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Introduction

This thesis aims to develop scablable plan synthesis tech-
niques for scenarios where the models of a user’s prefer-
ences and/or domain dynamics cannot be completely spec-
ified. As pointed out in (Kambhampati 2007), there is a
wide range of applications such as web-service and work-
flow management in which it is very difficult to get a com-
plete model, and therefore such “model-lite” planning meth-
ods become important.

While the solution concept to a planning problem is
clearly understood when complete models of user’s prefer-
ences and domain dynamics are available1, it is not even ob-
vious what the right solution to a planning problem should
be if a partial model is given as input, let alone how to find it
efficiently. Therefore, the contributions of my thesis are first
to propose quality measures for solutions to this problem,
and then to investigate various efficient techniques for gen-
erating high quality solutions in two cases of partial models.
In particular,

• When the user’s preference model is known to be incom-
plete, the planner’s job changes from finding a single opti-
mal plan to finding a set of representative solutions (“op-
tions”) and present them to the user (in the hope that she
will find one of them desirable). As a result, quality mea-
sures should be defined to evaluate plan sets with respect
to the user’s partial preferences. We therefore adapt the
idea of Integrated Preference Function (IPF) (Carlyle et
al. 2003) developed in Operations Research (OR) com-
munity in the context of multi-criteria scheduling to mea-
sure the expected utility that the user can get from the set.

• When the domain model is partially specified, a plan gen-
erated cannot be guaranteed to succeed during execution.
All we can say is a plan with higher chance to achieve the
goals should be considered better. In this case, we develop
a robustness measure of plans estimating a portion of the
space of possible complete domains for which the plan
succeeds during execution (with respect to the complete
model).

1In particular, it is the single best plan with respect to the user
known preferences, and it is any valid plan which reaches a state
satisfying all goals from an initial state given a complete domain
model.

These quality measures, while providing clean definitions
of solution concepts to the new planning scenarios, rise more
challenges to plan synthesis techniques. The next contribu-
tion is to propose efficient methods to generate high qual-
ity solutions to planning problems under partially specified
preferences and domain dynamics, working on top of the
LPG (Gerevini, Saetti, and Serina 2003) and FF planners
(Hoffmann and Nebel 2001). In the following, we first dis-
cuss the solution concept and plan synthesis techniques for
planning with partial preference model, and then for situa-
tion where the domain model is incomplete. Finally, we end
the paper with the conclusion.

Planning with Partial Preference Models

We first consider the problem of generating a set of repre-
sentative plans in scenarios where the user has multiple (and
possibly conflicting) plan objectives, but their relative im-
portance degree cannot be completely specified. We concen-
trate on metric temporal planning where each action a ∈ A
has a duration da and execution cost ca, and the user’s pref-
erence model is formalized as follows:

• The desired objective function involves minimizing both
components: the makespan of a plan p, time(p), and its
execution cost, cost(p).

• The quality of a plan p is a convex combination:
f(p, w) = w × time(p) + (1 − w) × cost(p), where
the weight w ∈ [0, 1] represents the trade-off between the
two competing objective functions.

• The belief distribution of w over the range [0, 1] is known.
If the user does not provide any information or we have
not learned anything about the preference on the trade-off
between time and cost of the plan, then the planner can
assume a uniform distribution (and improve it later using
techniques such as preference elicitation).

Given that the exact value of w is unknown, we cannot
find a single optimal plan. The best strategy is therefore to
find a representative set of non-dominated plans2 minimiz-
ing the expected value of f(p, w) with regard to the given
distribution of w over [0, 1].

2A plan p1 is dominated by p2 if time(p1) ≥ time(p2) and
cost(p1) ≥ cost(p2) and at least one of the inequalities is strict.



Integrated Preference Function (IPF)

The Integrated Preference Function (IPF) (Carlyle et al.
2003) measure assumes that the user preference model is
represented by two factors: (1) a probability distribution
h(α) of parameter vector α such that

∫
α

h(α) dα = 1 (in
the absence of any special information about the distribu-
tion, h(α) can be assumed to be uniform), and (2) a function
f(p, α) : S → R (where S is the solution space) combines
different objective functions into a single real-valued quality
measure for solution p. The expected quality of a solution
set P ⊆ S is defined as:

IPF (P) =

∫
α

h(α)f(pα, α) dα

where pα = argmin
p∈P

f(p, α) is the best solution according

to f(p, α) for each given α value. The set of plans with the
minimal IPF value is most likely to contain the desired solu-
tions that the user wants and in essense a good representative
of S. When f is convex combination of objective functions,
as in our setting, the measure is called Integrated Convex
Preference (ICP).

Finding Representative Plans Using ICP

We considered three different approximate techniques on
top of the LPG planner (Gerevini, Saetti, and Serina 2003)
to find a set P of at most k plans with a good ICP value.

