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Abstract 

Work in both Multiagent systems and in domain 
independent AI has made substantial progress in recent 
years. For Multiagent planning, on the other hand, only very 
recently has a generic model that extends the single-agent 
STRIPS model with game-theoretic constructs been 
introduced, and a practical algorithm is yet to be introduced. 
Constructing a general, fully distributed MA planning 
algorithm for cooperative planning (paper to be published in 
AAMAS 2010) was our first step towards creating a fully 
distributed planner for MA systems, in which agents are 
self-interested, but must cooperate in order to achieve their 
goals. Such systems are realistic representations of real-
world MA systems, whose exploration is of great interest. 
Distributed planning algorithms could also pave the road to 
effective parallelization techniques for scaling up MA 
planners, an area of growing interest in the planning 
community. 

 Introduction 

A MA planning problem can be defined as follows: 

Given a description of an initial state, a set of global goals, 

and  a set of agents such that each agent has its own 

capabilities (operators) and private goals, find a plan for 

each agent that achieves its private goals, so all plans are 

coordinated and the global goals are achieved. Intuitively, 

one would distinguish between two parts of solving such a 

problem: planning and coordination.  

Why, one might ask, should planning and MA planning be 

studied separately? Is MA planning covered in the 

discussion of planning? In some cases, the answer is yes. A 

simple algorithm for the MA planning problem would have 

all agents upload all their information to a single agent, 

which would run a state-of-the-art centralized planner and 

broadcast its solution to all agents. In real-life problems, 

agents might have privacy restrictions and would object to 

sharing all their information. Real-life agents, who may be 

taxi drivers or airline pilots, may be self-interested, with 

their financial benefit in mind. The centralized approach 

would work as long as agents aren’t dependent on one 

another (each can achieve its private goals without outside 

help), but if dependencies between the individual tasks 

exist, planning independently can result in conflicts. In this 

case, the answer to our question whether MA planning is 

covered in the discussion of planning is no. These inter-

dependent agents must plan and coordinate their 

individual plans, to form a non-conflicting global plan 

which achieves all goals.  

Background 

The Model 

We consider a classical MA planning setting where agents 

act with complete information and actions are 

deterministic. The problems considered are ones that can 

be expressed in MA-STRIPS (Brafman, Domshlak 2008), 

a minimalistic MA-extension of the STRIPS language. We 

use MA-STRIPS since it can easily be extended with 

aspects such as time, resources, preferences, etc. 

Definition 1: A MA-STRIPS Problem for a system of 

agents Φ = {𝜑𝑖}i=1
k  is given by a quadruple 

Π= 𝑃,{𝐴𝑖}i=1
k , 𝐼,𝐺 , where:  

 𝑃 is a finite set of propositions, 𝐼 ⊆ 𝑃 encodes the initial 

state, and 𝐺 ⊆ 𝑃 encodes the goal conditions, 

 For 1 ≤ 𝑖 ≤ 𝑘, 𝐴𝑖  is the set of actions that the agent 𝜑𝑖  is 

capable of performing. Each action 𝑎 ∈ 𝐴𝑖  has the 

standard STRIPS syntax and semantics, that is, 𝑎 =
 𝑃𝑟𝑒 𝑎 ,𝐴𝑑𝑑 𝑎 ,𝐷𝑒𝑙(𝑎)  is given by its preconditions, 

add effects and delete effects. 

