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Abstract

We tackle the challenge of applying automated negotiation to
self-interested agents with local but linked combinatorial op-
timization problems. Using distributed production schedul-
ing problems in the context of supply chain management, we
first present a negotiation protocol built on existing work in
the multi-agent negotiation literature. Then, we propose two
negotiation strategies for making concessions in a joint search
space of agreements. The first strategy concedes on util-
ity, an approach commonly used in the negotiation literature;
the second strategy concedes in a metric space while max-
imizing an agent’s local utility. Experimental results show
that this novel metric-space negotiation strategy outperforms
its utility-based counterpart and is able to obtain close-to-
optimal solutions. This paper presents the first study of ap-
plying automated negotiation to self-interested agents, each
with a local combinatorial optimization problem.

1. Introduction
Multi-agent negotiation has played a key role in resolv-
ing conflicts and distributing profits among different partici-
pants. However, the academic interest on negotiation among
agents who have complicated utility functions that are rep-
resented by local combinatorial optimization problems has
been limited. In a typical supplier-manufacturer relation-
ship in a supply chain, the agents negotiate on a frequent
basis (e.g., daily or weekly) on delivery schedules (timing
and quantities of replenishments). These schedules form an
integral part of an agent’s local optimization problem which
generally has a combinatorial nature. Although optimization
of production and inventory decisions in large corporations
are supported by software tools, negotiation of material de-
liveries between the manufacturer and the suppliers still rely
on human interaction. Automated negotiation can alleviate
the burden on human planners and facilitate inter-system in-
teractions for reaching higher-quality agreements.

In this paper, we investigate a two-agent supply chain con-
sisting of a supplier and a manufacturer (Figure 1). The
manufacturer solves a production scheduling problem to de-
termine production quantities in each period in order to sat-
isfy customer demand (e.g.,10 units in the first period,7 in
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Figure 1: A two-agent supply chain consisting of a supplier
and a manufacturer.

the second, and so on). The objective of the manufacturer is
to maximize its profit subject to local resource capacity con-
straints. The supplier has a similar scheduling problem to
determine the number of components to be produced in each
period based on the manufacturer’s requirements as well as
its local resource capacity. Similarly, the supplier seeks to
maximize its profit.

Since decision making is distributed, the manufacturer
and the supplier negotiate to establish a common component
delivery schedule. The negotiation protocol that we adopt is
based on the framework of Lai and Sycara (2008). We in-
troduce two negotiation strategies for making concessions
in our distributed scheduling problems: one strategy, based
on a method frequently used in the literature, concedes on
an agent’s local utility; the other concedes in a metric space
while maximizing an agent’s local utility. Experimental re-
sults show that this new metric-space strategy obtains better
agreements overall compared to the utility-based approach
and high-quality solutions compared to the optimal solutions
when the whole supply chain is optimized centrally. The key
contributions we make in this paper are: (1) The investiga-
tion of multi-agent negotiation in which each agent’s utility
depends on solving a local combinatorial optimization prob-
lem. (2) A novel concession strategy which constrains the
distance in the metric space between successive offers while
maximizing local utility.

2. Negotiation Protocol and Strategies
The negotiation protocol is known as the Rubinstein’s
alternating-offer game (Rubinstein 1982) and works as fol-
lows. The manufacturer initiates the negotiation by offering
the first schedule to the supplier, e.g.,10 units for the first



period,7 for the second, and4 for the third. The supplier
then evaluates the offer to decide whether to accept or re-
ject it. In case of acceptance, the negotiation ends with the
manufacturer’s offer as the agreement; in case of rejection,
the negotiation continues with the supplier counter offering
another schedule, e.g., (9, 8, 4). This exchange of offer and
counter offer is repeated until either an agreement or a pre-
specified maximum number of rounds is reached, where a
round is defined as an exchange of an offer and a counter
offer.

