊆ 2PS is the set of all possible states;

• A ⊆ 2PA is the finite set of actions; and

• R ⊆ S ×A× S is the state-transition relation.

We model how the agents can influence the external world as
apolicy, and we consider it to simply be a set of state-action



pairs,
π = {〈si, ai〉}

wheresi ∈ S andai ∈ A(s) with A(s) = {a|∃〈s, a, s′〉 ∈
R} that is the set of actions that are applicable ins. It is
the state-action table used of (Cimatti et al. 2003). It is
also related to what the literature on MDPs calls a policy
(Boutilier, Dean, and Hanks 1999).

Over the proposition variables, a propositional language
L with quantification extension can be defined by allowing
standard connectives∧,∨,→,¬ and quantifiers∃,∀. The
resulting language is a logic of quantified boolean formulae
(QBF) (Bryant 1992). Asymbol renaming operation, which
we use below, can be defined onL. For a formulaξ ∈ L, if ~x
and~x′ are two vectors of propositional variables, then a vari-
able renaming operation can be defined byξ[~x/~x′] which
means that all the appearances of variables~x are substituted
by ~x′.

Multiagent Systems
A multiagent system is composed ofN agents,AGS =
{T1, . . . , TN}. We model each agentTi with a NSTD
Mi = 〈Pi,Si,Ai,Ri〉 wherePi = Pi,S ∪ Pi,A, and as-
sociated with a local policyπi. The multiagent system as a
whole is modeled as a joint NSTDM = 〈P,S,A,R〉 along
with with a joint policyπ. The set of proposition variables
in the joint model is the union of those of individual agents:
PS =

⋃N

i=1 Pi,S andPA =
⋃N

i=1 Pi,A. The joint states, ac-
tions, and state transitions are the result of interpretingPS

andPA as in the basic NSTD. The individual transition re-
lation and the policy can be projected from the joint system:
Ri = ∃−Pi

R andπi = ∃−Pi
π where−Pi means the set

of variables in the formula being quantified but not inPi.
To distinguish from the dialogue model below, we call the
individual modelsMis and the joint modelMs, and the as-
sociated policesπis andπ theexternalNSTDs and polocies.

Dialogue Systems
In addition to the external transition systemMi, each
agentTi is also associated with dialogue transition system
Mi,D = 〈Pi,D,Si,D,Ai,D,Ri,D〉 and a dialogue policy
πi,D. The joint dialogue system is then defined as,MD =
〈PD,SD,AD,RD〉, along with a joint dialogue policyπD.
The set of proposition variables in the joint model is the
union of those of individual agents:PS,D =

⋃N

i=1 Pi,S,D

andPA,D =
⋃N

i=1 Pi,A,D. The joint dialogue states, ac-
tions, and state transitions are the result of interpretingPS,D

andPA,D as in the basic NSTD. The individual transition re-
lation and the policy can be projected from the joint dialogue
system:Ri,D = ∃−Pi,DRD andπi,D = ∃−Pi,D

πD. Dif-
ferent from the external policyπ, the requirement for a dia-
logue policyπD is that the individual agent can execute the
projectedπi,D without knowing the other agents’ dialogue
states so that the dialogue can help the multiagent system
coordinate the joint external policy execution.

Handling Inconsistent Specifications
In a multiagent system, different agents, acting on behalf of
different users, may have inconsistent information about the

transitions, the initial and goal states. We need a mecha-
nism to accommodate these inconsistent information, while
the whole system can still reach an agreement on the joint
model. Using the STRIPS-style specifications, for exam-
ple STRIPS (Fikes and Nilsson 1971), PDDL (Ghallab et al.
1998), ADL (Pednault 1994) as the front-end specifications
to our multiagent specifications, each agentTi maintains a
tuple of information

〈TRi, FRi,MRi, Ii, Gi〉

where

• TRi = {TRi,k} is a list of local state transition specifi-
cations,

• FRi = {FRi,k} is a list of frame specifications,

• MRi = {MRi,k} is a list of multiagent interaction con-
straints,

• Ii = {Ii,k} is a list of initial state specifications, and

• Gi = {Gi,k} is a list of goal state specifications.

The entries inTRi andFRi depends only on the variables
in Pi, and entries inMRi can have any variables inP in
general. Here, we takeFRi,k = pi,k ↔ p′i,k for each state
variable inPi,S to specify thatpi,k doesn’t change by de-
fault.

