
Continual On-line Planning

Sofia Lemons
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

sofia.lemons atcs.unh.edu

Abstract

My research proposes an approach to integrating planning
and execution in time-sensitive environments, a setting I call
continual on-line planning. New goals arrive stochastically
during execution, the agent issues actions for execution one
at a time, and the environment is otherwise deterministic. My
dissertation will address this setting in three stages: optimiz-
ing total goal achievement time, handling on-line goal arrival,
and adapting to exogenous changes in state. My approach
to these problems is based on incremental heuristic search.
The two central issues are the decision of which partial plans
to elaborate during search and the decision of when to issue
an action for execution. I propose an extension of Russell
and Wefald’s decision-theoretic A* algorithm to inadmissi-
ble heuristics. This algorithm, Decision Theoretic On-line
Continual Search (DTOCS), handles the complexities of the
on-line setting by balancing deliberative planning and real-
time response.

Introduction
The goal of planning is to synthesize a set of actions that,
when executed, will achieve the user’s goals. Most academic
research on general-purpose planning has concentrated on
off-line planning, in which plan synthesis is considered sep-
arately from plan execution. This separation was originally
motivated by the fact that even simplified off-line settings,
such as sequential non-temporal planning, are intractablein
the general case and it has helped focus research in the field
on core algorithmic issues. In the last ten years, tremendous
advances have been made in domain-independent plan syn-
thesis and in many domains we now can find parallel tem-
poral plans with hundreds of actions in a few seconds.

However, currently deployed planners for real-world ap-
plications are frequently run in an on-line setting in which
plan synthesis and execution run concurrently, new goals
may arrive, and facts about the world state may change.
Such domains include manufacturing process control, sup-
ply chain management, power distribution network configu-
ration, transportation logistics, mobile robotics, and space-
craft control. For example, in the CASPER system devel-
oped at JPL for the EO-1 satellite, observations of the Earth
are analyzed on-board and can trigger recognition of im-
portant activity that immediately spawns requests for addi-
tional images (Gratch and Chien 1996). When goals arrive,

CASPER generates completely new plans to achieve them.
Similarly, in the Man-U-Plan system developed at PARC for
parallel printing systems, new requests for printed sheetsar-
rive in the system at a rate of several per second interleaving
with the printing of other sheets (Ruml, Do, and Fromherz
2005). Likewise, this system handles new goals and failures
by generating new plans.

Despite the importance of on-line planning domains, the
issues they raise related to total goal achievement time,
goal arrival, and asynchronous state changes have not been
thoroughly explored. Indeed, during ICAPS community
meetings and Festivus events, many prominent planning re-
searchers have pointed out the weak connection of academic
work to industrial applications as the most pressing issue
facing the community today. One reason for this discon-
nection is that real-world applications tend to be complex.
Another is that evaluating an on-line planner is more com-
plex than running a planner off-line. My dissertation pro-
poses a problem formulation, calledcontinual on-line plan-
ning, that extends current standard off-line planning into the
on-line setting that takes into account wall-clock time. To
solve problems in this setting, I am developing a real-time
heuristic search approach that extends decision-theoretic A∗

algorithm (DTA*) (Russell and Wefald 1988b).

The stages for my dissertation are optimizing total time,
handling on-line goal arrival, and handling asynchronous
state changes. By total time, I mean the time taken by both
plan generation and execution. In addition, cost of a solu-
tion can and should be taken into consideration, along with
time. This new objective takes into consideration all aspects
of planning time, appropriate for agents active in real time.
Instead of goals being seen as a pre-defined, static list of
desired states, my work will allow for them arriving dur-
ing plan generation or execution. Goal arrivals are a com-
mon concern in industry problems, and have been poorly ad-
dressed by efforts such as replanning or plan repair. Finally,
my work will be extended to handle unexpected changes in
state during planning or execution. This last stage moves
planning into a more realistic setting in which the world can
change beyond the agent’s intended effect and the simplify-
ing assumptions of the previous domains can be broken and
my work will be able to handle these situations gracefully.



Optimizing Goal Achievement Time
The first objective for my dissertation is to develop a search
algorithm which optimizes total goal achievement time,
minimizing both time spent planning and time executing the
plan. Because of this, it may be advantageous to begin is-
suing actions before settling on a complete plan to avoid
wasted time when it is clear which action is best from the
current state. However, this can cause the search to be sub-
optimal and even incomplete in domains with dead ends un-
less complete certainty can be reached. It is important to
note that time-aware search is different than anytime search
which maintains an improving stream of complete incum-
bent solutions. While algorithms for this setting might find
solutions and improve them, the focus of time-aware search
is to be able to reduce the total time taken by the agent in
producing and executing a plan, partial or complete.