The decision of whether to accept or to reject an offer is
controlled by anegotiation strategy. A utility-based negoti-
ation strategy requires a reservation utility as a threshold of
acceptance for each round: if an offer is no worse than the
current reservation utility, the offer will be accepted; other-
wise, a counter offer will be made. We use a time-dependent
concession function (Faratin, Sierra, and Jennings 1998) to
calculate a reservation utility:

U(r) = U(0)− (U(0)− U(R))
( r

R

)1/β

(1)

whereR is the index of the final round,β is the rate of
concession, andU(r) is the reservation utility in roundr
(r = 0, . . . , R). Through a series of reservation utilities,
{U(r)}, an agent starts with its best utility,U(0), and grad-
ually concedes to its worst utility,U(R), in the final round.
Thus, a utility-based negotiation strategy can be described
as follows. An agent will accept an offer if its utility is no
worse than the reservation utility for a particular round. Oth-
erwise, reject it and generate a counter-offer that has a utility
no worse than the reservation utility and is closest to the of-
fer. In the rest of the paper, we will refer to this strategy as
strategy U, for “utility”.

Strategy U is based on calculating the utility that will be
conceded to and then finding a solution of that utility as close
as possible to the other agent’s current offer. From an opti-
mization perspective, an agent reformulates its local opti-
mization model with a constraint placed on the utility func-
tion (no less than a reservation utility) while changing the
objective to minimize the distance between the most recent
offer and the counter offer being searched for. We can invert
this approach by placing a constraint on the distance: rather
than giving up utility, an agent can explicitly move closer
to an agreement while maximizing its utility. Similar to (1),
we introduce a time-dependent function for concession in a
metric space:

D(r) = D(r − 1)
[
1−

( r

R

)1/β
]

(2)

whereR andβ are as defined in (1), andD(r) is the distance
threshold in roundr (r = 1, . . . , R). D(0) is the distance
between the first offer-counter offer pair, corresponding to
the two agents’ best utilities, respectively. Different from
(1), there is no need for an agent to set the worst utility.

We define a metric-space strategy (referred to as strategy
M, for “metric”) as follows. In the initial round (r = 0),
find the solution with the best utility (the same as in strat-
egy U). In any subsequent round, find the solution,s, that

P unit selling price of product
p unit selling price of component
dt customer demand in periodt

Mm
t product production capacity in periodt

Im
t inventory level of the product at the end of periodt

Jm
t inventory level of the component at the end of periodt

sm
t setup cost of product production in periodt

cm
t unit product production cost in periodt

Ht unit holding cost of the product in periodt
hm

t unit holding cost of the component in periodt

Table 1: Notation for the production scheduling problem.

maximizes an agent’s utility in a region bounded byD(r).
If this distance-constrained solution is no better than the of-
fer from the other agent, then accept the offer and end the
negotiation. Otherwise, reject the offer and counter offers.

3. The Production Scheduling Problem

In the supply chain, the manufacturer sells aproduct, which
is produced using a certain type ofcomponentfrom the sup-
plier. Each agent determines its production schedule, the
number of products/components to be manufactured during
each period over a fixed planning horizon and maximizes
its own profit. The production costs include a setup cost
(fixed and independent of the quantity produced) and a unit
production cost (variable in the quantity produced). In addi-
tion, a unit inventory holding cost is charged for each prod-
uct/component carried in stock from one period to the next.
The quantity of products (components) that can be produced
in a period by the manufacturer (supplier) is constrained by
available capacity. If the manufacturer cannot fulfill the cus-
tomer demand in a period, it will abandon any portion of
unmet demand in that period. Such a production scheduling
problem often arises in the context of supply chain manage-
ment. It is commonly known as thelot sizing problemand
is NP-hard (Brahimi et al. 2006). The manufacturer and the
supplier need to optimize their own problems while negotiat-
ing to establish a common delivery schedule. We formulate
the manufacturer’s models for evaluating offers and making
counter offers with strategy U and M, respectively; the sup-
plier’s models can be formulated likewise.

