
Large-Scale Parallel State Space Search on the GPU

Damian Sulewski
University of Bremen

sulewski@tzi.de

Abstract

In my thesis I will develop new algorithms to utilize the par-
allel processing power of current graphics processing units
(GPUs) in state space search. The thesis will examine the
potential of modern GPUs and compare to the multi-core
approach, pointing out the differences in architecture and
programming model. This short paper describes the results
achieved so far, and gives an outlook into current and future
work.

Introduction
Parallel computing has become a widely used standard in
modern hardware. Utilizing more than one core was only
possible on clusters of computers several years ago, today
every workstation includes a central processing unit (CPU)
with four or more computing cores. Inspired by connected
workstations, and motherboards with multiple core chips,
multi-core CPUs allow to use each core individually for out-
standing tasks realising a multiple instruction multiple data
(MIMD) structure.

In contrast, graphics processing units, constructed for vi-
sualising data on a computer screen evolved in powerful sin-
gle instruction multiple data (SIMD) architecture. Driven
by the fact that in graphics processing the same calculation
has to be performed on thousands of image points, engineers
have assembled hundreds of cores in one chip. This architec-
ture prefers sequential memory access, and dislikes branches
in source code.

Recently the GPU producer NVIDIA has presented a gen-
eral programming interface called Compute Unified Device
Architecture (CUDA) (Lindholm et al. 2008) allowing pro-
grammers to use the graphics card as a general purpose
graphics processing unit (GPGPU or (GP)2U). This inspired
scientists from different domains to develop applications uti-
lizing the GPU. Among others, algorithms for sorting (Leis-
chner, Osipov, and Sanders 2009; Satish, Harris, and Gar-
land 2009) and hashing (Alcantara et al. 2009) have been
already presented.

Using external storage mainly, like Munagala and Ranade
already proposed in 1999 for undirected graphs, and Korf
(2003) for implicit graphs, or using it auxiliary, like Korf

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Texture Processor Cluster 1 T
exture

P
rocessor

C
lusters

2
...10

Global memory

Streaming
Multiprocessor 1

shared
m

em
ory

Streaming
Processors

Streaming
Multiprocessor 2

shared
m

em
ory

Streaming
Processors

Streaming
Multiprocessor 3

shared
m

em
ory

Streaming
Processors

special function unit 2

special function unit 1

special function unit 2

special function unit 1

special function unit 2

special function unit 1

Figure 1: Sample GPU Architecture (G200 Chipset).

(2008) enabled the search engine to traverse larger search
spaces. Externalizing the search space on disk reveals a
nearly unlimited storage space with nowadays magnetic
hard disks. Combining several of them to a RAID array re-
sults in high transfer speeds pushing the bottleneck back to
the computing unit. With the recent advances in the technol-
ogy of solid state drives, used already efficiently in model
checking (Šimeček et al. 2008) exploration performance is
becoming more of importance than storage.

A rising number of parallel search variants have been
studied (Korf and Schultze 2005; Zhou and Hansen 2007)
utilizing external memory, being developed for multi-core
architecture. This algorithms rely on unsynchronized work
flows running on disjoint cores, and are inefficient on SIMD
hardware where all cores should execute the same instruc-
tions.

GPU Essentials

To motivate the decisions resulting in the studied algorithms
the concepts are developed for the state-of-the-art graphics
cards hosting NVIDIA GPUs, but portable to other vendors
due to transferable basics.

As mentioned above, the GPU architecture mimics a
SIMD computer with the same instructions running on all
processors. It supports different layers of memory access,
forbids simultaneous writes but allows concurrent reads
from one memory cell.

Consider the G200 chipset1, as found in NVIDIA GPUs
and illustrated in Figure 1, a core is a streaming processor
(SP). 8 SPs are grouped together to one streaming multipro-
cessor (SM), and used like ordinary SIMD processors. Each
of the 10 texture processor clusters (TPCs) combines 3 SMs,
yielding 240 cores in one chip.