Each entry inTRi, FRi, MRi, Ii andGi is associated
with a label variable. The association is in the form of a
one-to-one mapping

〈LABELi,k, INPUTi,k〉

stands for〈lti,k, TRi,k〉, 〈lfi,k, FRi,k〉, 〈lmi,k,MRi,k〉,
〈lii,k, Ii,k〉, and〈lgi,k, Gi,k〉. Correspondingly, these vari-
ables are grouped intoPi,L∗ where ∗ stands any of
TR,FR,MR, I,G. With these labeling variables, we can
encode the selection of a set of specifications using QBFs.
Let σ ⊆

⋃N

i=1(TRi ∪ FRi ∪ MRi), we define

SEL(σ) =
∧

TRi,k 6∈σ

(¬lti,k) ∧
∧

FRi,k 6∈σ

(¬lfi,k) ∧
∧

MRi,k 6∈σ

(¬lmi,k)

∧
∧

TRi,k∈σ

(lti,k) ∧
∧

FRi,k∈σ

(lfi,k) ∧
∧

MRi,k∈σ

(lmi,k)

SEP (σ) = SEL(σ)∧
∧

TRi,k∈σ

TRi,k

∧

FRi,k∈σ

FRi,k

∧

MRi,k∈σ

MRi,k

Let

C{INPUT}i =
∧

k

({LABLE}i,k → {INPUT}i,k)

where{INPUT} stands any ofTR,FR,MR, I,G, and
{LABLE} stands for the corresponding label variables to
encode the local state transition specification combinations
(CTR), frame specifications (CFR), inter-agent specifica-
tions respectively (CMR), initial states (CI) and goal states
(CG). Now we can encode all the consistent combinations
with linear number of BDD operations:



Algorithm 1 Weak Planning
1: function weakP lan(R, I, G) { (1) R: The transition relation;

(2) I: The set of initial states; (3)G: The set of goals states }
2: FT ← G, SA← ∅, CoveredStates← FT
3: repeat
4: newSA← computePreImage(R, FT ′)
5: FT ← ∃PA

newSA
6: ∆SA← prune(SA, newSA)
7: SA← SA ∨∆SA
8: CoveredStates← CoverredStates ∨ FT
9: until ∆SA == ∅ OR (I ⊆ CoveredStates)

10: return SA
11: end function

Proposition 1. Let CONSR =
∧N

i=1(CTRi ∧ CFRi ∧
CMRi), we have

CONSR =
∨

σ⊆
S

N
i=1

(TRi∪FRi∪MRi)

SEP (σ)

Proof. By a → b ≡ a → (a∧ b) and disjunctive expansion.

As SEP (σ) = FALSE for any inconsistent combina-
tion, inconsistent combinations are automatically excluded
from CONSR. However,CONSR contains the empty
combinations. We can overcome this by introducing a spec-
ification combination criteriaSCC:

CONSR+ = CONSR ∧ SCC

There can be many choices forSCC. One of them is
SCC = ¬ZTR1∧¬ZTR2∧. . .∧¬ZTRN whereZTRi =
∧

TRi,k∈TRi
(¬lti,k). It is to encode that each agent must

contribute at least one specification of their local transitions.
CONS+ contains the union of all consistent combina-

tions which over-branches multiagent system into uncertain-
ties. We can filterCONS+ by only keeping the maximal
consistent sets of specifications

RMR = Max(CONS+, ξ(⊆)[PLMR])

R = Max(RMR, ξ(⊆)[PLTR]) (1)

The set maximal functionMax can be computed using
QBF/BDDs as showed in (Tang, Norman, and Parsons 2010)
. The joint maximal or minimal consistent initial statesI and
the goal statesG can be computed in a similar manner which
we omitted here due to the length limit. .

Multiagent Planning
Centralized Planning
We can then feed theI, G, andR computed above into a
basic weak planning process, as Algorithm 1 adapted from
(Cimatti et al. 2003), to obtain a joint multiagent policy and
then utilize the coordination dialogues proposed in (Tang,
Norman, and Parsons 2009a) to coordinate the necessary
inter-agent behaviors.