Such an MA-STRIPS problem Π induces dependencies 

on the agents Φ. In what follows, we use 𝑣𝑎𝑟𝑠(𝑎) to 

denote 𝑝𝑟𝑒 𝑎 ∪ 𝑎𝑑𝑑(𝑎) ∪ 𝑑𝑒𝑙(𝑎) and 𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑎) to 

denote 𝑎𝑑𝑑(𝑎) ∪ 𝑑𝑒𝑙(𝑎). Let 𝑃𝑖 =  𝑣𝑎𝑟𝑠(𝑎)𝑎∈𝐴𝑖
 be the 



set of all atoms affected by and/or affecting the actions of 

agent 𝜑𝑖 . By internal and public propositions of 𝜑𝑖  we 

refer to 𝑃𝑖
𝑖𝑛𝑡 = 𝑃𝑖\ 𝑃𝑗𝜑𝑗∈Φ\{𝜑𝑖}

 and 𝑃𝑖
𝑝𝑢𝑏

= 𝑃𝑖\𝑃𝑖
𝑖𝑛𝑡  

respectively. That is, if 𝑝 ∈ 𝑃𝑖
𝑖𝑛𝑡 , no other agents can 

require or affect 𝑝. Using this definition of internal 

propositions, we can derive the partition 𝐴𝑖 = 𝐴𝑖
𝑖𝑛𝑡 ∪ 𝐴𝑖

𝑝𝑢𝑏
 

of agent 𝜑𝑖’s actions into internal and public actions 

respectively. That is, 𝐴𝑖
𝑖𝑛𝑡  is the set of all actions whose 

description contains only internal atoms of 𝜑𝑖 , while all 

other actions of 𝜑𝑖  are public. 

To illustrate this important partition, we use the 

Logistics domain. Here, since all vehicle locations are 

internal propositions, all the move actions are certainly 

internal to the respective vehicle agents. On the other hand, 

load/unload actions are public just if they affect the 

position of a package in some of its public locations, i.e., 

locations that can be reached by at least two agents. Given 

𝜑𝑖’s action a, the projection of a onto 𝜑𝑖’s private 

propositions is denoted as 𝑎|𝑖𝑛𝑡 =  𝑝𝑟𝑒 𝑎 ∩ 𝑃𝑖
𝑖𝑛𝑡 ,

𝑎𝑑𝑑 𝑎 ∩ 𝑃𝑖
𝑖𝑛𝑡 ,𝑑𝑒𝑙 𝑎 ∩ 𝑃𝑖

𝑖𝑛𝑡  . If 𝑎 ∈ 𝐴𝑖
𝑖𝑛𝑡  then 𝑎 = 𝑎|𝑖𝑛𝑡 . 

Otherwise, 𝑎|𝑖𝑛𝑡  might have fewer propositions. For 

example, the public action load(p, tr, loc), where loc is a 

public location, has the following preconditions: at(p, loc) 

and at(tr, loc). It’s internal projection, however, would 

require only at(tr, loc), since at(p, loc) is a public 

proposition. The external projection of a onto 𝜑𝑖’s public 

propositions, 𝑎|𝑒𝑥𝑡 , is defined analogously. 

The agent interaction graph (AIG) 𝐼𝐺Π  plays an 

important role in determining how loosely-coupled a 

problem is. The nodes of  𝐼𝐺Π  correspond to the system’s 

agents Φ. A directed edge from node 𝜑𝑖  to node 𝜑𝑗  exists 

in 𝐼𝐺Π  if there exist actions 𝑎𝑖 ∈ 𝐴𝑖  and 𝑎𝑗 ∈ 𝐴𝑗  such that 

𝑒𝑓𝑓𝑒𝑐𝑡𝑠(𝑎𝑖) ∩ 𝑝𝑟𝑒(𝑎𝑗 ) ≠ ∅. In other words, an edge from 

𝜑𝑖  to 𝜑𝑗  indicates that 𝜑𝑖  either supplies or destroys a 

condition required by an action of 𝜑𝑗 . For example, we 

would have a directed edge between an airplane and a 

truck if the airplane unloads package p in a location 

reachable by the truck, since preconditions for loading p 

are supplied by the airplane. Edges in both directions 

between two agents are possible. 

Planning as CSP+Planning 

In (Brafman, Domshlak 2008), the authors (BD) 

introduced the Planning as CSP+Planning methodology, 

which solves the MA planning problem by separating 

planning and coordination, or the private and public 

aspects of the problem.  

