
Symbolic Search in Planning and General Game Playing

Peter Kissmann
TZI Universität Bremen, Germany

kissmann@tzi.de

Abstract

This short paper gives a brief overview over my PhD the-
sis and the work that I have already done. It is concerned
with optimally solving planning problems (sequential as well
as net-benefit) and optimally solving general games. For all
these, symbolic search using BDDs is performed.

Introduction
The PhD thesis will consist of two main parts. The first
one is concerned with planning (Fikes and Nilsson 1971),
while the second one is concerned with general game play-
ing (Genesereth, Love, and Pell 2005).

In planning we are interested in finding optimal plans.
That is, for classical sequential planning we want to find a
sequence of actions that transforms the initial state to one of
the goal states with as few actions as possible (in case of no
action costs) or the total cost of all these actions being mini-
mal (if action costs are present). For net-benefit planning we
want to find a sequence of actions that transforms the initial
state to one of the goal states, similar to classical planning,
with the addition that there are soft goals, which provide re-
wards for achieving them. Thus, we want to maximize the
plan’s net-benefit, which is the total reward for achieving
soft goals minus the total cost of the actions within the plan.

In general game playing we are mainly concerned with
finding optimal strategies, i. e., strongly solving the games,
as well, and not so much with playing the games. A strong
solution provides us with the optimal outcome (in case of
perfect play of all players) for any possibly reachable state.
So far, we were able to implement solutions for single- as
well as two-player turn-taking games.

All our solving algorithms (for planning as well as for
general game playing) perform symbolic search using binary
decision diagams (BDDs) (Bryant 1986). These are utilized
for saving memory, as they represent sets of states and are
automatically minimized, although the algorithms must be
designed to work well with this set-based approach.

The structure of this short paper (as well as the PhD the-
sis) will be as follows. First, we give a brief introduction
to symbolic search. Next, we give some ideas on how we

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

use symbolic search to find optimal plans. Finally, we intro-
duce to our approach for solving general single-player and
two-player turn-taking games.

Symbolic Search
When we speak of symbolic search we mean state space
search using binary decision diagrams (BDDs) (Bryant
1986). With these, we can perform a set-based search, i. e.,
we do not expand single states but sets of states.

BDDs typically have a fixed variable ordering and are re-
duced using two rules so that only a minimal number of in-
ternal BDD nodes is needed to represent a given formula /
set of states.1 The resulting representation is unique and no
duplicates are present in any BDD.

BDDs enable us to completely search some state spaces
we could not exhaustively search in the explicit case. E. g.,
in the game Connect Four 4,531,985,219,092 states are
reachable. We use 85 bits to encode each state (two bits
for each cell and an additional one to denote the active
player), so that in case of explicit search we would need
about 43.5 TB to store all of them, while with BDDs 16 GB
are sufficient. If we store only the current BFS layer and
flush the previous one to a hard disk, the largest one even
fits into 12 GB.

Unfortunately, most planning problems as well as general
games contain variables, so that we do not know the exact
size of a state, but this information is mandatory for BDDs.
If we perform some instantiation (e. g., (Helmert 2008; Kiss-
mann and Edelkamp 2009a)), we come up with a variable-
free format.

To decrease the number of BDD variables, we try to
find groups of mutually exclusive predicates. For plan-
ning we use the algorithm described by Edelkamp and
Helmert (1999), while for general game playing we perform
a simulation-based approach similar to Kuhlmann, Dres-
ner, and Stone (2006) and Schiffel and Thielscher (2007)
who identify the input and output parameters of each predi-
cate. Often, input parameters denote the positions on a game
board while the output parameters specify its content. Pred-
icates sharing the same name and the same input but differ-

1These are reduced ordered binary decision diagrams (RO-
BDDs)). Whenever we speak of BDDs it is really ROBDDs we
have in mind.



ent output parameters can never be true at the same time and
thus are mutually exclusive. If we find a group of n mutually
exclusive predicates, we need only dlog ne BDD variables to
encode these.

After instantiation, we know the precise number of moves
of all the players. In case of general game playing, where we
can have simultaneous moves, we can also generate possible
combinations of moves of all players, which results in M
(for planning, M simply corresponds to the set of all pos-
sible actions). Each move m ∈ M can be represented by a
BDD transm, so that the complete transition relation trans
is the disjunction of all these: trans :=

∨
m∈M transm.

To perform symbolic search, we need two sets of vari-
ables: one set, S, for the current states, the other one, S′, for
the successor states. To calculate the successors of a state
set from , in symbolic search we use the image operator:

image (from) := ∃S. (trans (S, S′) ∧ from (S)) .

As these successors are represented using only S′, we need
to swap them back to S.2 This way, if we start at the initial
state, each call of the image results in an entire breadth-first
search (BFS) layer. So, BFS is simply the iteration of the
image, until a fix-point is reached.