This setting is very different from conventional off-line
planning. It is widely understood that finding cost-optimal
(ie, shortest) plans does not optimize goal achievement time.
For example, an optimal planner may take two minutes to
find a plan that takes 30 seconds to execute whereas a sat-
isficing planner might find a plan within seconds that takes
only a few seconds longer to execute than the optimal plan.
However, it could also be the case that the satisficing planner
quickly finds a plan that takes five minutes, in which case the
optimal planner would be preferred. Because conventional
satisficing planners ignore the concept of wall time, they can
perform worse than optimal planners when time matters.

Furthermore, it may be beneficial to begin acting before
an entire plan has been constructed. If it seems clear that
all good plans share a common prefix, it can shorten goal
achievement time to begin execution of that prefix while
the tail of the plan is refined. There has been an enormous
amount of work on real-time heuristic search (Korf 1990),
but that work actually addresses a different objective: con-
stant planning time per action. If it is not clear which action
is best, then it may reduce the time to goal to delay acting
rather than taking a long and expensive action that turns out
to be unnecessary. Or, it may turn out that the action to take
is obvious at every step, and virtually no search is actually
necessary. Thus real-time search may be suboptimal. What
we need is an algorithm that adjusts its deliberations accord-
ing to the problem at hand. We will use the termincremental
heuristic searchto differentiate this setting from the more
rigid real-time one.

The BUGSY algorithm (Ruml and Do 2007) comes close
to one of my work’s objectives, trying to optimize total
search time and solution cost using a user-provided utility
function to weigh one against the other. It returns a com-
plete solution, much like A*, but allows for suboptimality in
exchange for the expansion of fewer nodes. It uses estimates
of the amount of time it would take to find a solution under a
node, much like the cost-to-go heuristic estimates the quality
of the best solution under a node. While there may be some
correlation between the cost-to-go and the search-effort-to-
go, an explicit estimation of both allows the algorithm more
freedom to decide the true utility of searching under a node.

Even though the intent of BUGSY is to minimize time
and cost, it only considers returning complete plans. This

current state

α

n0 n1 n2

β1

n3

β2

n4

Figure 1: A search tree with three top-level actions.

allows it to guarantee good features like gracefully handling
irreversible actions and maintaining strict bounds on solu-
tion quality, but it may lead to longer total time. Not issu-
ing actions as the planning is generated could lead to longer
combined planning and execution time. If we truly wish
to minimize total time, algorithms which generate complete
plans before acting will likely fail us.

The Decision-Theoretic A* algorithm (DTA*) of Russell
and Wefald, 1991 has many of the properties that we need
and is capable of issuing actions before a complete plan has
been generated. DTA* uses meta-level search control to de-
cide whether the cost of further search is worth the expected
gain in decision quality resulting from having better esti-
mates of action value. If search isn’t worth it, then the cur-
rent best action is executed. To understand how the algo-
rithm works, we will use the simple tree in Figure 1. This
tree has three top-level actions applicable in the current state,
α, β1, andβ2. DTA* assumes that the heuristic evaluation
function is consistent and thus the value of each top-level
action is taken to be the lowestf value of any node on the
search frontier of its subtree. We will assume that nodes are
arranged left-to-right with the cheapest nodes on the left,so
f(α) = f(n0) ≤ f(β1) = f(n3) ≤ f(β2) = f(n4). Rus-
sell and Wefald note that becauseα is currently the best ac-
tion, and further search with an admissible heuristic can only
causef values to increase, that further search underβ1 or β2

cannot change the action that appears best. This means that
DTA* need only consider searching underα. In fact, any
search underα must expand at least those nodes whosef
values are less than or equal tof(β1) in order for the search
to have any effect. So DTA* considers expanding supersets
of those nodes. For example, iff(n1) ≤ f(β1) ≤ f(n2),
then DTA will consider expanding either the set{n0, n1} or
the set{n0, n1, n2}. For each node to be expanded in a set,
DTA* estimates how much itsf value is likely to increase.
(This estimate is learned off-line from training problems.)
With this information, the meta-level control loop can esti-
mate whetherf(α) is likely to rise high enough to justify
choosingβ1 over α. Because DTA* knows how many ex-
pansions it is considering performing, it can weight the ex-
pected difference in solution cost against the time required
to perform the search.