1. Sampling weight values: Given the distribution h(w) of
trade-off value w is known, this approach first samples a
set of k values for w: {w1, w2, ..., wk}, and then for each
wi (1 ≤ i ≤ k) search for a plan pi minimizing the value
of f(p, wi).

2. ICP sequential approach: In this approach, we incre-
mentally built the plan set P by finding a plan p such that
P∪{p} has the lowest ICP value, starting with an empty
solution set P = ∅.

3. Hybrid approach: This approach aims to combine
the strengths of both sampling and ICP sequential ap-
proaches. Specifically, we use sampling to find several
plans optimizing for different weights, and these plans are
then used to seed the subsequent ICP-sequential runs.

Our expriment suggests that a combination of sampling
and ICP Sequential to exploit their individual benefits would
be the best choice. This work has been presented in
(Nguyen et al. 2009).

Planning with Partial Domain Models
We next consider planning scenarios where a planner is
given as input a deterministic domain model D = (F, A)
and a planning problem P = 〈D, I, G〉, together with some
knowledge about the limited completeness of some actions
specified in D, where F is the set of propositions, A set of
actions, I ⊆ F an initial state, and G a set of goal proposi-
tions. As a variation of the formalism introduced in (Garland
and Lesh 2002), each action a ∈ A (in addition to its precon-
ditions Pre(a) ⊆ F , additive effects Add(a) ⊆ F , delete
effects Del(a) ⊆ F ) is also modeled with the following sets
of propositions:

• Possible precondition set PreP (a) ⊆ F contains propo-
sitions that action a might need as its precondition.

• Possible additive (delete) effect set AddP (a) ⊆ F
(DelP (a) ⊆ F ) contains propositions that action a might
add (delete) after its execution.

In addition, each possible precondition, addi-
tive and delete effect p of the action a are associ-
ated with a weight wpre

a (p), wadd
a (p) and wdel

a (p)
(0 ≤ wpre

a (p), wadd
a (p), wdel

a (p) ≤ 1) representing the
domain writer’s assessment of the likelihood that p is a
precondition, additive and delete effect of a (respectively).
Our formalism therefore allows the modeler to express
her degree of belief on the likelihood that various possible
preconditions/effects will actually be realized in the real
domain model, and possible preconditions and effects
without associated weights are assumed to be governed by
non-deterministic uncertainty.

The action a is considered incompletely modeled if ei-
ther its possible precondition or effect set is non-empty. The
action a is applicable in a state s if Pre(a) ⊆ s, and the re-
sulting state is defined by γ(s, a) = (s \Del(a)∪Add(a)∪
AddP (a)).3 We denote aI , aG 6∈ A as two dummy actions
representing the initial and goal state such that Pre(aI) = ∅,
Add(aI) = I , Pre(aG) = G, Add(aG) = {⊤} (where
⊤ 6∈ F denotes a dummy proposition representing goal
achievement). A plan for the problem P is a sequence of ac-
tions π = (a0, a1, ..., an) with a0 ≡ aI and an ≡ aG and ai

is applicable in the state si = γ(...γ(γ(a0, ∅), a1), ..., ai−1)
(1 ≤ i ≤ n). In the presence of PreP (a), AddP (a) and
DelP (a), the execution of a plan π might not reach a goal
state (i.e. the plan fails) when some possible precondition or
effect of an action a is realized (i.e. winds up holding in the
true domain model) and invalidates the executability of the
plan.

Assumption underlying our model: In using PreP ,
AddP and DelP annotations, we are using an assumption,
which we call uncorrelated incompleteness: the incomplete
preconditions and effects are all assumed to be independent
of each other. Our representation thus does not allow a do-
main writer to state that a particular action a will have the
possible additive effect e only when it has the possible pre-
condition p. While we cannot completely rule out a domain
modeler capable of making annotations about such corre-
lated sources of incompleteness, we assume that this is less
likely.

Robustness Measure of Plans

Using the partial domain model as defined above, we can
now formalize the notion of plan robustness. Given that any
subset of possible precondition and effect sets of an action
a ∈ A can be part of its preconditions and effects in the com-
plete domain D∗, there are (exponentially) large number of
candidate complete models for D∗. For each of these can-
didate models, a plan π = (a0, a1, ..., an) that is found in

3Note that we neglect PreP (a) in action applicability checking
condition and DelP (a) in creating the resulting state to ensure the
completeness. Thus, if there is a plan that is executable in at least
one candidate domain model, then it is not excluded.



a plan generation process with respect to the partial domain
model D, as defined above, may either succeed to reach a
goal state or fail when one of its actions, including aG, can-
not execute. The plan π therefore is considered highly ro-
bust if there are a large number of candidate models of D∗

for which the execution of π successfully achieves all goals.
We define the robustness measure of a plan π, denoted

by R(π), as the probability that it succeeds in achieving
goals with respect to D∗ after execution. More formally,
let K =

