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Abstract

Broadly, my current research focuses on two areas. One
area is Knowledge Representation. I co-invented First
Order Decision Diagrams (FODD) and Generalized
First Order Decision Diagrams (GFODD). (G)FODDs
are a formalism for compactly representing real and
Boolean valued functions over relational structures. We
developed algorithms for composition and logical sim-
plification (reduction) of these functions by theorem
proving and model checking methods. We discov-
ered properties and proved several theoretical results
for (G)FODDs. (G)FODDs have many potential appli-
cations. We have already demonstrated their utility in
representing and solving Relational Markov Decision
Processes (RMDP). The other area focuses on build-
ing agents that can take actions in complex, dynamic
and stochastic environments to achieve a predefined ob-
jective. Decision Theoretic Planning (DTP) has been
one of the most successful frameworks for this task.
The idea is to represent such problems as Markov De-
cision Processes (MDP), exploit structure in the prob-
lem definition and solve the MDP using Dynamic Pro-
gramming methods. We extended the field of DTP by
developing algorithms to represent and solve RMDPs
using (G)FODDs. Based on this we also developed a
planning system FODD-PLANNER that demonstrated
performance comparable to top ranking systems from
the international planning competition. Later we in-
vented a new paradigm for planning by learning within
the framework of the FODD-PLANNER and achieved
drastic improvement in planning efficiency by leverag-
ing model checking methods for FODD reduction.

Building agents (Russel and Norvig 2002) that adapt
and thrive in their environment is a very important prob-
lem within Artificial Intelligence (AI). Usually such agents
become able to take actions in the environment, towards
achieving their objective, either by searching, by reason-
ing or by learning. In fact, in one view it istheproblem of
AI. This is because humans are agents that adapt and act in
complex environments in order to achieve an objective - the
maximization of total happiness. This broad research area
can then be seen to encompass various other fields of AI like
Problem Solving, Knowledge Representation, Planning and
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Acting, and Machine Learning. Research work in this field
has always been of deep interest to me. Milestones along
this way help to solve relevant practical problems of inter-
est. To that extent I am interested in a variety of sub-fields
of AI. My dissertation reflects this.

Current Research
I have concentrated on the following areas of research over
the last few years.

Knowledge Representation:

I invented First Order Decision Diagrams (FODD) (Wang,
Joshi, and Khardon 2008), a new knowledge representation
formalism, along with my co-authors. A FODD compactly
represents real or Boolean valued functions over relational
structures. One can think of a FODD as a relational Al-
gebraic Decision Diagram (ADD) (Bahar et al. 1993) or a
relational Binary Decision Diagram (BDD) (Bryant 1986).
When the leaf values are Boolean, a FODD represents a
function free formula in First Order logic with existentially
quantified variables. The semantics of FODDs follow those
of (Groote and Tveretina 2003). Later we invented Gen-
eralized FODDs (GFODD) (Joshi, Kersting, and Khardon
2009) by extending the representation power of FODDs to
arbitrary quantification. FODDs are a subclass of the set
of function free formulas in First Order logic with existen-
tially and universally quantified variables which itself forms
a subclass of GFODDs. GFODDs are, therefore, very ex-
pressive. Further, since FODDs and GFODDs are functions,
they can be composed to form more complex functions, and
logically simplified or reduced to yield a compact represen-
tation. We developed several algorithms for the manipula-
tion and logical simplification of FODDs and GFODDs, and
proved several theoretical results about them. Algorithms
for the reduction of FODDs and GFODDs can be catego-
rized into as theorem proving and model checking based
reductions. The model checking approach, in particular,
(Joshi, Kersting, and Khardon 2009) has proved very effi-
cient. FODDs and GFODDs have found utility in solving
relational Markov Decision Processes (Joshi and Khardon
2008). Given, their expressive power and manipulability,
however, we believe they can be utilized in a variety of ap-
plications.



