

All for One or One for All?

Distributed Planning for Selfish or Cooperative Agents

Raz Nissim

Department of Computer Science,

Ben-Gurion University

raznissim@gmail.com

Abstract

Work in both Multiagent systems and in domain
independent AI has made substantial progress in recent
years. For Multiagent planning, on the other hand, only very
recently has a generic model that extends the single-agent
STRIPS model with game-theoretic constructs been
introduced, and a practical algorithm is yet to be introduced.
Constructing a general, fully distributed MA planning
algorithm for cooperative planning (paper to be published in
AAMAS 2010) was our first step towards creating a fully
distributed planner for MA systems, in which agents are
self-interested, but must cooperate in order to achieve their
goals. Such systems are realistic representations of real-
world MA systems, whose exploration is of great interest.
Distributed planning algorithms could also pave the road to
effective parallelization techniques for scaling up MA
planners, an area of growing interest in the planning
community.

 Introduction

A MA planning problem can be defined as follows:

Given a description of an initial state, a set of global goals,

and a set of agents such that each agent has its own

capabilities (operators) and private goals, find a plan for

each agent that achieves its private goals, so all plans are

coordinated and the global goals are achieved. Intuitively,

one would distinguish between two parts of solving such a

problem: planning and coordination.

Why, one might ask, should planning and MA planning be

studied separately? Is MA planning covered in the

discussion of planning? In some cases, the answer is yes. A

simple algorithm for the MA planning problem would have

all agents upload all their information to a single agent,

which would run a state-of-the-art centralized planner and

broadcast its solution to all agents. In real-life problems,

agents might have privacy restrictions and would object to

sharing all their information. Real-life agents, who may be

taxi drivers or airline pilots, may be self-interested, with

their financial benefit in mind. The centralized approach

would work as long as agents aren’t dependent on one

another (each can achieve its private goals without outside

help), but if dependencies between the individual tasks

exist, planning independently can result in conflicts. In this

case, the answer to our question whether MA planning is

covered in the discussion of planning is no. These inter-

dependent agents must plan and coordinate their

individual plans, to form a non-conflicting global plan

which achieves all goals.

Background

The Model

We consider a classical MA planning setting where agents

act with complete information and actions are

deterministic. The problems considered are ones that can

be expressed in MA-STRIPS (Brafman, Domshlak 2008),

a minimalistic MA-extension of the STRIPS language. We

use MA-STRIPS since it can easily be extended with

aspects such as time, resources, preferences, etc.

Definition 1: A MA-STRIPS Problem for a system of

agents Φ = {𝜑𝑖}i=1
k is given by a quadruple

Π= 𝑃,{𝐴𝑖}i=1
k , 𝐼,𝐺 , where:

 𝑃 is a finite set of propositions, 𝐼 ⊆ 𝑃 encodes the initial

state, and 𝐺 ⊆ 𝑃 encodes the goal conditions,

 For 1 ≤ 𝑖 ≤ 𝑘, 𝐴𝑖 is the set of actions that the agent 𝜑𝑖 is

capable of performing. Each action 𝑎 ∈ 𝐴𝑖 has the

standard STRIPS syntax and semantics, that is, 𝑎 =
 𝑃𝑟𝑒 𝑎 ,𝐴𝑑𝑑 𝑎 ,𝐷𝑒𝑙(𝑎) is given by its preconditions,

add effects and delete effects.