The planning horizon is divided into periods of equal
length. Lett = 1, . . . , T be the index for periods andT de-
note the last period in the horizon. We use the superscriptm
to denote parameters and variables belonging to the manu-
facturer. The parameters are defined in Table 1. Without loss
of generality, we assume that each product uses one unit of
the component and consumes one unit of production capac-
ity. Let yt be the quantity of component delivered in period
t. The decision variables areδm

t , a 0-or-1 variable indicat-
ing whether to have a production set-up in periodt; xm

t ,
the quantity of the product to be manufactured in periodt;
gt, the quantity of the product to be delivered to customers
in periodt; andzt, the quantity of the component to order
from the supplier in periodt. The mathematical program-
ming model is formulated as follows.



Maximizeum:

T∑
t=1

Pgt −
T∑

t=1

pzt −
T∑

t=1

(sm
t δm

t + cm
t xm

t

+HtI
m
t + hm

t Jm
t ) (3)

Subject to:

xm
t ≤ δm

t Mm
t t = 1, . . . , T (4)

Im
t = Im

t−1 + xm
t − gt t = 1, . . . , T (5)

Jm
t = Jm

t−1 + zt − xm
t t = 1, . . . , T (6)

gt ≤ dt t = 1, . . . , T (7)

zt = yt t = 1, . . . , T (8)

xm
t , Jm

t , Im
t , gt, zt ≥ 0; δm

t ∈ {0, 1} t = 1, . . . , T (9)

whereIm
0 andJm

0 are the respective levels of product and
component inventory at the beginning of the planning hori-
zon, which are assumed to be zero without loss of generality.

Given the complete customer demand in the planning
horizon,{dt}, as an input, the objective function (3) max-
imizes the profit: the revenue from product sales minus the
total purchasing, setup, production, and inventory holding
costs. Constraint (4) ascertains that there is a production
set-up (δm

t = 1) if the quantity produced is positive, and
also enforces the production capacity. Constraints (5) and
(6) are inventory balance equations for the product and the
component, respectively. Constraint (7) ensures that quan-
tity delivered does not exceed the customer demand. Con-
straint (8) specifies that the quantity of components ordered
in a period is equal to the quantity that is delivered from the
supplier. Finally, Constraint (9) specifies the domains of the
variables.

When the manufacturer initiates a negotiation, there is no
component delivery schedule from the supplier to refer to in
Constraint (8). Thus, the manufacturer assumes that the sup-
plier can provide as many components as needed and opti-
mizes the model without Constraint (8). The resulting com-
ponent ordering schedule,{zt}, yields the maximum profit
for the manufacturer, i.e.,Um(0) for function (1), and is
used as the manufacturer’s first offer to the supplier. For sub-
sequent rounds in which the manufacturer evaluates a sup-
plier’s counter offer, Constraint (8) is enforced.

Let {yt}(r) denote the supplier’s counter offer in roundr
(the negotiation round number is shown in the parentheses).
The manufacturer accepts supplier’s offer{yt}(r) if solving
(3)–(9) with{yt}(r) yields a profit greater than or equal to
the threshold utility. Otherwise, the manufacturer rejects the
offer and makes a counter offer. The model using strategy U
is given below.

Minimize:

T∑
t=1

|zt(r + 1)− yt(r)| (10)

Subject to:

Um(r + 1) ≤ um

and (4), (5), (6), (7), (9)

whereUm(r+1) is the manufacturer’s reservation utility for
roundr + 1 according to the concession function (1). Con-
ceding in strategy U also requiresUm(R) be determined.
The manufacturerinitially sets its worst utility on the sup-
plier’s first counter offer,Um(R) = um({yt}(0)), provided
that {zt}(0) is not accepted by the supplier. ThenUm(R)
is updated if the counter offer of the supplier yields a worse
utility in any subsequent rounds.

The model for a new component delivery schedule using
strategy M is as follows.

Maximize: (3)
Subject to:

T∑
t=1

|zt(r + 1)− yt(r)| ≤ Dm(r + 1) (11)

and (4), (5), (6), (7), (9)

whereDm(r + 1) is the manufacturer’s distance threshold
in roundr + 1 according to concession function (2). The
objective function remains maximizing the profit while (11)
constrains the counter offer to be withinDm(r+1) distance
from {yt}(r).