Relational Markov Decision Processes:
Markov Decision Processes (MDP) have been a successful
formalism for solving probabilistic planning problems. The
fact that solutions to MDPs generate policies rather than
action sequences is particularly attractive for probabilistic
planning. This approach came to be known as Decision The-
oretic Planning (Boutilier, Dean, and Hanks 1999). Classi-
cal solution techniques for MDPs, like value iteration (VI)
(Bellman 1957) and policy iteration (PI) (Howard 1960),
were based on dynamic programming. These early solu-
tions, however, required enumeration of the state space. Ow-
ing to the curse of dimensionality (Bellman 1957), even for
reasonably small problems, the state space can be very large.
This can be seen easily for propositionally factored domains
when the state is defined byN binary variables and the num-
ber of possible states is2N .

Several approaches were developed to handle proposi-
tionally factored domains (Boutilier, Dearden, and Gold-
szmidt 1999; Kearns and Koller 1999; Guestrin et al. 2003;
Hoey et al. 1999). One of the most successful of these,
SPUDD (Hoey et al. 1999) demonstrated that if the
MDP can be represented using algebraic decision diagrams
(ADDs) (Bahar et al. 1993), then VI can be performed en-
tirely using the ADD representation thereby avoiding the
need to enumerate the state space. Propositionally factored
representations show an impressive speedup by taking ad-
vantage of the propositional domain structure. However,
they do not benefit from the structure that exists with objects
and relations. (Boutilier, Reiter, and Price 2001) developed
the first approach using relational structure and provided
the Symbolic Dynamic Programming (SDP) algorithm in
the context of situation calculus. This algorithm provided
a framework for dynamic programming solutions to Rela-
tional MDPs that was later employed in several formalisms
and systems (Kersting, van Otterlo, and De Raedt 2004;
Hölldobler, Karabaev, and Skvortsova 2006; Sanner and
Boutilier 2009; Wang, Joshi, and Khardon 2008).

A Relational Markov Decision Process (RMDP) de-
scribes a mathematical model of interaction between an
agent and a stochastic, dynamic environment, when the
world is described by objects and relations among them. The
advantage of the relational representation is abstraction. An
abstract solution to the relational problem is also a solution
to a concrete problem with a very large number of state vari-
ables. One can plan at the abstract level without grounding
the domain, potentially leading to more efficient algorithms.
In addition, the solution at the abstract level is optimal for
every instantiation of the domain and can be reused for mul-
tiple problems. However, this approach raises some difficult
computational issues because one must use theorem proving
to reason at the abstract level, and because for some prob-
lems optimal solutions at the abstract level can be infinite in
size. Following (Boutilier, Reiter, and Price 2001) several
abstract versions of the value iteration (VI) algorithm have
been developed using different representation schemes. For
example, approximate solutions based on linear function ap-
proximations have been developed and successfully applied
in several problems (Sanner and Boutilier 2009).

Motivated by the success of algebraic decision diagrams

in solving propositional MDPs (Hoey et al. 1999; St-
Aubin, Hoey, and Boutilier 2000), we introduced a novel
approach to solving RMDPs (Wang, Joshi, and Khardon
2008). This approach is based on SDP, the dynamic pro-
gramming solutions for RMDPs. Specifically, we repre-
sented the RMDP using FODDs and then solved the dy-
namic programming problem by manipulation and simpli-
fication of FODDs. Later we made the algorithm practical
by introducing approximation techniques and built a prolog-
based system, FODD-PLANNER based on these ideas (Joshi
and Khardon 2008). FODD-PLANNER has been successful
in solving problems from the international planning com-
petition (IPC) with results comparable to top ranking sys-
tems from IPC (Joshi and Khardon 2008; Joshi, Kersting,
and Khardon 2010). Finally we designed the algorithm VI-
GFODD (Joshi, Kersting, and Khardon 2009), wherein a
RMDP is represented using the more expressive GFODDs
and solved by manipulating them. We proved that the same
dynamic programming approach as with FODDs works for
a very useful subclass of GFODDs. This subclass includes
function free First Order formulas with existentially and uni-
versally quantified variables.

