
Integrating landmarks in partial order planners

Bram Ridder and Derek Long
University of Strathclyde

Glasgow, UK

Abstract

In this paper we continue a line of research which focusses on
reviving partial order planning. We focus on utilizing land-
marks (Porteous and Sebastia 2000) to split a planning prob-
lem into a set of subproblems. Our goal is to work towards a
planner which solely uses lifted actions and this work shows
some progress. We use the planning problems presented at
the 3rd International Planning Competition (Long and Fox
2003) and compare the results of our approaches to the origi-
nal VHPOP using lifted actions.

Introduction

In this work we continue a line of work that began with
the revival of partial order planning by a planner called
RePOP (Nguyen and Kambhampati 2001), which chal-
lenged the pessimism about the performance of partial order
planners by integrating state-of-the-art state-space planning
techniques and showed dramatic improvements. More re-
cent work saw VHPOP (Younes and Simmons 2003) enter-
ing the IPC-3 (Long and Fox 2003) planning competition,
again making use of state-of-the-art improvements in state-
space planning, and which was able to tackle temporal do-
mains winning the best newcomer prize. However, neither
of these approaches use lifted actions in their tests, because
no effective method has yet been found to take advantage
over grounded actions. To continue the line of work in par-
tial order planning we set out to evaluate the latest advances
in planning and incorporate and improve upon these tech-
niques in a partial order planning context. Our ultimate goal
is to plan efficiently with lifted actions and, ultimately, to
forego grounding altogether.

In this work we focus on integrating landmarks into the
latest version of VHPOP and utilize this information to split
the planning problem into smaller subproblems that are (we
hope) easier to solve than the original problem. Our hope
is that this renewed effort will revive the interest in partial
order planning and present a showcase for its merits. In the
first section we present the formalism used in the remainder
of the paper. Next we present a way to split up the plan-
ning problem into multiple subproblems and finally we will
discuss the search process and results.

Partial order planners

A (partial) plan can be represented by a tuple
〈A, L, O, B, G〉, where A is a set of operators,L a set
of causal links,O a set of ordering constraints defining a
partial order on the setA, B a set of binding constraints on
the action parameters, andG the set of open conditions to
be satisfied. Each actiona is an instance of some operator
A in the planning domain and a plan can contain multiple
instances of the same operator. A causal link,ai

q
→ aj

represents a commitment by the planner that preconditionq
of actionaj is to be fulfilled by an effect of actionai.

When given a planning problem, an initial partial plan is
generated by creating two additional actions:a0 which con-
tains as effects all literals in the initial states0 anda∞ which
has as preconditions the set of goal literalssg. The partial
plan is now generated by adding these two actions and by
orderinga0 beforea∞: 〈{a0, a∞}, ∅, {a0 ≺ a∞}, ∅〉.

A refinement planner works by adding elements to a plan
in order to remove flaws in the plan. A flaw can either be
an open condition

q
→ ai, which represents preconditionq of

an actionai which is not yet supported by another action,
or an unsafe link (or threat)ai

q
→ aj , whose conditionq

can unify with the negation of an effect of an actionak that
could possibly be ordered betweenai andaj . There are 3
different solutions to this problem: 1) Eitherak is ordered
beforeai (demotion); 2)ak is ordered afteraj (promotion);
3) or a binding constraint is introduced so that the effect of
ak cannot unify withq (separation).

During the planning process a partial order planner keeps
track of its plan-space in the setP . During every iteration
a planp ∈ P is selected and then a flaw is selected to be
resolved inp. All possible refinements resolving the flaw are
returned and added toP , until eitherP is empty (denoting
that no solution exists for the problem) or a plan without
flaws is found (a solution).

SAS+ formalism

A conciseSAS+ representation of a planning task can be
generated from a typical PDDL representation automatically
(Helmert 2009).

Definition 1 A SAS+ planning task is a tupleΠ =
〈V, O, s0, sg〉 where:



• V is a finite set of multi-valuedstate variables, each with
a finite domainDv. A fact is a pair〈v, d〉 (also written
v 7→ d), wherev ∈ V andd ∈ Dv. A partial variable as-
signments is a set of facts, each with a different variable.
A state is a partial variable assignment for all variables
v ∈ V .

• O is a set of operators, where an operatoro ∈ O is a tuple
〈name, prec, effects〉 of partial variable assignments.

• s0 is a state called the initial state.
• sg is a partial variable assignment called the goal.

An operatoro = 〈name, prec, effects〉 ∈ O is applicable
in states if prec ⊆ s. In that case, it can be applied tos,
which produces the states′ with s′(v) = effects(v) where
effects(v) is defined ands′(v) = s(v) otherwise. We write
s[o] for s′. For operator sequencesπ = 〈o1, . . . , on〉, we
write s[π] for s[o1] . . . [on] (only defined if each operator is
applicable in the respective state). The operator sequenceπ
is a plan iffsg ⊆ s0[π].