As the transition relation trans is the disjunction of a
number of moves, it is equivalent to generate the successors
using one move after the other and afterwards calculate the
disjunction of all these states:

image (from) :=
∨

m∈M
∃S. (transm (S, S′) ∧ from (S)) .

This way, we do not need to calculate a monolithic transition
relation, which takes time and often results in a BDD too
large to fit into RAM.

The inverse operation of the image is also possible. The
pre-image results in a BDD representing all the states that
are predecessors of the given set of states from:

pre-image (from) := ∃S′. (trans (S, S′) ∧ from (S′)) .

With this, we can perform a BFS in backward direction as
well.

Action Planning
In this section, we give a brief overview of the algorithms we
use for finding optimal plans for classical sequential plan-
ning as well as net-benefit planning.

Classical Planning
A classical planning problem is a tuple P = 〈S,M, I, T , c〉
with S ⊆ 2V representing a set of states, 2V the powerset of
variables V ,M : S 7→ S a set of actions transforming states
into states, I ∈ S an initial state, T ⊆ S a set of terminal
states, and c :M 7→ N+

0 a cost function specifying a certain
cost for each action inM. The goal is to find a sequence of
actions that transforms I to T .

2We omit the explicit mention of this in the pseudo-codes to en-
hance readability. Whenever we write of an image (or pre-image),
we assume such a swapping to be performed immediately after the
image (or pre-image) itself.

We are interested in a plan with minimal total cost, i. e.,
the sum of the costs of all actions of the plan must be min-
imal.3 For this we perform symbolic A* search. Some al-
gorithms, such as BDDA* (Edelkamp and Reffel 1998) and
SetA* (Jensen, Bryant, and Veloso 2002), have been pro-
posed for this. We perform BDDA*, which uses a two-
dimensional matrix of BDDs. The element at position (g, h)
represents all the states with g being the distance from I and
h an estimate on the distance to T .

Starting at I, we proceed through this matrix along f -
diagonals, with f = g + h. For each diagonal we start with
the BDD with smallest g value, expand it using the image
function and go on until all states of this diagonal have been
expanded and we switch over to the next larger f diagonal.
Once a goal state is reached, we are done and can reconstruct
the plan (if we can assume the heuristic estimate to be at
least admissible).

Net-Benefit Planning
A net-benefit planning problem PNB additionally contains
some soft goals TS ∈ V along with a utility function u :
TS 7→ N+

0 specifying the reward for achieving these goals.
The goal again is to find a sequence of actions that trans-
forms I to T .

We are interested in a plan with maximal net-benefit,
which is the total utility for achieving soft goals minus the
total action cost. We slightly transform this problem into a
minimization problem by assuming that we try to achieve
all soft goals and need to pay a cost (according to u) for vi-
olating one (i. e., failing to achieve one). Thus, we need to
minimize the total violation cost plus the total action cost.

While it is possible to calculate an upper bound on the to-
tal violation cost (which is the sum for violating all of them),
no such bound can be found for the total action cost. Thus,
for the first one we can come up with a BDD representing
the bound while for the latter we need to rely on the data
structures used. We use an open list that is sorted according
to the distance to I, which equals the total action cost up to
this point. So, for each state (including the terminal ones)
we already know the precise total action cost.

To calculate a plan achieving optimal net-benefit we per-
form an algorithm (see (Edelkamp and Kissmann 2009)) that
has some similarities to symbolic branch-and-bound plan-
ning (Jensen et al. 2006). We iteratively increase a lower
bound on the net-benefit (this bound is the total action cost
so far; as we add the total action cost and the total violation
cost, both of which are assumed to be at least 0, the optimal
net-benefit is always at least as high as the current total ac-
tion cost). At the same time, we decrease upper bounds on
the net-benefit as well as the total violation cost.

Whenever we reach a terminal state we check its total vi-
olation cost. If this is smaller than the current upper bound
on it we update this bound. If the net-benefit for this state is
smaller than the best one so far, we update that as well and
calculate a plan for reaching this terminal state.

3In case of no action costs being present we need to find a plan
with a minimal number of actions. Thus, it is equvalent to assume
all actions having equal costs, e. g., 1.



Once we reach the situation where either all states are ex-
plored or the total violation cost reaches 0 (i.,e., all soft goals
are satisfied) or the total action cost is at least as large as the
best net-benefit found so far, we are done and can return the
last calulated plan.

General Game Playing
In this section, we first of all give a motivation as to why gen-
eral game playing might be interesting for the planning com-
munity as well. Afterwards, we present our approaches for
solving general single- and two-player turn-taking games.

General Game Playing and Action Planning
A general game is a tuple G = 〈S, p,M, I, T ,R〉 with S
being the set of reachable states, p the number of players,
M : S 7→ S the set of possible moves for each state, I ∈
S the initial state, T ⊆ S the set of terminal states, and
R : T 7→ {0, . . . , 100}p the reward for each player in all
terminal states.