4. Experimental Results
The experiment is set up as follows. The index of the fi-
nal round (R) and the concession rate (β) are set to20 and
1 (a linear concession), respectively. Each strategy is re-
stricted to one offer per round. The parameters for the pro-
duction scheduling problems are set as follows. The cus-
tomer demand,dt, t = 1, . . . , T (d0 = 0), is uniformly
sampled from[µ − ∆, µ + ∆] with integer values, whereµ
represents the mean demand and∆ the maximum deviation
from the mean. We setµ = 100 and∆ = 30. The pro-
duction capacity of an agent is set similar to the customer
demand:[µm − ∆m, µm + ∆m] for the manufacturer and
[µs −∆s, µs + ∆s] for the supplier;µm = 110, ∆m = 50,
µs = 90, ∆s = 40. The size of a problem,T , is set from
10 to 100 with an increment of10. Other parameters are in
Table 2. For each problem size,20 problem instances are
randomly generated. A maximum CPU time of5 hours is
used to cut off a problem instance. The negotiation proto-
cols are coded in C++, and the problem instances are solved
by ILOG CPLEX 11.0. All the experiments are run on a
Dual Core AMD 270 CPU with 4 GB main memory and
Red Hat Enterprise Linux4.

The two negotiation strategies are compared on: (i) the
total number of times the negotiation converged to an agree-
ment out of20 problem instances for each problem size and
the total number of system-optimal agreements (an agree-
ment is deemed system-optimal if the manufacturer and the
supplier obtain a combined total profit equal to that found by
a centralized solver, which incorporates all the parameters,
variables, and constraints from both the manufacturer’s and
the supplier’s models.) (ii) the mean relative error (MRE)
of the sum of the profits of the manufacturer and supplier
from the profit found by a centralized solver, defined as
MRE = (1/n)

∑
(ξm + ξs − ξm+s)/ξm+s whereξm, ξs,

andξm+s are the final profits of the manufacturer, the sup-
plier, and the centralized solver, respectively, andn is the



Parameter Value
P : unit selling price of the product 100
p: unit selling price of the component 20
sm

t : setup cost of product production 10
cm

t : unit product production cost 20
Ht: unit holding cost of the product 10
hm

t : unit holding cost of the component 4
ss

t : setup cost of component production 20
cs

t : unit component production cost 10
hs

t : unit holding cost of the component 4

Table 2: Parameters for the production scheduling problems.

number of agreements reached out of20 problem instances
for a given problem size, and (iii) the computational effort,
measured by the mean CPU time per negotiation round in
instances converged to an agreement given the5-hour CPU
time limit.

The advantage of strategy M is evident (Figure 2): it con-
verges on far more instances than its utility-based counter-
part. It also reaches the system-optimal on17 agreements
out of a total of200 problem instances where strategy U
fails to find a single optimal agreement. Moreover, strat-
egy M outperforms U on the mean relative error. Compared
to the centralized solver, strategy M is less than1% from
the system-optimal on average. On computational efficiency
(the bottom graph in Figure 2), strategy M spends one to four
orders of magnitude less CPU time per round on average in
reaching an agreement.

5. Conclusion and Future Work
This paper presents the first result of applying an auto-
mated negotiation protocol to distributed scheduling prob-
lems in which each agent maximizes its own utility based
on a local combinatorial optimization problem. We devel-
oped two negotiation strategies: one concedes on utility, and
the other concedes in a metric space while maximizing an
agent’s local utility. Experimental results have shown that
the new metric-space strategy outperforms its utility-based
counterpart and is able to achieve agreements close to the
system-optimal. The next step is to investigate how the two
strategies can be applied to negotiations with more than two
agents all of which must solve combinatorial optimization
problems, and this work is underway.
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Figure 2: This set of figures shows, from the top to the bot-
tom, (i) the total number of times that a negotiation strategy
converged to an agreement out of20 problem instances for
each problem size, (ii) the mean relative error of the sum of
the profits of the manufacturer and supplier from the system-
optimal, and (iii) the mean CPU time per negotiation round
in instances converged to an agreement (log scale).