Such an MA-STRIPS problem Π induces dependencies

on the agents Φ. In what follows, we use 𝑣𝑎𝑟𝑠(𝑎) to

denote 𝑝𝑟𝑒 𝑎 ∪ 𝑎𝑑𝑑(𝑎) ∪ 𝑑𝑒𝑙(𝑎) and 𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑎) to

denote 𝑎𝑑𝑑(𝑎) ∪ 𝑑𝑒𝑙(𝑎). Let 𝑃𝑖 = 𝑣𝑎𝑟𝑠(𝑎)𝑎∈𝐴𝑖
 be the

set of all atoms affected by and/or affecting the actions of

agent 𝜑𝑖 . By internal and public propositions of 𝜑𝑖 we

refer to 𝑃𝑖
𝑖𝑛𝑡 = 𝑃𝑖\ 𝑃𝑗𝜑𝑗∈Φ\{𝜑𝑖}

 and 𝑃𝑖
𝑝𝑢𝑏

= 𝑃𝑖\𝑃𝑖
𝑖𝑛𝑡

respectively. That is, if 𝑝 ∈ 𝑃𝑖
𝑖𝑛𝑡 , no other agents can

require or affect 𝑝. Using this definition of internal

propositions, we can derive the partition 𝐴𝑖 = 𝐴𝑖
𝑖𝑛𝑡 ∪ 𝐴𝑖

𝑝𝑢𝑏

of agent 𝜑𝑖’s actions into internal and public actions

respectively. That is, 𝐴𝑖
𝑖𝑛𝑡 is the set of all actions whose

description contains only internal atoms of 𝜑𝑖 , while all

other actions of 𝜑𝑖 are public.

To illustrate this important partition, we use the

Logistics domain. Here, since all vehicle locations are

internal propositions, all the move actions are certainly

internal to the respective vehicle agents. On the other hand,

load/unload actions are public just if they affect the

position of a package in some of its public locations, i.e.,

locations that can be reached by at least two agents. Given

𝜑𝑖’s action a, the projection of a onto 𝜑𝑖’s private

propositions is denoted as 𝑎|𝑖𝑛𝑡 = 𝑝𝑟𝑒 𝑎 ∩ 𝑃𝑖
𝑖𝑛𝑡 ,

𝑎𝑑𝑑 𝑎 ∩ 𝑃𝑖
𝑖𝑛𝑡 ,𝑑𝑒𝑙 𝑎 ∩ 𝑃𝑖

𝑖𝑛𝑡 . If 𝑎 ∈ 𝐴𝑖
𝑖𝑛𝑡 then 𝑎 = 𝑎|𝑖𝑛𝑡 .

Otherwise, 𝑎|𝑖𝑛𝑡 might have fewer propositions. For

example, the public action load(p, tr, loc), where loc is a

public location, has the following preconditions: at(p, loc)

and at(tr, loc). It’s internal projection, however, would

require only at(tr, loc), since at(p, loc) is a public

proposition. The external projection of a onto 𝜑𝑖’s public

propositions, 𝑎|𝑒𝑥𝑡 , is defined analogously.

The agent interaction graph (AIG) 𝐼𝐺Π plays an

important role in determining how loosely-coupled a

problem is. The nodes of 𝐼𝐺Π correspond to the system’s

agents Φ. A directed edge from node 𝜑𝑖 to node 𝜑𝑗 exists

in 𝐼𝐺Π if there exist actions 𝑎𝑖 ∈ 𝐴𝑖 and 𝑎𝑗 ∈ 𝐴𝑗 such that

𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑎𝑖) ∩ 𝑝𝑟𝑒(𝑎𝑗) ≠ ∅. In other words, an edge from

𝜑𝑖 to 𝜑𝑗 indicates that 𝜑𝑖 either supplies or destroys a

condition required by an action of 𝜑𝑗 . For example, we

would have a directed edge between an airplane and a

truck if the airplane unloads package p in a location

reachable by the truck, since preconditions for loading p

are supplied by the airplane. Edges in both directions

between two agents are possible.

Planning as CSP+Planning

In (Brafman, Domshlak 2008), the authors (BD)

introduced the Planning as CSP+Planning methodology,

which solves the MA planning problem by separating

planning and coordination, or the private and public

aspects of the problem.