DTA* is a very elegant algorithm and Russell and We-
fald, 1991 present promising results on sliding tile puz-
zles. Unfortunately, there appears to have been little fur-
ther work on the topic after the untimely death of Eric We-
fald cut short his dissertation work. It has never been ap-
plied to more challenging problems, such as AI planning.
Nor has it actually been shown to be effective in optimiz-
ing true wall-clock time to goal achievement, rather than



1. while the utility of search> 0
2. action← select action to search
3. repeatk times
4. if a new goal has arrived, then
5. clear the open list and go to line 1
6. if real time has reached the time stamp of the root, then
7. prune everything except the subtree under the

advance timetop-level action
8. go to line 1
9. expand the best node underaction

Figure 2: The pseudocode for DTOCS

simply abstract nodes generated, a measure that ignores the
overhead of meta-reasoning. Likewise, its design depends
highly on the assumption of an admissible (or more impor-
tantly non-decreasing) cost estimates. When an inadmissi-
ble or weighted heuristic is used, the total cost of a node can
decrease with more search.

While Russell and Wefald, 1988a make mention of an
adaptation of DTA* to an inadmissible heuristic, they only
discuss a new calculation of the value of search and ignore
the consideration of where search should be done. The nat-
ural assumption might be to continue searching under the
top-level action with the best estimated cost, but the choice
of that expansion order was originally justified by the nodes
under that action being the only ones which would cause the
agent to change its mind about which action is best. If cost
estimates can decrease after search is performed, however,
expanding nodes under the second-best action or others may
also cause the agent to change its mind. This situation re-
quires could leave DTA* searching much longer under the
estimated best action when only a little bit of search under
another action would provide clear information about which
action is really best.

My proposed algorithm, called Decision Theoretic On-
line Continual Search (DTOCS) , is capable of using a
heuristic function which is not strictly optimistic by mea-
suring the total uncertainty in the believed value of actions.
It attempts to decide whether to continue searching or issue
the action that appears to be the best. As mentioned above,
the objective is to minimize actual time spent for both plan-
ning and executing (in addition to minimizing action cost.)
Given this novel objective function, the expansion order for
nodes during search can not be based solely on the estimated
cost of solutions under that particular node. Instead, nodes
should be given priority based on the information gained by
expanding them. The information that is most important in
this setting is which action from the agent’s current state lies
on the path to a better solution than the others. We want
to expand nodes which will decrease the agent’s uncertainty
about which action is best. Uncertainty in this case must
be expressed as a function of heuristic error, allowing the
agent to estimate the probability of belief over action values
changing in a significant way should more search be per-
formed. Pseudocode for DTOCS is given in Figure 2.

DTOCS decides whether to issue an action by estimating
whether the expected benefit of further search outweighs the
cost of the time more search would take. Assume we have an
actionα that we currently believe is the best action, and an

Figure 3: Top: The choice of action is clear.Bottom:
Search may be justified.

actionβ that we are not completely certain is worse. More
search may reveal thatβ is, in fact, the best andα is not,
but it will cause us to issue an action later and, therefore, in-
crease total search time. We issue actions when more search
would likely cost more than it would offer in plan improve-
ment.

Figure 3 shows an example for parallel planning, in which
the agent can choose to begin new actions or wait until a later
point in time. On the left, action A has an expected net utility
of 10 and the variance in the belief distribution is small, in-
dicating that we are quite certain about that value. Action B
has little overlap with A, and we are certain enough about the
value of advancing time that it is unlikely that further search
would reveal it to be better than A. Delaying execution for
search would be a waste of time, so we choose to issue A.
On the right in Figure 3, A still has the best expected value
but we are less certain. We are also less certain about B’s
value, and advance time has substantial overlap with A. De-
pending on the value we attribute to time versus plan cost,
further search may be beneficial to refine the agent’s beliefs
about A and B. It is important to note that uncertainty about
A would not be enough on its own to merit more search. Had
we been uncertain about A but very certain that the values
of all other actions were lower than A’s, we would still be
unlikely to change the agent’s preference for A after more
search. To reduce the overhead of this meta-level control,
we assume a fixed ‘quantum’ of search (notatedk on line 3
in Figure 2) between meta-level deliberation.

My work so far has addressed this issue of optimizing to-
tal goal achievement time, and resulted in the DTOCS al-
gorithm. Future work will require evaluation of DTOCS in
comparison to traditional full-plan algorithms like weighted
A* and BUGSY as well as incremental search algorithms
such as RTA* and DTA*. I will evaluate DTA* over a variety



of problems, such as pathfinding and domain-independent
planning, both sequential and parallel.

On-line Goal Arrival
The next section of my dissertation is to handle the arrival
of additional goals during planning and execution. I as-
sume that goal arrival does not change the state in terms of
the applicability of actions, meaning that the existence or
non-existence of a goal does not invalidate an existing plan,
although it may change its reward value. Much like tradi-
tional planning, action results are deterministic, as opposed
to settings in which executed actions may fail to achieve
some or all of their post-conditions or cause additional ef-
fects beyond what was expected. One could simply synthe-
size a complete plan for the current set of goals, replanning
whenever new goals arrive (Benton, Do, and Ruml 2007;
Gratch and Chien 1996; Ruml, Do, and Fromherz 2005),
but the complexity of complete plan synthesis can delay the
start of action execution.