General game playing can be seen as a generalization of
classical planning. While in planning typically only one
agent is asked to find a plan, in general game playing one
or more players try to find a good next move in parallel.

In particular, in a competition setting (Genesereth, Love,
and Pell 2005) all agents are provided with a description
of a game in the logic-based game description language
GDL (Love, Hinrichs, and Genesereth 2006), along with
a startup and a move time. The startup time is relevant at
the beginning of a game and can be used to perform pre-
computations, while afterwards the move time is used to
determine the time the players have to calculate their next
move. This move they send to a general game playing server
that administers the process in keeping the game state up-to-
date and informing all agents of the chosen moves.

The agents aim not only at achieving some goal state, but
they are also awarded with certain rewards in the range from
0 to 100 (higher scores are to be prefered).

In the default setting, all players perform their moves si-
multaneously. If some predicate denoting the current player
is set and updated after each move accordingly, it is possible
to model turn-taking games as well. For these, all the play-
ers that are not active can only perform a noop, i. e., a move
that does not change anything about the game’s state.

Of course, single-player games are possible as well. Thus,
classical action planning might be seen as the special case
of a single-player game where the agent tries to reach a goal
state where it achieves a reward of 100 (although in general
game playing, the number of steps taken is irrelevant, if it is
not part of the reward specification).

Net-benefit planning might be seen as a better fit for this.
If we assume all actions to have a cost of zero, net-benefit
planning would also find a plan that leads to a terminal state
achieving the maximal reward of 100. But the main differ-
ence is that action planning is offline, i. e., the plan is cal-
culated before it is executed, while general game playing
typically is online.

Non-deterministic planning is sometimes refered to as
planning in an oily world, i. e., the agent can choose ac-

tions but cannot be certain of their outcome, which is deter-
mined by the non-determinism. This can be seen as a two-
player turn-taking game with the planner being the player
and the environment deciding about the non-determinism
its opponent (e. g., (Jensen, Veloso, and Bowling 2001;
Bercher and Mattmüller 2008; Kissmann and Edelkamp
2009b)), so that even there we can see a connection between
planning and general game playing. But as general game
playing supports any number of players and also simultane-
ous moves, it is still more general than this.

Solving General Games
What we are interested in here is not playing general games,
but solving them strongly, i. e., we want to find the game
theoretic value for each reachable state. Solving complex
games has long been a major challenge in AI. One of the
last outstanding results is due to Schaeffer et al. (2007), who
were finally able to solve the game of American Checkers.

In the context of general game playing, such a solving is
even more involved, as the designers of the algorithms do not
know what games their programs might be presented with.
Thus, a more general approach is mandatory, so it does not
seem promising to assume that in the near future similar suc-
cesses in such complex games will be achieved. Nonethe-
less, having a tool that potentially can solve any game (given
enough time and memory) is still a compelling idea.

In the following, we will present some ideas on how we
use symbolic search to solve general single-player as well as
two-player turn-taking games.

Solving General Single-Player Games To solve general
single-player games we first of all calculate all reachable
states by performing symbolic BFS. Afterwards, we perform
several backward searches starting at the game’s terminal
states T . The first search starts at those states giving a re-
ward of 100, the next one at those giving 99 and so on.

For each of these backward searches we use the pre-image
to find all the preceding states. As we are not confronted
with an opponent, we can be sure that we can achieve a re-
ward equaling that of our starting point for these states as
well. Next, we remove these states from the set of all reach-
able states and iterate the pre-image calculation, until this
results in no new information.

Once we are done with all terminal states, we have the
precise information as to what reward we can achieve from
any of the reachable states. More details on this algorithm
can be found in Edelkamp and Kissmann (2007).

Solving General Two-Player Turn-Taking Games For
general two-player turn-taking games, things are a bit more
involved. As we are concerned with an opponent, we need to
know what it would do (in case of optimal play). Two rea-
sonable assumptions are that it either tries to maximize its
own reward or that it tries to maximze the difference of its
reward to our reward. The latter case appears to be a reason-
able assumption in a competition scenario where only two
players play against each other: If one player can achieve
more points than its opponent, it might be more beneficial



than achieving a higher number of points (with the opponent
potentially achieving even more).

To come up with a solution (for more details see Kiss-
mann and Edelkamp (2010)), we start by calculating all
reachable states but do not perform any duplicate elimina-
tion, so that some states might appear in several BFS layers.