The coordination stage, or public aspect of the

problem, refers to the agents' public actions and their

execution times. Given a sequence of its public actions and

their execution times, every agent must make sure that 1)

every action's public preconditions are true before it is

executed and 2)the goal is true in the end. The consistency

of these relaxed (private preconditions are ignored) public

plans is formulated as a CSP, in which each agent has a

single variable, and the possible values of this variable are

sequences of public actions of bounded size. The

constraints in this CSP express the two consistency

requirements between these action sequences, but

restricted to public propositions only. Specifically, for

action 𝑎 with precondition 𝑝, to executed at time 𝑡, the

following constraints must be satisfied: 1)there exists an

action 𝑎′ to be executed at time 𝑡 ′ < 𝑡, which achieves 𝑝,

and 2)no action 𝑎′′ which destroys 𝑝 is executed at time 𝑡′′
such that 𝑡 ′ ≤ 𝑡′′ ≤ 𝑡. Goals also induce constraints - every

goal must be satisfied after all actions are executed.

The planning stage, or the (agent's) private aspect of the

problem, must now ensure that the agent can actually

execute these public actions in a sequence. Formally, it can

be viewed as a unary constraint on each of the variables in

the CSP defined above. That is, it restricts the public action

sequences of each agent to be locally consistent, meaning

that these sequences can be extended with internal actions

to ensure that the internal preconditions of each action are

satisfied as well. Note that this is indeed a unary constraint.

The whole process is wrapped in an iterative deepening

type search which gradually increases the upper bound, δ,

on the number of public actions of each agent, along with

the global plan for the whole system. These public actions

serve as the coordination points between the agents. In

tightly-coupled systems, one would expect the number of

coordination points to be large, and this entire process is

likely to be inefficient. In truly distributed and loosely-

coupled systems, one would expect 𝛿 to be small,

potentially increasing the efficiency of the process.

So far, relying on the formulation of BD, we described a

centralized algorithm for solving the MA planning

problem. As BD note, by using a DisCSP solver to handle

the coordination part, we readily obtain a distributed

planning algorithm. The high-level skeleton for this

algorithm is depicted below.

procedure MA-Planning(Π)

 δ := 1

 loop

 Construct 𝐷𝑖𝑠𝐶𝑆𝑃Π ;𝛿

 if (solve-csp(𝐷𝑖𝑠𝐶𝑆𝑃Π ;𝛿)) then

 Reconstruct a plan 𝑝 from solution

 return 𝑝

 else

 δ := δ + 1

 endloop

BD’s work proves the soundness and completeness of this

algorithm as well as tractability under certain conditions.

Moreover, obtained plans are locally optimal, since the

iterative 𝛿-loop ensures that the maximal number of

coordination points between agents is minimized,

optimizing plans in this sense. The algorithm’s main

advantage is its scalability. If we plan in a centralized

manner, adding agents to a system increases complexity

exponentially. Here, BD showed that if adding agents to

the system doesn’t change its coupling level, complexity is

increased only polynomially.

A General, Fully Distributed Multi-Agent

Planning Algorithm (to be Published as a Full

Paper in AAMAS 2010)

Our first aim was to see whether these strong theoretical

results could be translated into an efficient practical

algorithm. We quickly came across a few problems. First,

the constraints of the coordination CSP were not binary –

every precondition of a public action must be achieved by

some agent. This constraint effectively glues together

agents that do not necessarily affect one another. Also,

most, if not all, DisCSP solvers assume constraints are

binary, so using one as a black box would require a change

in the encoding. Second, the DisCSPs created were unlike

problems previously experimented on by the constraints

community. These instances are very large – every variable

having hundreds of thousands of possible values or more.

The sheer size of these domains means that we cannot

generate them (or their constraints) a priori. This has an

interesting effect on the entire process of constraint

satisfaction. Current methods of improving efficiency of

CSP solvers, like variable/value ordering or pruning using

clever backtrack methods and forward checking, all rely on

knowing the domain’s size and its constraints. In our case,

since domains and constraints are not fully generated, these

methods were useless in the sense they require more

computation than they save. Using methods and techniques

from the planning world, we created new heuristics and

adapted existing DisCSP tools to better fit these instances.