Because we assume that the goal arrival distribution is
known (or estimated on-line), we want to be able to plan for
the future, acting in a way that anticipates any likely future
goal arrivals. The agent does so by generating sampled fu-
tures using the arrival probability, allowing it to deal with a
determinized version of the problem. These samples are cre-
ated by projecting into the future out to a given horizon, with
possible goal arrivals and the times at which they are imag-
ined to have arrived. Planning can then be done for these
samples to determine the value of each action. I am collab-
orating with the creators of an “anticipatory” algorithm for
handling on-line goal arrival (Hubbe et al. 2008) and will
extend upon their work by generating a single plan for all
sampled futures (rather than a plan for each sample), allow-
ing work to be reused after each action is issued.

My work with DTOCS will be extended to handle goal ar-
rival, but several factors need to be taken into consideration:
1) given that goals arrive as we plan and execute, DTOCS
must predict and plan ahead for likely future goals; 2) a pol-
icy must be established for when to generate new samples,
since passing time may make them less accurate or useful;
and 3) given heuristic evaluation over several sample futures,
there may need to be a change in the expansion order for
search.

Asynchronous State Changes
To extend my work to an even more general case, I will work
on the problem of state changes outside the agent’s con-
trol during search. Work on adapting to changing goal sets
should provide insight into the problem of changing state.
This feature can be viewed, much like goals, as the arrival
of new facts according to some probability function. It is
general enough to encompass several other interesting fea-
tures often ignored by traditional planning, such as arriving
goals which affect action applicability or even action failure.

This work will also be centered around methods of deter-
minizing the problem and attempting to predict future out-
comes using sampling. Samples can similarly be drawn us-
ing a probability distribution, as before, but the distribution

must be over arrival of general world facts, rather than goals.
The number of likely fact arrivals may be different than the
number of possible goal arrivals, but it is not clear whether
one will necessarily be larger than the other.

All of the issues required for consideration in handling
on-line goal arrival are outstanding for fact arrival, as well.
The biggest new issue for this stage is the applicability of
actions in sampled futures or when facts actually do arrive.
The planning methods discussed for anticipating goal arrival
will not be directly applicable because an existing plan can
be made invalid by the arrival (whether predicted or real) of
new facts. Planning must be done in a way that can handle
when actions become applicable or inapplicable. This may
be as simple as simulating a plan over each sampled future as
before and assuming that actions which are not applicable in
that future incur cost as normal but fail to achieve their post-
conditions. It may also be complex enough to necessitate
the algorithm maintaining multiple partial plans or repairing
them as necessary.

There is some room to extend the complexity of the arrival
function in this stage, as well. A random probability distri-
bution for fact arrivals is the simplest assumption, but it does
not allow for causality in the arrival of facts. This means,
for instance, that an action with varying effects could not be
fully modeled. Some distribution that allows for cause and
effect would be an interesting extension to this work.

References
Benton, J.; Do, M. B.; and Ruml, W. 2007. A simple
testbed for on-line planning. InProceedings of the ICAPS-
07 Workshop on Moving Planning and Scheduling Systems
into the Real World.
Gratch, J., and Chien, S. 1996. Adaptive problem-solving
for large-scale scheduling problems: A case study.Journal
of Artificial Intelligence Research4:365–396.
Hubbe, A.; Ruml, W.; Yoon, S.; Benton, J.; and Do, M. B.
2008. On-line anticipatory planning. InProceedings of the
ICAPS-08 Workshop on A Reality Check for Planning and
Scheduling Under Uncertainty.
Korf, R. E. 1990. Real-time heuristic search.Artificial
Intelligence42:189–211.
Ruml, W., and Do, M. B. 2007. Best-first utility-guided
search. InProceedings of IJCAI-07, 2378–2384.
Ruml, W.; Do, M. B.; and Fromherz, M. P. J. 2005. On-line
planning and scheduling for high-speed manufacturing. In
Proceedings of ICAPS-05, 30–39.
Russell, S., and Wefald, E. 1988a. Decision theoretic
control of reasoning: General theory and an application to
game-playing. Technical Report UCB/CSD 88/345, Uni-
versity of California, Berkeley.
Russell, S., and Wefald, E. 1988b. Multi-level decision-
theoretic search. InProceedings of the AAAI Symposium
on Computer Game-Playing.
Russell, S., and Wefald, E. 1991.Do the Right Thing:
Studies in Limited Rationality. MIT Press.