∑
a∈A(|PreP (a)| + |AddP (a)| + |DelP (a)|),

SD = {D1,D2, ...,D2K} be the set of the candidate models
ofD∗ and h : SD → [0, 1] be the distribution function (with∑

1≤i≤2K h(Di) = 1) representing the modeler’s estimate

of the probability that a given model in SD is actually D∗,
the robustness value of a plan π is then defined as follows:

R(π)
def
≡

∑
Dj∈

Q

h(Dj) (1)

where
∏
⊆ SD is the set of candidate models in which π

is a valid plan. Given the assumption of uncorrelated in-
completeness, the probability h(Di) for a model Di ∈ SD

can be computed as the product of the weights wpre
a (p),

wadd
a (p), and wdel

a (p) (for all a ∈ A and its possible precon-
ditions/effects p) if p is realized as its precondition, additive
and delete effect inDi (or the product of their “complement”
1− wpre

a (p), 1− wadd
a (p), and 1− wdel

a (p) if p is not).
There is a very exetreme scenario, which we call non-

deterministic incompleteness, when the domain writer does
not have any quantitative measure of likelihood as to
whether each (independent) possible precondition/effect
will be realized or not. In this case, we will handle
non-deterministic uncertainty as “uniform” distribution over
models.4 The robustness of π can then be computed as fol-
lows:

R(π) =
|
∏
|

2K
(2)

Note that the partially specified model of domain dynam-
ics causes uncertainty in plan executability in a different way
with stochastic planning. A robot that plans to pick up a box
with one hand, which is suspected to have an internal prob-
lem by the modeler and cannot be tested until plan execu-
tion, has 50% success-rate, no matter how many instances
of that action executed. On the other hand, a pick-up action
with 0.5 probability of success in stochastic planning can be
tried for many times to increase the chance of success.

Assessing Plan Robustness

A naive approach to assessing plan robustness, as defined
in (2), is to enumerate all domain models Di ∈ SD and
check for executability of π with respect to Di, which is
prohibitively expensive when K is large. In this section,
we first propose an exact computation method using model-
counting technique that can be significantly faster (though
the worst-case complexity does not change), and then dis-
cuss approximate approaches to assessing plan robustness.

4as is typically done when distributional information is not
available–since uniform distribution has the highest entropy and
thus makes least amount of assumptions.

Exact Computation Given a partial domain model D and
a plan π = (a0, a1, ..., an), we will setup the SAT encoding
E representing the causal-proof (c.f. Mali and Kambham-
pati 1999) of the correctness of π such that there is a one-to-
one map between each model of E with a candidate domain
model D ∈

∏
. The exact robustness value of π, therefore,

can be computed by invoking any exact weighted model-
counting software, as the one described in (Sang, Beame,
and Kautz 2005), given E as an input. The compilation is
briefly described as follows:
SAT boolean variables: For each action a ∈ A and f ∈
PreP (a), we create a boolean variable fpre

a with a weight
wpre

a (f) where fpre
a = T (true) if f is realized as a precon-

dition of a during execution, and fpre
a = F (false) other-

wise. Similarly, we create boolean variables fadd
a and fdel

a

for each f ∈ AddP (a) and f ∈ DelP (a) with correspond-

ing weights wadd
a (f) and wdel

a (f). Each complete assign-
ment of these variables is a candidate model of E and corre-
sponds to a candidate model of D∗.
SAT constraints: We introduce the notion of confirmed
level Ci

f for each proposition f needed at level i, which is

the latest level j (j < i) at which the value of f is confirmed
to be either T (i.e. f ∈ Pre(aj) or f ∈ Add(aj)) or F (i.e.
f ∈ Del(aj)) by the action aj . Observing that the truth
value of f at level i is affected only by possible effects of
actions at levels within [Ci

f , i− 1].

Precondition establishment: For each f ∈ Pre(ai), we add
the following constraint:

(C1) ∀k ∈ [Ci
f , i− 1] : fdel

ak
⇒

∨
k<m<i

fadd
am

ensuring that if f is a precondition of the action ai and is
deleted by a possible effect of ak, then there must be another
(white-knight) action am that re-establishes f as part of its
possible additive effect. If f is confirmed to be F at Ci

f , we

add an additional constraint to ensure that it is added before
i:

(C2) ∀k ∈ [Ci
f , i− 1] :

∨
fadd

ak

Possible precondition establishment: When a possible pre-
condition f is realized as a precondition of ai (i.e. fpre

ai
=

T), it needs to be established and protected using constraints
C1 and C2 above. Specifically, if f is confirmed T at the
level Ci

f , we protect this truth value with a variant of C1:

(C3) ∀k ∈ [Ci
f , i− 1] : fpre

ai
⇒ (fdel

ak
⇒

∨
k<m<i

fadd
am

)

Otherwise, we establish it with a variant of C2:

(C4) ∀k ∈ [Ci
f , i− 1] : fpre

ai
⇒

∨
fadd

ak

Approximate Assessment The exact computation dis-
cussed above has exponential run time in the worst case, and
would not be useful when one considers comparing robust-
ness of two given plans, or incorporating robustness assess-
ment into a robust plan generation procedure (see below).
We now describe two approximate approaches to estimate
plan robustness.