Furthermore, planning tools were used to reduce domain

sizes (using a coordinated relaxed planning process at

preprocessing to find action landmarks) and to guide agent

ordering (preferring agents that achieve goals and are most

constrained). In addition, the assignment of a variable is

now a complex process, involving local planning and

generation of domains and constraints. This meant that a

smart agent, capable of decision making is needed for the

search to work. The agent’s internal planner had to be

given the ability to remember plans it had found, to avoid

reassigning nogood plans when backtracking.

 In this work, we presented a fully distributed MA

planning algorithm, called Planning-First, which uses an

adaptation of the Asynchronous Forward Checking

DisCSP solver (Zivan, Meisels, 2007). Experiments were

conducted on benchmark planning domains, with varying

coupling levels and increasing number of agents,

comparing Planning-First to centralized planners. While

our algorithm did not perform well in Logistics, a tightly-

coupled domain, in Satellites and Rovers which are more

loosely-coupled, Planning-First showed scalability beyond

centralized planners (complete results appear in the paper).

Research Plan

Extending the Results of Planning-First

From results we obtained, we found that our algorithm

performs well, showing scalability beyond state-of-the-art

centralized planners, in solving problem instances with

limited agent interaction. From our results, it is also

evident that Planning-First doesn’t scale up when agents

are tightly-coupled. In essence, when there are many

coordination points (𝛿 values are high), the domains of the

DisCSP's variables are extremely large, rendering these

DisCSPs practically unsolvable. Finding methods to deal

with such tough problem instances is of great interest.

Our work showed that classical DisCSP heuristics

(variants of variable and value ordering that rely on

mechanism like Fail-First) are overwhelmingly dominated

by heuristics that are more suited for these very large,

structured DisCSPs. These heuristics use knowledge

obtained from the agent's local planning, to direct the

search towards achieving the agent's goals, as well as to

add a fail-first mechanism to the agent selection. This

makes the search similar to the planning world’s regression

from the goal. In our work, we would like to investigate

further the use of mechanisms from the world of heuristic

planning, in our agent selection and value ordering

heuristics. Some examples of this are 1) further use of

landmarks (which are more difficult to generate in a MA

setting with incomplete knowledge) and their orderings, 2)

giving an agent look-ahead capabilities by allowing it to

perform relaxed planning using its neighboring agents’

public actions and 3) creating a “negotiation” protocol

where agents ask each other to perform certain actions. We

believe that these mechanisms, and resulting heuristics,

could help tackle even tightly coupled problems.

Furthermore, planning obtained knowledge can also be

used to further filter domains, decreasing the CSP's size.

Knowing to identify and characterize these hard

problems could benefit the designers of MA systems, who

may want to create systems that are easy to plan for. To do

this, we would like to perform more experiments, varying

and increasing the number of agents and their interaction,

as well as the nature of their interaction. With more

empirical results, we aim to find more delicate forms of

characterizing the coupling of MA systems, and by that

guiding their construction.

Offline Local Planning and Reachability Analysis

One of the bottlenecks of Planning-First is the local

planning of the agents. Currently, when the agent searches

for an assignment of public actions to execute, it plans

locally and extracts the public actions of its local plan.

When backtracking occurs, it is known that the current

action sequence is inconsistent and the sequence is added

to the agent's forbidden plans. Now the agent must plan

again to find a different public action sequence. This

process can be performed multiple times, especially in

problems with high 𝛿 values, and can be expensive in

terms of computation and memory (since many action

sequences are stored as NOGOODs).

The following approach could be promising, and

potentially make Planning-First, and factored planning in

general, more effective: The idea is to compile a pattern

database for each agent, that holds all possible public

action sequences of length k that are possible. Consider

local planning with 𝐴1 and 𝐴2 as the landmarks (public

actions to be executed). We can compute all pairs of states

𝑠1 , 𝑠2 s.t. 𝐴1 is applicable in 𝑠1 and 𝐴2 is applicable in 𝑠2

and 𝑠2 is reachable from 𝑠1. We can do this for all pairs of

actions A, A’. Now, to check whether a local plan for a set

of landmarks 𝐴1,… ,𝐴𝑘exists, we solve the shortest path

problem starting from I that passes through some state in

which 𝐴1 is applicable and some state in which 𝐴2 is

applicable etc. to the goal. In a sense, each time we need to

solve this shortest path problem in a graph constructed by

layers corresponding to pairs of actions.