The coordination stage, or public aspect of the 

problem, refers to the agents' public actions and their 

execution times. Given a sequence of its public actions and 

their execution times, every agent must make sure that 1) 

every action's public preconditions are true before it is 

executed and 2)the goal is true in the end. The consistency 

of these relaxed (private preconditions are ignored) public 

plans is formulated as a CSP, in which each agent has a 

single variable, and the possible values of this variable are 

sequences of public actions of bounded size. The 

constraints in this CSP express the two consistency 

requirements between these action sequences, but 

restricted to public propositions only. Specifically, for 

action 𝑎 with precondition 𝑝, to executed at time 𝑡, the 

following constraints must be satisfied: 1)there exists an 

action 𝑎′ to be executed at time 𝑡 ′ < 𝑡, which achieves 𝑝, 

and 2)no action 𝑎′′ which destroys 𝑝 is executed at time 𝑡′′ 
such that 𝑡 ′ ≤ 𝑡′′ ≤ 𝑡. Goals also induce constraints - every 

goal must be satisfied after all actions are executed. 

The planning stage, or the (agent's) private aspect of the 

problem, must now ensure that the agent can actually 

execute these public actions in a sequence. Formally, it can 

be viewed as a unary constraint on each of the variables in 

the CSP defined above. That is, it restricts the public action 

sequences of each agent to be locally consistent, meaning 

that these sequences can be extended with internal actions 

to ensure that the internal preconditions of each action are 

satisfied as well. Note that this is indeed a unary constraint. 

The whole process is wrapped in an iterative deepening 

type search which gradually increases the upper bound, δ, 

on the number of public actions of each agent, along with 

the global plan for the whole system. These public actions 

serve as the coordination points between the agents. In 

tightly-coupled systems, one would expect the number of 

coordination points to be large, and this entire process is 

likely to be inefficient. In truly distributed and loosely-

coupled systems, one would expect 𝛿 to be small, 

potentially increasing the efficiency of the process. 

So far, relying on the formulation of BD, we described a 

centralized algorithm for solving the MA planning 

problem. As BD note, by using a DisCSP solver to handle 

the coordination part, we readily obtain a distributed 

planning algorithm. The high-level skeleton for this 

algorithm is depicted below.  

 

procedure MA-Planning(Π) 

     δ := 1 

     loop 

          Construct 𝐷𝑖𝑠𝐶𝑆𝑃Π ;𝛿  

          if ( solve-csp(𝐷𝑖𝑠𝐶𝑆𝑃Π ;𝛿 ) ) then 

               Reconstruct a plan 𝑝 from solution 

               return 𝑝 

         else 

              δ := δ + 1 

     endloop 

BD’s work proves the soundness and completeness of this 

algorithm as well as tractability under certain conditions. 

Moreover, obtained plans are locally optimal, since the 

iterative 𝛿-loop ensures that the maximal number of 

coordination points between agents is minimized, 

optimizing plans in this sense. The algorithm’s main 

advantage is its scalability. If we plan in a centralized 



manner, adding agents to a system increases complexity 

exponentially. Here, BD showed that if adding agents to 

the system doesn’t change its coupling level, complexity is 

increased only polynomially. 

A General, Fully Distributed Multi-Agent 

Planning Algorithm (to be Published as a Full 

Paper in AAMAS 2010) 

Our first aim was to see whether these strong theoretical 

results could be translated into an efficient practical 

algorithm. We quickly came across a few problems. First, 

the constraints of the coordination CSP were not binary –

every precondition of a public action must be achieved by 

some agent. This constraint effectively glues together 

agents that do not necessarily affect one another. Also, 

most, if not all, DisCSP solvers assume constraints are 

binary, so using one as a black box would require a change 

in the encoding. Second, the DisCSPs created were unlike 

problems previously experimented on by the constraints 

community. These instances are very large – every variable 

having hundreds of thousands of possible values or more. 