Integrating landmarks into VHPOP
The last partial order planner to enter the competition was
VHPOP (Younes and Simmons 2003) at ICAPS’03 (Long
and Fox 2003). Unfortunately, it was not able to perform
competitively with state-space planners such as FF (Hoff-
mann and Nebel 2001). In an attempt to bridge the gap in
performance between partial order planners and state-space
planners we explore the option of exploiting landmark in-
formation. In this paper we discuss an approach which uti-
lizes landmarks to split the problem into several subprob-
lems. Previous works – like STeLLa (Sebastia, Onaindia,
and Marzal 2006) – have attempted similar approaches us-
ing disjunctive landmarks, but our work makes no attempt to
present the planner with a consistent set of landmarks to plan
from. Instead we allow inconsistencies in every subproblem
– i.e. allow multiple landmarks which define distinct val-
ues for a state variable – and employ lifted actions to handle
these inconsistencies as we will explain below.

Splitting up the problem
In this section we describe the method employed to split up
the planning problem into subproblems, using landmarks.
One of the earliest papers on landmarks detailed a way to
split planning problems using landmarks (Hoffmann, Por-
teous, and Sebastia 2004)), by successively planning to the
“nearest” landmark until all are visited. We propose a dif-
ferent approach. First we discuss the process we used to
derive landmarks and the modifications we make in compar-
ison with earlier approaches. Next we explain how theland-
mark graphis used to split the problem up into consecutive
planning problems and finally we report on the heuristics
used and results obtained.

Deriving landmarks
Whereas state-space planners can successively plan to the
“nearest” landmark, using plan-space planning we do not
have the same option as we lack an explicit state definition.
Furthermore, landmark orderings derived using theLMRPG

(Richter, Helmert, and Westphal 2008) algorithm are not
sound which can distort the planning process and can cause
the planning process to fail on a task, even though the un-
derlying planning process is complete.

For this reason we use the landmark generation process
derived by Richter, Helmert and Westphal (2008) which pro-
duces sound orderings, leading to shorter plans and an im-
proved success rate, compared toLMRPG , when applied to
the same planners. As already observed, the process we use
to generate the landmark layers is quite similar to the ap-
proach adopted by STeLLa (Sebastia, Onaindia, and Marzal
2006).

Determining the ordering of landmarks

Given a landmark graphG = 〈L, E〉, where every vertex
l ∈ L represents a landmark and every edgee ∈ E is la-
belled with the type of ordering between its two vertexes:
e = 〈from, to, edgetype〉. The landmark generation graph
can be split up into separate landmark layers by iteratively
grouping all landmarks that have no incoming edges. We
start by labelling all landmarks as active. The first set of
landmarks is the initial state. After every iteration we label
all discovered landmarks as inactive and repeat the proce-
dure, until all landmarks have been marked as inactive. For
every landmark we denote the iteration number at which it
was made inactive, which we refer to as thelayer number,
this procedure ensures that, if landmarkl1 is ordered before
l2 in the landmark generation graph, then the layer number
of l1 is less than the layer number ofl2. Relating this work
back to STeLLa, this process guarantees the ordering prop-
erty.

Creating the landmark layers

Now we propose our stratification technique. Given a set
of pairs of landmarks and their respectivelayer number
H = 〈l, n〉 : l ∈ L; andn ∈ N, we divide these into
consecutive subsetsX1, X2, . . . , Xn, such that every sub-
set defines a state. The number of subsets is equal to the the
highest layer number. For the remainder of the discussion
we will add a notion of directionality: because we are doing
a goal-directed search, we say that the first subset is the goal
set and the last is the initial state.

Definition 2 A landmarkl ∈ L defines a variablev ∈ V if
either of the following properties hold:

• l is not disjunctive and the value ofl ∈ Dv, or

• l defines two or more distinct values forv.

Definition 3 A set of landmarksL defines a state if
∀v∈V ∃l∈L|l definesv.

Definition 4 Theminimal landmark layerat layer j is de-
fined as the subsetXj =

⋃

v∈V Xv
j . The set of values of

every state variablev ∈ V in Xj is defined as:

Xv
j =

{

{l : 〈l, j〉 ∈ H} if l definesv
Xv

j+1 otherwise



This definition ignores all landmarks that do not define a
variable, but it gives us a stratification of the planning prob-
lem. However, the choices represented by disjunctive land-
marks are an essential part of planning, especially as more
resources are available to accomplish a task. Therefor we
store all landmarks we ignored in the above definition in an-
other set, thelandmark action.