The solving process is again performed in backward di-
rection. We start at the final layer and calculate the rewards
for all terminal states (by calculating the conjunction with
the corresponding reward BDDs). Afterwards, we iterate
through the layers l in decreasing order and first of all cal-
culate the rewards for the terminal states within these. For
each of the BDDs representing solved states of the succes-
sor layer l + 1 (which we do in the order specified by the
opponent model), we calculate the pre-image, followed by
the conjunction with the non-terminal states of layer l, to
come up with the states where the players (in case of op-
timal play) achieve the same rewards. Before going over
to the next solved states, we remove the newly solved ones
from layer l, so that none get solved multiple times.

Note, that in principle this can also be adapted to multi-
player games. If we assume an opponent model to be given,
we can perfom just the same algorithm. But the result is
rather unstable, as it highly depends on the opponent model.
Unfortunately, we are not aware of any reasonable assump-
tions (as is the case in two-player games), so it is not yet
clear how to determine a correct one. Thus, the result we
would get for multi-player games would be similar to the
result of the Maxn algorithm (Luckhardt and Irani 1986)
that resolves ties by simply choosing the first possible op-
tion. But if the players do not play accordingly, the result is
worthless. Thus, some more effort needs to be invested in
this area, before we are able to come up with good results.

Conclusion
In this short paper, we presented some brief ideas for how
we find optimal plans for classical sequential or net-benefit
planning as well as how we come up with optimal solutions
for general single- and two-player turn-taking games.

References
Bercher, P., and Mattmüller, R. 2008. A planning
graph heuristic for forward-chaining adversarial planning.
In 18th European Conference on Artificial Intelligence
(ECAI), volume 178, 921–922. IOS Press.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowl-
edge in planning problems to minimize state encoding
length. In 5th European Conference on Planning (ECP),
volume 1809 of LNCS, 135–147. Springer.
Edelkamp, S., and Kissmann, P. 2007. Symbolic ex-
ploration for general game playing in PDDL. In ICAPS-
Workshop on Planning in Games.
Edelkamp, S., and Kissmann, P. 2009. Optimal symbolic
planning with action costs and preferences. In 21st Interna-

tional Joint Conference on Artificial Intelligence (IJCAI),
1690–1695.
Edelkamp, S., and Reffel, F. 1998. OBDDs in heuris-
tic search. In 22nd Annual German Conference on Artifi-
cial Intelligence (KI), volume 1504 of LNCS/LNAI, 81–92.
Springer-Verlag.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2(3–4):189–208.
Genesereth, M. R.; Love, N.; and Pell, B. 2005. Gen-
eral game playing: Overview of the AAAI competition. AI
Magazine 26(2):62–72.
Helmert, M. 2008. Understanding Planning Tasks: Do-
main Complexity and Heuristic Decomposition, volume
4929 of LNCS. Springer.
Jensen, R. M.; Hansen, E. A.; Richards, S.; and Zhou,
R. 2006. Memory-efficient symbolic heuristic search. In
16th International Conference on Automated Planning and
Scheduling ICAPS, 304–313. AAAI.
Jensen, R. M.; Bryant, R. E.; and Veloso, M. M. 2002.
SetA*: An efficient BDD-based heuristic search algo-
rithm. In 18th National Conference on Artificial Intelli-
gence (AAAI), 668–673. AAAI Press.
Jensen, R. M.; Veloso, M. M.; and Bowling, M. H. 2001.
OBDD-based optimistic and strong cyclic adversarial plan-
ning. In 6th European Conference on Planning (ECP),
265–276.
Kissmann, P., and Edelkamp, S. 2009a. Instantiating gen-
eral games. In IJCAI-Workshop on General Game Playing,
43–50.
Kissmann, P., and Edelkamp, S. 2009b. Solving fully-
observable non-deterministic planning problems via trans-
lation into a general game. In 32nd Annual German Con-
ference on Artificial Intelligence (KI), volume 5803 of
LNCS, 1–8. Springer.
Kissmann, P., and Edelkamp, S. 2010. Layer-abstraction
for symbolically solving general two-player games. In
ICAPS-Workshop on Planning in Games. To appear.
Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Auto-
matic heuristic construction in a complete general game
player. In 21st National Conference on Artificial Intelli-
gence (AAAI), 1457–1462. AAAI Press.
Love, N. C.; Hinrichs, T. L.; and Genesereth, M. R. 2006.
General game playing: Game description language spec-
ification. Technical Report LG-2006-01, Stanford Logic
Group.
Luckhardt, C. A., and Irani, K. B. 1986. An algorithmic
solution of N-person games. In 5th National Conference
on Artificial Intelligence (AAAI), 158–162. Morgan Kauf-
mann.
Schaeffer, J.; Burch, N.; Björnsson, Y.; Kishimoto, A.;
Müller, M.; Lake, R.; Lu, P.; and Sutphen, S. 2007. Check-
ers is solved. Science 317(5844):1518–1522.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In 22nd AAAI Conference on
Artificial Intelligence (AAAI), 1191–1196. AAAI Press.