Planning by Learning:
A number of recent papers have employed ideas from the
field of Machine Learning to solve planning problems (Fern,
Yoon, and Givan 2003; Gretton and Thiebaux 2004). The
thread connecting these approaches is the utilization of a
training set of example states to generate a policy or a util-
ity function (which indirectly defines a policy) and then use
it as a heuristic to choose actions. One of the paradigms
in this area is the “learning to act” model (Khardon 1999;
Martin and Geffner 2000; Yoon, Fern, and Givan 2002)
where a policy is learned from solved examples of small
problems and is used to solve larger problems. Within this
paradigm, we invented RETELL, a new learning algorithm
that induces relational decision trees with leaves that are
themselves relations among objects. Given data in the form
of state-actionpairs, RETELL induces a decision tree with
actions in the leaves. This classifier can then be used as
a policy to solve planning problems. We achieved state-
of-the-art performance with RETELL. Later we introduced
a new paradigm for planning by learning (Joshi, Kersting,
and Khardon 2010), where given a model of the world the
planner generates a set of states of interest, and uses this
additional information to help focus the dynamic program-
ming on regions of the state space that are of interest and
lead to improved performance. We demonstrated the value
of this idea by introducing novel model checking reduction
operations for FODDs in FODD-PLANNER. Once again we
achieved state-of-the-art performance and a drastic improve-
ment in planning efficiency.

Sequential Supervised Learning (SSL):
SSL is a paradigm for learning classifiers for data when ex-
amples come in sequences. Text-to-speech mapping, part-
of-speech tagging and protein sequence prediction are some
applications of SSL. Along with my co-author, I devel-
oped and experimented with recurrent sliding window based



learning tools. We discovered some interesting propertiesof
the learning algorithms and achieved state-of-the-art perfor-
mance on benchmark datasets.

Future Research Ideas
Following ideas that stem from my current work, I am in-
terested in investigating the use of FODDs and GFODDs
in other applications. The success of BDDs and ADDs at
representing propositional logic formulas in a number of
applications is good news for FODDs and GFODDs. For
instance FODDs and GFODDs can find application in au-
tomated reasoning and formal verification. Another poten-
tial application is lifted inference (Poole 2003; Braz, Amir,
and Roth 2005; Jaimovich, Meshi, and Friedman 2007;
Milch et al. 2008; Singla and Domingos 2008; Sen, Desh-
pande, and Getoor 2008; 2009; Kersting, Ahmadi, and
Natarajan 2009; Kisynski and Poole 2009). There exist ap-
proaches where ADDs represent the conditional probabil-
ity tables in Bayesian Networks. Such a representation can
then be used to compile the Bayesian Network for faster in-
ference. It would be interesting to explore the possibility
of using FODDs and GFODDs to provide the same lever-
age for Statistical Relational Models (Getoor and Tasker
2007). Another interesting direction for further research
is towards developing efficient model checking reductions
for GFODDs. Success in this area would immediately lead
to a practical version of the VI-GFODD algorithm. This,
in turn, would mean a dramatically more expressive, scal-
able and efficient approximate dynamic programming ap-
proach to solving RMDPs. Yet another research direction
for RMDPs is through Reinforcement Learning (RL) (Sut-
ton and Barto 1998). Many of the ideas for RMDPs dis-
cussed above can be extended and employed in a RL ap-
proach to solving RMDPs. For instance, a learning algo-
rithm for FODDs and/or GFODDs would lead to a model-
based RL method.

In the long run I would like to work on building adap-
tive agents for real world applications by leveraging research
work in the areas of Decision Theoretic Planning, Reinforce-
ment Learning, Statistical Relational Learning and liftedin-
ference and information extraction from the web. Finally,
since all of these areas can benefit from research in Machine
Learning, I am interested in Machine Learning and its appli-
cations as well.
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