Memory, visualized dashed in the figure, is structured hi-
erarchically, starting with the GPU’s global memory (video
RAM, or VRAM). Access to this memory is slow, but can
be accelerated through coalescing, where adjacent accesses
are combined to one access. Each SM includes 16 KB of
memory (SRAM), which is shared between all SPs and can
be accessed at the same speed as registers. Additional regis-
ters are also located in each SM but not shared between their
SPs. Data has to be copied from the systems main memory
to the VRAM to be accessible by the threads.

The GPU programming language links to ordinary C-
sources. The function executed in parallel on the GPU is
called kernel. The kernel is driven by threads, grouped to-
gether in blocks. All the SPs get the same chunk of code, so
that SPs in an else-branch wait for the SPs operating in the
according if-branch, being idle. After all threads have com-
pleted a chunk of code, the next one is executed. Threads
waiting for data can be parked by the SM, while the SPs
work on threads which have already received their data.

Achievements
Probabilistic Model Checking on the GPU
Significant runtime gains can be achieved exploiting the
power of GPUs in probabilistic model checking. This is be-
cause basic algorithms for probabilistic model checking are
based on matrix-vector multiplication. These operations en-
joy very efficient implementation on GPUs. Because of the
massive parallelism impressive speedups with regard to the
sequential counterparts of the algorithms are common. The
algorithm developed in (Bošnački, Edelkamp, and Sulewski
2009) is a parallel adaptation of the iteration method of
Jacobi for solving linear equation based on a sequence of
matrix-vector products. Jacobi’s method chosen over other
methods that usually outperform it on sequential platforms
because of its lower memory requirements and potential to
be parallelized because of fewer data dependencies. The
algorithm features sparse matrix vector multiplication. It
requires a minimal number of copy operations from RAM
to GPU and back, and is implemented on top of the proba-
bilistic model checker PRISM (Kwiatkowska, Norman, and
Parker 2002). The prototype implementation was evaluated
on several case studies and remarkable speedups (up to fac-
tor 18) were achieved compared to the sequential version of
the tool.

Explicit State Model Checking on the GPU
My thesis also pioneers applying GPGPU technology to
explicit-state model checking. This work covers the en-
tire model checking process, including checking enabled-
ness and generating the successors on the GPU. Meanwhile,

1Next generation GPUs effectively only differ in the amount of
the components found on the chip and the sizes of the memories.

a different approach to explicit-state GPU-based model has
been published (Barnat et al. 2009) that transforms (MAP)
LTL model checking to a matrix multiplication problem to
apply fast operations on the graphics card. The speed-ups
are considerable, but the approach applies to small models
only. A conceptually different algorithm was presented by
me in 2009, suited to parallel model checking large mod-
els. In such large-scale verification state spaces are likely
to be too big to fit into main memory. Moreover, for very
small models, the overhead of moving data from the CPU
to the GPU and back can be larger than the savings ob-
tained on the GPU. My thesis focuses on breadth-first search
(BFS) to generate the entire state space. BFS is sufficient
for the verification of safety properties. As identified e.g.
in (Barnat et al. 2008), complete state space construction
via BFS can be the performance bottleneck for large-scale
external-memory checking of LTL. Last, but not least, BFS
is also the basis for constructing a perfect hash function on
disk, the basis for semi-external (Edelkamp, Sanders, and
Šimeček 2008) and hash-memory efficient model check-
ing (Edelkamp and Sulewski 2008). After having generated
the state space on the hard disk, its compression is consider-
ably fast. Sorting-based external-memory BFS (Korf 2003;
Stern and Dill 1996) bares three computational intensive
tasks, all portable to the GPU. Hence, the developed algo-
rithm divides into three different stages applied to each BFS
layer: 1) test the applicability of transitions against the cur-
rent state; 2) generate the set of successors for all states and
enabled transitions. 3) apply delayed duplicate detection by
sorting and scanning all successors. The first two stages re-
quire transition guards and value assignments to stay in the
GPU’s global memory. Here, the polish reverse notation is
chosen, since it offers the possibility to concatenate all tran-
sition descriptions to one integer vector and a memory effi-
cient exploration. For all three stages significant individual
speed-ups of more than one order of magnitude are obtained
for analyzing benchmark protocols on the GPU. The over-
head in combining the results of the different stages in the
CPU and the I/O bandwidth limitation limits the – still no-
ticeable – overall speed-ups.