The sheer size of these domains means that we cannot 

generate them (or their constraints) a priori. This has an 

interesting effect on the entire process of constraint 

satisfaction. Current methods of improving efficiency of 

CSP solvers, like variable/value ordering or pruning using 

clever backtrack methods and forward checking, all rely on 

knowing the domain’s size and its constraints. In our case, 

since domains and constraints are not fully generated, these 

methods were useless in the sense they require more 

computation than they save. Using methods and techniques 

from the planning world, we created new heuristics and 

adapted existing DisCSP tools to better fit these instances. 

Furthermore, planning tools were used to reduce domain 

sizes (using a coordinated relaxed planning process at 

preprocessing to find action landmarks) and to guide agent 

ordering (preferring agents that achieve goals and are most 

constrained). In addition, the assignment of a variable is 

now a complex process, involving local planning and 

generation of domains and constraints. This meant that a 

smart agent, capable of decision making is needed for the 

search to work. The agent’s internal planner had to be 

given the ability to remember plans it had found, to avoid 

reassigning nogood plans when backtracking. 

 In this work, we presented a fully distributed MA 

planning algorithm, called Planning-First, which uses an 

adaptation of the Asynchronous Forward Checking 

DisCSP solver (Zivan, Meisels, 2007). Experiments were 

conducted on benchmark planning domains, with varying 

coupling levels and increasing number of agents, 

comparing Planning-First to centralized planners. While 

our algorithm did not perform well in Logistics, a tightly-

coupled domain, in Satellites and Rovers which are more 

loosely-coupled, Planning-First showed scalability beyond 

centralized planners (complete results appear in the paper). 

Research Plan 

Extending the Results of Planning-First 

From results we obtained, we found that our algorithm 

performs well, showing scalability beyond state-of-the-art 

centralized planners, in solving problem instances with 

limited agent interaction. From our results, it is also 

evident that Planning-First doesn’t scale up when agents 

are tightly-coupled. In essence, when there are many 

coordination points (𝛿 values are high), the domains of the 

DisCSP's variables are extremely large, rendering these 

DisCSPs practically unsolvable. Finding methods to deal 

with such tough problem instances is of great interest. 

Our work showed that classical DisCSP heuristics 

(variants of variable and value ordering that rely on 

mechanism like Fail-First) are overwhelmingly dominated 

by heuristics that are more suited for these very large, 

structured DisCSPs. These heuristics use knowledge 

obtained from the agent's local planning, to direct the 

search towards achieving the agent's goals, as well as to 

add a fail-first mechanism to the agent selection. This 

makes the search similar to the planning world’s regression 

from the goal. In our work, we would like to investigate 

further the use of mechanisms from the world of heuristic 

planning, in our agent selection and value ordering 

heuristics. Some examples of this are 1) further use of 

landmarks (which are more difficult to generate in a MA 

setting with incomplete knowledge) and their orderings, 2) 

giving an agent look-ahead capabilities by allowing it to 

perform relaxed planning using its neighboring agents’ 

public actions and 3) creating a “negotiation” protocol 

where agents ask each other to perform certain actions. We 

believe that these mechanisms, and resulting heuristics, 

could help tackle even tightly coupled problems. 

Furthermore, planning obtained knowledge can also be 

used to further filter domains, decreasing the CSP's size. 

Knowing to identify and characterize these hard 

problems could benefit the designers of MA systems, who 

may want to create systems that are easy to plan for. To do 

this, we would like to perform more experiments, varying 

and increasing the number of agents and their interaction, 

as well as the nature of their interaction. With more 

empirical results, we aim to find more delicate forms of 

characterizing the coupling of MA systems, and by that 

guiding their construction. 

Offline Local Planning and Reachability Analysis 

One of the bottlenecks of Planning-First is the local 

planning of the agents. Currently, when the agent searches 

for an assignment of public actions to execute, it plans 

locally and extracts the public actions of its local plan. 