Definition 5 Given aminimal landmark layerat layerj Xj ,
thelandmark actionat the same layer is defined as the subset
Yj . The set of values of every state variablev ∈ V in Yj for
which the setXj was found at layeri is defined as:

Y v
j =

⋃

i>x≥j

{l : 〈l, x〉 ∈ H ∧ l does not definev}

We can now define the successivelandmark layersas
Z1, Z2, . . . , Zn, whereZi = 〈Xi, Yi〉.

Search process
Given an initial planP : 〈A, L, O, B〉, we define the first
subproblem as:P1 = 〈{a∞, X1, Y1}, ∅, {X1 ≺ Y1, X1 ≺
a∞, Y1 ≺ a∞}, ∅〉. To estimate the number of steps that
must still be completed from the currentlandmark layerto
the initial state, we apply the FF heuristichff . Sincehff uses
the RPG to derive its heuristic we can deal with goal literals
which define distinct values for state variables as it simply
accumulates all positive effects. To solveP we use VHPOP
with lifted actions.

A number of changes have been made to make better
use of the lifted action representation. For every lifted ac-
tion we define a domain for each of its variables and al-
low bindings between these variables and a set of atoms.
When disjunctive landmarks are present in theminimal land-
mark layeror thelandmark actioncausal links can be con-
structed which bind variables to a subset of effects which
support an open condition. For example, if we have an
open condition(at package1 s1)which is satisfied by the
action(DROP-PACKAGE package1 s1 ?var1)and we have
multiple supporters for the open condition(at s1 ?var1),
we bind the variable?var1 to that set, e.g. ?var1 ∈
{truck1, truck2, . . . , truckn}. Threats in a partial plan can
be resolved by adding restrictions to the domains of the vari-
ables (separation), when a domain becomes empty the par-
tial plan cannot be further refined and we need to backtrack.

Transitions to next subproblems
Once a subproblem is solved, we move on to the next sub-
problem. To do this, we first remove thelandmark action
andminimal landmark layerand all causal links it supports.
Next we insert the next set{Xi, Yi}, with the appropriate
orderings{Xi ≺ Yi, X1 ≺ a∞, Y1 ≺ a∞} as before. A
subproblem is solved if it contains no flaws, note that we
do not force variables to have a single value in its domain.
This allows us to refine the domains of the variables as we
solve the subsequent subproblems and only need to restrict
the domains when we encounter threats. For example, in
Figure 1 the subproblem is solved by adding the binding:
?var1 ∈ {truck1, truck2, truck3} as we do not force the

planner to select one over the other at this point. Rather,
we have the advantage of postponing this decision when we
can make a more informed decision.

Figure 1: We solve this subproblem by binding?var1 to
{truck1, truck2, truck3}

In a similar fashion: if we have a threat in our plan with
multiple refinements to resolve this threat, we allow them to
persist in a solution to a subproblem and only refine them
when absolutely necessary.

SAS+ mutex relations
The usage of theSAS+ representation allows us to derive
more mutex threats. VHPOP only detects a mutex relation
when a delete effect threatens a causal link, however con-
sider the following: when a causal link is created from the
initial state to the goal state supporting a valuev1 ∈ V . This
means that no other value of the same variable can be sup-
ported by any causal link. However, VHPOP allows these
causal links to be created and will only detect the mutex re-
lation when supporting an effect which explicitly removes
the valuev.

Empirical results
In order to test our approach we use the benchmark set from
IPC-3, the competition in which VHPOP competed, and test
our results against those of the latest version of VHPOP
using lifted actions. We have run two tests, first we show
the results of using grounded actions with the stratification
method and then we will detail the results of using the lifted
representation. Our main focus is to reduce the search space,
so the numbers denote the number of states visited before a
solution was found, see Table 1. We allowed the planners to
work for 10 minutes per problem instance, all problems un-
solvable due to the imposed time constraint are marked with
a ”-”.

Discussion and future work
Splitting the problem into subproblems
We note that the results for our approach using grounded ac-
tions does not yield very good results on all tested instances.
Part of this can be attributed to the fact that, upon achieving
each landmark layer, some causal links are broken and need
to be achieved again, but this is not the main reason why
we see these results. When we analyze the behavior of our
planner and how it traverses through the landmark layers we



Problem Landmarks and Grounded actionsLandmarks and Lifted actions VHPOP
driverlog 01 66 79 47
driverlog 03 94 1672 1242
driverlog 06 48 - 210728
driverlog 07 - 59365 175
zeno 01 6 10 10
zeno 02 19723 2810 5439
zeno 03 2034 87 28
zeno 04 2482 - 1264
zeno 05 - - 2572
zeno 06 - 5083 973
zeno 08 - 132451 -
depots 01 - 3880 26947
rovers 01 214 220 2075
rovers 02 72 123 96
rovers 03 632 518 21934
rovers 04 416 518 82
rovers 05 385 4610 1963
rovers 07 68728 - 126976
rovers 12 3876 - 6142
satellite 01 - 995 45
satellite 02 - 1131 1782
satellite 03 1454 5190 140
satellite 05 4313 1128 2829
satellite 07 - 1646 -
satellite 14 5407 - -
satellite 16 16453 - -
satellite 17 17887 - -