Exploration of Single-Player Games on the GPU

Cooperman & Finkelstein (1992) show that, given a mini-
mal reversible perfect hash function, two bits per state are
sufficient to conduct a complete breadth-first exploration of
the search space. The running time of their approach is
determined by the size of the search space times the max-
imum breadth-first layer (times the efforts to generate the
children). Their algorithm uses two bits, encoding numbers
from 0 to 3, with 3 denoting an unvisited state, and 0, 1, and
2 denoting the current depth value modulo 3. The main ef-
fect is that this allows to separate newly generated states and
visited states from the current layer.

For the search we require certain characteristics of hash
functions.

Definition 1 (Hash Function) A hash function h is a map-
ping of some universe U to an index set [0, . . . ,m− 1].

The set of reachable states S is a subset of U , i.e., S ⊆ U .
An important class are injective hash functions.

Definition 2 (Perfect Hash Function) A hash function h :
U → [0, . . . ,m − 1] is perfect, if for all s ∈ S with h(s) =
h(s′) we have s = s′.

Definition 3 (Space Efficiency) The space efficiency of h is
the proportion dm/|S|e of available hash values to states.

Definition 4 (Minimal Perfect Hash Function) A perfect
hash function h is minimal if its space efficiency is 1.

A minimal perfect hash function is a one-to-one mapping
from the state space S to the set of indices {0, . . . , |S| − 1},
i.e., m = |S|. In contrast to open-addressed or chained hash
table, perfect hash functions allow direct-addressing of bit-
state hash tables, This allows to compress the set of visited
states Closed. The other important property to also compress
the list of frontier nodes Open is that the state vector can be
reconstructed given the hash value, e.g. indicated by the
position in a bit vector.

Definition 5 (Reversible Hash Function) A perfect hash
function h is reversible, if given h(s), the state s ∈ S can be
reconstructed. A reversible minimum perfect hash function
is called rank, while the inverse is called unrank.

We will see that for an implicit exploration of the search
space in which array indices serve as state descriptors, re-
versible hash functions are required.

Permutation Rank as a Hash Function Korf and
Schultze (2005) use two lookup tables with a space re-
quirement of O(2N log N) bits to compute the lexicographic
ranks (and their inverse).2 Bonet (2008) discusses time-
space trade-offs and provides a uniform algorithm that takes
O(N log N) time and O(N) space. As we are not aware
of any O(N) time and O(N) space algorithm for lexico-
graphic ranking and unranking, we studied the ordering in-
duced by Myrvold and Ruskey (2001) in their rank1 and un-
rank1 functions. .

Binomial Coefficient as a Hash Function For states con-
sisting of a fixed number of Boolean variables it suffices to
store which of them is assigned to true to identify each state.
Traversing the search graph and generating successors flips
the status of individual state variables depending on the suc-
cessor generating function. If the order of the variables is
fixed and the number of satisfied bits given, we can iden-
tify their position using a binomial coefficient. A binomial
coefficient

(
k
n

)
is the number of possible k-sets in a set of

n elements. Algorithm 1 describes how to assert a unique
rank to a given state. Since the number of k-sets in a n-set
is known, we can impose an ordering on these k-sets. This
ordering is given by the position of the variables that are sat-
isfied. The algorithm uses the number t of satisfied variables
and starts with a rank r = 0. For each unsatisfied variable
r is increased by the binomial coefficient given by the posi-
tion of this entry and the number of the remaining satisfied
variables.

2In a lexicographic ordering (a, b) < (a′, b′) iff a < a′ or a =
a′ and b < b′.