Algorithm 2 AgentTi’s Pre-Image Computation
1: function computePreImage(CTRi, FT ′) { (1) CTRi:

AgentTi’s local combination on transition specifications; (2)
FT ′: The frontier states }

2: ComputeCTRi ∧ FT ′ and¬ĈTRi ∧ FT ′

3: for j = 1 . . . N , andj 6= i do
4: SendCTRi ∧ FT ′ to agentTj

5: Send¬ĈTRi ∧ FT ′ to agentTj

6: end for
7: Wait forCTRk∧FT ′ and¬ĈTRk∧FT ′ from all other agent

Tk (k = 1, . . . , N andk 6= i)
8: SA← ∃P′

S
,PLT R,PLMR,PLF R

(R ∧ FT ′)

9: return SA
10: end function

Decentralized Planning
By decomposing the expression ofR (Equation 1), we have

R ∧ FT ′ = SHRTR ∧

N
∧

i=1

(CTRi ∧ FT ′)∧

∀
bPLT R

(

N
∨

i=1

(¬ĈTRi ∧ FT ′) ∨ (¬ξξ̂LTR ∨ ξ̂ξLTR) ∧ FT ′

)

whereSHRTR is an expression for the information shared
by all the agents,ξξ̂LTR and ξ̂ξLTR are QBFs to encode
the subset (⊆) and superset (⊇) relations on the selection of
TRi,ks. Assuming that each agentTi knows all the labeling
symbols ofPLTR, then

• CTRi ∧ FT ′ can be computed by agentTi locally

• ¬ĈTRi ∧ FT ′ can be computed by agentTk locally

With this decomposition, we can then have a distributed ver-
sion ofcomputePreImage as in Algorithm 2.

Proposition 2. If every agent follows the algorithm 2 and
algorithm 1, the every agent computes a same joint policy.

Proof. Every agent obtains the same joint state frontierFT ′

at each search step. The agents following algorithm 2 com-
putes the same pre-image. Therefore, when the algorithm 1
end, all the agents will compute a same joint policy.

Note that the concern of the decentralized planning is not
to save computations but to have all the agents reach con-
sensus on a joint policy.

Integrating Dialogues
In (Tang, Norman, and Parsons 2009a) I integrate the plan-
ning of external policies with the planning of dialogue poli-
cies. The approach incorporates the information of external
states, state transitions and policy into the dialogue states.
Dialogue actions are then used to communicate the truth
values of the variables carrying this information between
agents. Dialogue state transitions are automatically gener-
ated regarding the ontology of the external states and ac-
tions, and the external policy. A dialogue policy is planned
by setting the goal dialogue states in which the external joint
states and actions are



• fully communicated with each other, or

• partially communicated to a level in which every agent
can compute a unique local action agreeing with their
shared joint policy

Implementations
I have been working on a C++ implementation of the sys-
tem (Tang, Norman, and Parsons 2009b). The focus is on
providing utilities to specify the complicated ontology over
the propositional variables needed to implement multiagent
planning and dialogues. In the implementation, I first spec-
ify the ontology for planning and dialogues, and then the
system will automatically generate the BDD variables and
BDDs for the QBFs. Currently the underlying BDD compu-
tation is implemented using my own naive implementation
for the convenience of tuning the ontology manipulations.
After the model becomes stable, I plan to bridge our im-
plementation to a proven BDD package for efficiency and
stability.

Conclusions
This paper has presented a model to integrate multiagent di-
alogues, planning, and plan execution. The model is sym-
bolic, and capable of handling non-deterministic actions.In
addition to the model, we have provided procedures for cre-
ating joint plans in a centralized or decentralized manner.In
combination with our multiagent dialogue models, the plans
can include the communication necessary for plan execution
— that is the detection and communication of information
relevant to the execution of the plan. I believe this is the
first time that this kind of planning model, drawn from the
literature of non-deterministic planning, has been combined
with a communication model and then applied to multiagent
teams.

I am working to extend the non-deterministic transition
model to Markov Decision Processes (MDPs) (Tang and
Parsons 2009) to utilize the statistical information. Another
area of future work is incorporating prior work on cog-
nitive models of non-monotonic reasoning and dialogues,
the argumentation-based approaches, on planning (Tang and
Parsons 2005), which assumes a simple, deteministic model
of actions, with the work I have described here. Another
area of future work, which addresses the main area in which
this model falls short of a model of teamwork, is to consider
the formation of joint intentions. Here there is a rich vein of
work to draw on, for instance (Cohen and Levesque 1990;
Grosz and Kraus 1999), and I will seek to incorporate this
into the model.
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