Table 1: Plans visited

see a critical flaw occurring in every single instance where
more resources are available to accomplish a task, e.g. mul-
tiple drivers and trucks are available to deliver the packages,
we force the planner to make a decision. So, for example,
when faced with a number of trucks to pick up a particular
package, the planner has very little information to use to de-
termine how hard it will be to get a particular truck to that
location; the same applies for getting a driver into a truck.
From the planner’s point of view, it can make use of any
available option from the landmarks and it is unable to dis-
criminate between them, as the rest of the planning problem
will only become apparent when advancing to the next layer.
The planner is forced at higher layers (i.e. closer to the goal)
to make a decision regarding the distribution of resources
and how to make use of them, when there is too little infor-
mation to guide its search and poor choices can lead to very
poor performance.

Lifted representation vs grounded actions

In an attempt to overcome the above limitations we decided
to plan with lifted actions, and associated every variable with
a domain of values it can be assigned. During the planning
process these domains are updated as the result of causal
links and through separations in order to deal with threats.
Using theSAS+ representation we can detect mutex rela-
tions more quickly and if the planning problem has multiple
resources to use these can be represented in the final plan (as
in Figure 1).

In the above results we see that we are able to improve
upon the grounded instance of splitting the problem up into
subproblems, making effective use of the disjunctive land-
marks. However, in bigger problem instances the benefit of
having landmarks quickly dissipates and we are better off
using grounded actions. One of the main problems is that
although we create bindings from a variable to a set of ob-
jects, these bindings are often pruned within the sameland-
mark layerwhich defeats the whole purpose of having these
bindings in the first place. These issues usually stem from

the fact that after splitting the problem intolandmark lay-
ers, we disregard the orderings between the landmarks and
bundle them together which confuses the planner.

A study of RealPlan (Srivastava 2000) shows that most
planners, paradoxically, have more trouble finding a solu-
tion when given more resources. This is partly because most
state-space planners ground all actions prior to planning,
which can take up quite some time, but also because they
tend to explore all possible actions from the current state.
We have yet to show that our planner scales well as the prob-
lem size increases, but we believe that it has a lot of potential
and that a lifted representation is key to get better scalingbe-
haviour.

Future work
• When aSAS+ variable has all its external dependencies

satisfied and can make transitions within its DTG without
changing external dependencies, we want to assume that
that variable takes all those values at the same time. E.g.
in the driverlog domain, a truck with a driver can visit all
the locations a truck can drive towards. This, we hope,
will prevent the planner from pruning the domains of the
action variables prematurely.

• Develop heuristics which do not depend on grounded ac-
tions. We still use VHPOP’s heuristics which require
grounding of the problem, we want to forgo grounding
all together.

• Take the ordering of landmarks into account during the
planning process.

• Represent the bindings in a problem as a constraints prob-
lem, which allows for reasoning over the domains of vari-
ables.

Conclusions
In this paper we have merely laid the groundwork for par-
tial order planning with lifted actions representation. How-
ever, there are still many points to improve upon as listed
above. We think that implementing these will allow us to
solve bigger problem instances and become more compet-
itive with state-of-the-art grounded planners. The perfor-
mance we achieve now is not competitive with the native
lifted action implementation of VHPOP.

References
Helmert, M. 2009. Concise finite-domain representations for PDDL planning tasks.Artif. Intell.
173(5-6):503–535.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast plan generation through heuristic
search.J. Artif. Intell. Res. (JAIR)14:253–302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered landmarks in planning.J. Artif. Intell.
Res. (JAIR)22:215–278.

Long, D., and Fox, M. 2003. The 3rd international planning competition: Results and analysis.J.
Artif. Intell. Res. (JAIR)20:1–59.

Nguyen, X., and Kambhampati, S. 2001. Reviving partial order planning.

Porteous, J., and Sebastia, L. 2000. Extracting and ordering landmarks for planning.J. Artif.
Intell. Res. (JAIR)22:2004.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks revisited. InAAAI, 975–982. AAAI
Press.

Sebastia, L.; Onaindia, E.; and Marzal, E. 2006. Decomposition of planning problems.AI
Commun.19(1):49–81.

Srivastava, B. 2000. Realplan: Decoupling causal and resource reasoning in planning. InIn
AAAI/IAAI, 812–818. AAAI/MIT Press.

Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Versatile heuristic partial order planner.J.
Artif. Intell. Res. (JAIR)20:405–430.