Algorithm 1 Binomial-Rank(s)
1: i := 0; r := 0
2: t := number of true values in s
3: while t > 0 do
4: i := i + 1
5: if si = 1 then
6: t := t− 1
7: else
8: r := r +

(
n−i
t−1

)
9: return r

Using the presented perfect hash functions and additional
properties we can externalize and parallelize the algorithm
presented in (Cooperman and Finkelstein 1992) to use the
GPU efficiently. While the bitvectors are stored on the ex-
ternal memory, partitioned into smaller chunks if possible,
only the ranks are transferred to the GPU memory. The GPU
transforms the rank into a representative of a state and gen-
erates all successors of it, whose ranks are transferred back
to the CPU and converted into positions in th bit-vectors.
Using this strategy significant speedups were achieved for
different problem domains.

Exploration of Two-Player Games on the GPU
Multinomial coefficients can be used to compress state vec-
tors sets with a fixed but permuted value assignment, e.g.,
board games state (sub)sets where the number of pieces for
each player does not change. For p players in a game on n
positions we use ki with 1 ≤ i ≤ p to denote the number of
game pieces owned by player i, and kn+1 for the remaining
empty positions.

Definition 6 For natural numbers n, k1, k2, . . . , km with
n = k1+k2+ . . .+km the multinomial coefficient is defined
as (

n
k1,k2,...,km

)
:= n!

k1!·k2!·...·km! .

Since
∑p+1

i=0 ki = n we can deduce value kp+1 given
k1, k2, . . . , kp. We present multinomial hashing for p = 2
but the extension to three and more players is intuitive.

We will write
(

n
k1,k2

)
for
(

n
k1,k2,k3

)
with k3 = n− (k1 +

k2) and distinguish pieces by enumerating their colors with
1, 2, and 0 (empty).

Let Sk1,k2 be the set of all possible boards with k1 pieces
of color 1 and k2 pieces in color 2. The computation of the
rank for states in Sk1,k2 is provided in Algorithm 2.

Using the value of the corresponding multinomial coef-
ficient as a hash function the results of (Gasser 1996) were
verified, proving his results in a strong solution complete
state space search on a PC, while the paper applies pruning
on a cluster.

Discussion and Outlook
The general aim of my work is to develop parallel algo-
rithms for enumerating large state spaces exceeding the main
memory of systems utilizing parallel external drives. The
achieved results identify the GPU not only as a powerfull

Algorithm 2 Rank
Require: Game state vector: state[0, . . . , n− 1],

number of pieces in color 1: lones ,
number of pieces in color 2: ltwos

Ensure: Rank: r ∈ {0, . . . , |S|}
1: i ← 0, r ← 0
2: while i < n do
3: if state[i] = 2 then
4: ltwos ← ltwos − 1
5: else if state[i] = 1 then
6: if ltwos > 0 then
7: r ← r +

(
n−i−1

lones ,ltwos−1

)
8: lones ← lones − 1
9: else

10: if ltwos > 0 then
11: r ← r +

(
n−i−1

lones ,ltwos−1

)
12: if lones > 0 then
13: r ← r +

(
n−i−1

lones−1,ltwos

)
14: i ← i + 1
15: return r

coprocessor for the CPU, but also as an efficient main ac-
tor in planning. The remaining work for this thesis will be
to generalize the strategies applied to domain specific prob-
lems, to use them independent of the problem domain.

References
Alcantara, D. A.; Sharf, A.; Abbasinejad, F.; Sengupta, S.;
Mitzenmacher, M.; Owens, J. D.; and Amenta, N. 2009.
Real-time parallel hashing on the gpu. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH Asia 2009)
28(5).
Barnat, J.; Brim, L.; Šimeček, P.; and Weber, M. 2008. Re-
visiting resistance speeds up i/o-efficient ltl model check-
ing. In Ramakrishnan, C. R.; Rehof, J.; Ramakrishnan,
C. R.; and Rehof, J., eds., TACAS, volume 4963 of Lecture
Notes in Computer Science, 48–62. Springer.