Algorithm 1: Approximate plan robustness.

Input: The plan π = (a0, a1, ..., an);1

Output: The approximate robustness value of π;2

begin3

Rπ(0) = 1;4

for i = 1..n do5

for p ∈ F do6

Rπ(p, i)← ApproxPro({p}, i, π);7

Rπ(i)← ApproxAct(i, π);8

Return Rπ(n);9

end10

Using approximate weighted model-counting algo-
rithms: Given a logical formula representing constraints
on domain models with which the plan π succeeds, in this
approach an approximate model-counting software, for in-
stance Weighted ApproxCount (Wei and Selman 2005), is
invoked to get the approximate number of domain models.
Robustness propagation approach: We are also investigat-
ing an approach based on approximating robustness value of
each action in the plan, which can then be used later in gen-
erating robust plans. At each action step i (0 ≤ i ≤ n), we
denote Rπ(i) as the robustness value of the action step i, and
define the robustness value for any set of propositions Q ⊆
F at level i, Rπ(Q, i) (i > 0), as the weighted ratio of SD

with which (a0, a1, ..., ai−1) succeeds and p = T (∀p ∈ Q)
in the resulting state si.

The purpose of this approach is to estimate the robustness
values Rπ(i) through a propagation procedure, starting from
the dummy action a0 with a note that Rπ(0) = 1. The result-
ing robustness value Rπ(n) at the last action step can then
be considered as an approximate robustness value of π. In-
side the propagation procedure (Algorithm 1) is a sequence
of approximation steps: at each step i (1 ≤ i ≤ n), we esti-
mate the robustness values of individual propositions p ∈ F
and of the action ai (the procedure ApproxPro(p, i, π) at
lines 6-7 and ApproxAct(i, π) at line 8, respectively) using
those of the propositions and action at the previous step. To
obtain efficient computation, we assume that the robustness
value of a proposition set Q ⊆ F can be approximated by a
combination of robustness values of p ∈ Q, and that the pre-
condition and effect realizations of different actions are in-
dependent (although two actions can be instantiated from an
action schema, and incompleteness information is asserted
at the schema level).

Generating Robust Plans

Our next contribution will be to investigate various tech-
niques that can be put on top of the FF planner (Hoffmann
and Nebel 2001) in order to generate solution plan with high
robustness value. Given the current state si, reached from
a sequence of actions πi = (a0, a1, ...ai−1), the purpose is
to advance the search by choosing one state among k suc-
cessor states si1 , si2 , ..., sik

, taking into account the robust-
ness value (in addition to the reachability measure computed
from the relaxed plans RP (sij

) built from sij
). We briefly

describe high-level ideas that we are working on:

Model-counting Approach One simple idea using ro-
bustness value in evaluating successor states is first con-
structing constraints for applicability of actions in the par-
tial plan πi (as discussed in the previous section) and in the
relaxed plan RP (sij

), and then use model counting algo-
rithms to compute the robustness value. This value then can
be combined with the the reachability information (i.e. the
number of actions in RP (sij

)) to evaluate successor states.

Extracting Robust Relaxed Plan This approach aims to
modify the construction of the relaxed planning graph and
the relaxed plan extraction of FF, from which a relaxed plan
more sensitive to incompleteness information of the domain
model can be extracted, and therefore can guide the search
toward robust solution plans. While details of this approach
still need to be worked on, we outline some design issues be-
ing considered: (1) the construction of the relaxed planning
graph should take into account the robustness information of
the partial plan πi; (2) the propagation of robustness of ac-
tions in the relaxed planning graph (which might be different
from that of the partial plan); and (3) the termination condi-
tion in building the relaxed planning graph needs to change
(intuitively, the robustness value of a goal proposition p may
still be improved by extending the relaxed planning graph
with actions possibly adding p).

Conclusion
This thesis aims to address planning scenarios where the
given model of user’s preferences or domain dynamics is
partially specified, a realistic problem that many planning
systems would face, and yet has not been given enough at-
tention in the planning community. We therefore expect that
our work will allow planning techniques to enter a broader
range of real-world applications, and also hope to extend our
methods to other planning formulations (such as temporal
planning, contingency planning, etc.)
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