This method could be useful in two ways. If k is large

enough, we have basically worked out all the local (unary)

constraints of the agent. If not, we can still use the database

to rule out sequences containing infeasible subsequences.

The DB could also be used as a heuristic, if the graph is

too large to fully generate. For this, we can use abstraction,

as long as it ensures that if a path is impossible in the

abstract case, it is indeed impossible in reality.

Parallelization

There is a growing interest in the use of parallelization

techniques for scaling up planning algorithms (Kishimoto,

Fukunaga, Botea, 2009). Recent results (Helmert, Roger

2008) show that in some cases, even almost perfect

heuristics will not prevent exploring an exponential

number of search nodes. Parallelization, as an orthogonal

method of speeding up search, can continue the

improvement of future planners. Our fully distributed

algorithm provides a natural path to parallelizing the

solution of planning problems that have a natural MA

structure. Since our experiments were conducted only as a

simulation of a distributed system using multi-threading,

we expect to get better results when the algorithm is

implemented as a truly parallel planner. Such an

implementation would take advantage of the fact that in

loosely-coupled systems, most of the work is done locally.

We are interested in seeing what effect parallelization

would have on DisCSP methods, as well as finding

techniques suited for parallel MA systems.

Planning for Self-Interested Agents

The fully cooperative MA planning model lacks a quality

that is part of most MA systems. A system comprising of

agents that are self-interested seems to be a better

representation of a real-world MA system. In many

realistic settings, agents have personal goals and costs and

are motivated to increase their net benefit. These agents

may want to cooperate with one another since they have

different capabilities or they find such cooperation

beneficial. Such a model was described in (Brafman,

Domshlak, Engel, Tennenholtz, 2009). This minimal

extension of MA-STRIPS to self-interested agents, called

coalition planning games (CoPG), describes a setting

where each agent has a private goal, reward for achieving

this goal and costs for its actions. Agents are self-

interested, but must cooperate in order to achieve their

goals. Here, a solution must ensure that no subset of agents

will deviate from their plans, therefore adding some notion

of stability, which introduces a game-theoretic flavor into

MA-planning. Under the assumption that the AIG is

acyclic, this work shows that planning for CoPG is

tractable and presents an algorithm for stable planning for

these systems.

 It is of great interest to investigate methods for solving

problems of CoPGs where the AIG is cyclic. These

problems better represent realistic MA systems, where

even cooperative agents have their own interests in mind.

We believe that in order to construct an efficient algorithm

for these problems, one could use methods and techniques

similar to what we used in constructing Planning-First.

Such an algorithm would bring us one step closer towards

distributed planning for realistic MA systems, where

agents are self-interested but willing to cooperate.

References

Brafman, R. I., and Domshlak, C. 2008. From One to

Many: Planning for Loosely Coupled Multi-Agent Systems.

In Proc. of the 18th ICAPS, 28-35.

Kishimoto, A., Fukunaga,A. and Botea, A. 2009. Scalable,

Parallel Best-First Search for Optimal Sequential

Planning. In Proc. of the 19th ICAPS, 201-208.

Helmert, M. and Roger, G., 2008, How Good is Almost

Perfect?, In 23
rd

 AAAI.

Brafman, R. I., Domshlak, C., Engel, Y. and Tennenholtz,

M. 2009, Planning Games, IJCAI.

Jennings, N. R., 1996. Coordination techniques for

artificial intelligence. In Foundations of Distributed

Artificial Intelligence.

Zivan, R. and Meisels, A. 2007. Asynchronous Forward-

checking for DisCSPs. In Constraints, 12, 131-150.