Barnat, J.; Brim, L.; Češka, M.; and Lamr, T. 2009. CUDA
accelerated LTL Model Checking. In 15th International
Conference on Parallel and Distributed Systems (ICPADS
2009), 34–41. IEEE Computer Society.
Bonet, B. 2008. Efficient algorithms to rank and unrank
permutations in lexicographic order. In AAAI-Workshop on
Search in AI and Robotics.
Bošnački, D.; Edelkamp, S.; and Sulewski, D. 2009. Ef-
ficient probabilistic model checking on general purpose
graphics processors. In Proceedings of the 16th Inter-
national SPIN Workshop on Model Checking Software.
Berlin, Heidelberg: Springer-Verlag. 32–49.
Cooperman, G., and Finkelstein, L. 1992. New methods for
using cayley graphs in interconnection networks. Discrete
Applied Mathematics 37/38:95–118.
Edelkamp, S., and Sulewski, D. 2008. Flash-efficient ltl
model checking with minimal counterexamples. In SEFM
’08: Proceedings of the 2008 Sixth IEEE International
Conference on Software Engineering and Formal Methods,

volume 0, 73–82. Washington, DC, USA: IEEE Computer
Society.
Edelkamp, S.; Sanders, P.; and Šimeček, P. 2008. Semi-
external ltl model checking. In Gupta, A.; Malik, S.; Gupta,
A.; and Malik, S., eds., CAV, volume 5123 of Lecture Notes
in Computer Science, 530–542. Springer.
Gasser, R. 1996. Solving nine men’s morris. Computa-
tional Intelligence 12:24–41.
Korf, R. E., and Schultze, P. 2005. Large-scale parallel
breadth-first search. In Veloso, M. M.; Kambhampati, S.;
Veloso, M. M.; and Kambhampati, S., eds., AAAI, 1380–
1385. AAAI Press / The MIT Press.
Korf, R. E. 2003. Delayed duplicate detection: extended
abstract. In IJCAI’03: Proceedings of the 18th inter-
national joint conference on Artificial intelligence, 1539–
1541. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc.
Korf, R. E. 2008. Minimizing disk I/O in two-bit breadth-
first search. In AAAI’08: Proceedings of the 23rd national
conference on Artificial intelligence, 317–324. AAAI
Press.
Kwiatkowska, M.; Norman, G.; and Parker, D. 2002.
Prism: Probabilistic symbolic model checker. 200–204.
Springer.
Leischner, N.; Osipov, V.; and Sanders, P. 2009. Gpu
sample sort.
Lindholm, E.; Nickolls, J.; Oberman, S.; and Montrym,
J. 2008. Nvidia tesla: A unified graphics and computing
architecture. Micro, IEEE 28(2):39–55.
Munagala, K., and Ranade, A. 1999. I/o-complexity of
graph algorithms. In SODA ’99: Proceedings of the tenth
annual ACM-SIAM symposium on Discrete algorithms,
687–694. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics.
Myrvold, W., and Ruskey, F. 2001. Ranking and unranking
permutations in linear time. Information Processing Letters
79(6):281–284.
2009. Efficient Explicit-State Model Checking on General
Purpose Graphic Processors.
Satish, N.; Harris, M.; and Garland, M. 2009. Designing
efficient sorting algorithms for manycore gpus. Parallel
and Distributed Processing Symposium, International 0:1–
10.
Stern, U., and Dill, D. L. 1996. Combining state
space caching and hash compaction. In In Methoden
des Entwurfs und der Verifikation digitaler Systeme, 4.
GI/ITG/GME Workshop, volume 4, 81–90.
Šimeček, P.; Sulewski, D.; Edelkamp, S.; Brim, L.; and
Barnat, J. 2008. Can flash memory help in model check-
ing? In 13th International Workshop on Formal Methods
for Industrial Critical Systems (FMICS 2008). ERCIM.
Zhou, R., and Hansen, E. A. 2007. Parallel structured
duplicate detection. In AAAI’07: Proceedings of the 22nd
national conference on Artificial intelligence, 1217–1223.
AAAI Press.