When backtracking occurs, it is known that the current 

action sequence is inconsistent and the sequence is added 

to the agent's forbidden plans. Now the agent must plan 

again to find a different public action sequence. This 

process can be performed multiple times, especially in 

problems with high 𝛿 values, and can be expensive in 

terms of computation and memory (since many action 

sequences are stored as NOGOODs). 

The following approach could be promising, and 

potentially make Planning-First, and factored planning in 

general, more effective: The idea is to compile a pattern 

database for each agent, that holds all possible public 

action sequences of length k that are possible. Consider 

local planning with 𝐴1 and 𝐴2 as the landmarks (public 

actions to be executed). We can compute all pairs of states 

𝑠1 , 𝑠2 s.t. 𝐴1 is applicable in 𝑠1 and 𝐴2 is applicable in 𝑠2 

and 𝑠2 is reachable from 𝑠1. We can do this for all pairs of 

actions A, A’. Now, to check whether a local plan for a set 

of landmarks 𝐴1,… ,𝐴𝑘exists, we solve the shortest path 

problem starting from I that passes through some state in 

which 𝐴1 is applicable and some state in which 𝐴2 is 

applicable etc. to the goal. In a sense, each time we need to 

solve this shortest path problem in a graph constructed by 

layers corresponding to pairs of actions. 

This method could be useful in two ways. If k is large 

enough, we have basically worked out all the local (unary) 

constraints of the agent. If not, we can still use the database 

to rule out sequences containing infeasible subsequences.  

The DB could also be used as a heuristic, if the graph is 

too large to fully generate. For this, we can use abstraction, 

as long as it ensures that if a path is impossible in the 

abstract case, it is indeed impossible in reality. 

Parallelization 

There is a growing interest in the use of parallelization 

techniques for scaling up planning algorithms (Kishimoto, 

Fukunaga, Botea, 2009). Recent results (Helmert, Roger 

2008) show that in some cases, even almost perfect 

heuristics will not prevent exploring an exponential 

number of search nodes. Parallelization, as an orthogonal 

method of speeding up search, can continue the 

improvement of future planners. Our fully distributed 

algorithm provides a natural path to parallelizing the 

solution of planning problems that have a natural MA 

structure. Since our experiments were conducted only as a 

simulation of a distributed system using multi-threading, 

we expect to get better results when the algorithm is 

implemented as a truly parallel planner. Such an 

implementation would take advantage of the fact that in 

loosely-coupled systems, most of the work is done locally. 

We are interested in seeing what effect parallelization 

would have on DisCSP methods, as well as finding 

techniques suited for parallel MA systems. 

 

Planning for Self-Interested Agents 

The fully cooperative MA planning model lacks a quality 

that is part of most MA systems. A system comprising of 

agents that are self-interested seems to be a better 

representation of a real-world MA system. In many 

realistic settings, agents have personal goals and costs and 

are motivated to increase their net benefit. These agents 

may want to cooperate with one another since they have 

different capabilities or they find such cooperation 

beneficial. Such a model was described in (Brafman, 

Domshlak, Engel, Tennenholtz, 2009). This minimal 

extension of MA-STRIPS to self-interested agents, called 

coalition planning games (CoPG), describes a setting 

where each agent has a private goal, reward for achieving 

this goal and costs for its actions. Agents are self-

interested, but must cooperate in order to achieve their 

goals. Here, a solution must ensure that no subset of agents 

will deviate from their plans, therefore adding some notion 

of stability, which introduces a game-theoretic flavor into 

MA-planning. Under the assumption that the AIG is 

acyclic, this work shows that planning for CoPG is 

tractable and presents an algorithm for stable planning for 

these systems. 

 It is of great interest to investigate methods for solving 

problems of CoPGs where the AIG is cyclic. These 

problems better represent realistic MA systems, where 

even cooperative agents have their own interests in mind. 

We believe that in order to construct an efficient algorithm 

for these problems, one could use methods and techniques 

similar to what we used in constructing Planning-First. 

Such an algorithm would bring us one step closer towards 

distributed planning for realistic MA systems, where 

agents are self-interested but willing to cooperate. 
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