
Decision-Theoretic Control of Crowd-Sourced Workflows

Peng Dai Mausam Daniel S. Weld
Dept of Computer Science and Engineering

University of Washington
Seattle, WA-98195

{daipeng,mausam,weld}@cs.washington.edu

Abstract
Crowd-sourcing is a recent framework in which human intel-
ligence tasks are outsourced to a crowd of unknown people
(”workers”) as an open call (e.g., on Amazon’s Mechanical
Turk). Crowd-sourcing has become immensely popular with
hoards of employers (”requesters”), who use it to solve a wide
variety of jobs, such as dictation transcription, content screen-
ing, etc. To achieve quality results, requesters often subdivide
a large task into a chain of bite-sized subtasks that are com-
bined into a complex, iterative workflow in which workers
check and improve each other’s results. This raises an ex-
citing question for AI — could an autonomous agent control
these workflows without human intervention, yielding better
results than today’s state of the art, a fixed control program?
We plan to study this AI problem, and hope to build
an autonomous agent to control crowd-sourcing workflows.
This paper shows some initial results by presenting a plan-
ner TURKONTROL, that formulates workflow control as a
decision-theoretic optimization problem, trading off the im-
plicit quality of a solution artifact against the cost for work-
ers to achieve it. We lay the mathematical framework to gov-
ern the various decisions at each point in a popular class of
workflows. Based on our analysis we implement the work-
flow control algorithm and present experiments demonstrat-
ing that TURKONTROL obtains much higher utilities than
popular fixed policies. We also propose directions to pursue
in the future.

Introduction
In today’s rapidly accelerating economy an efficient work-
flow for achieving one’s complex business task is often the
key to business competitiveness. Crowd-sourcing, “the act
of taking tasks traditionally performed by an employee or
contractor, and outsourcing them to a group (crowd) of peo-
ple or community in the form of an open call” [8], has the
potential to revolutionize information-processing services
by quickly coupling human workers with software automa-
tion in productive workflows [2].

While the phrase ‘crowd-sourcing’ was only recently
termed, the area has grown rapidly in economic significance
with the growth of general-purpose platforms such a Ama-
zon’s Mechanical Turk [6] and task-specific sites for call
centers [5], programming jobs [7] and more. Recent re-
search has shown surprising success in solving difficult tasks

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A handwriting recognition task (almost) successfully
solved at Mechanical Turk using an iterative workflow. Workers
were shown the text written by a human and in a few iterations
they deduced the message (with errors highlighted). Figure adapted
from [4].

using the strategy of incremental improvement in an itera-
tive workflow [4]; similar workflows are used commercially
to automate dictation transcription and screening of posted
content. See Figure 1 for a successful example of a com-
plex task solved using Mechanical Turk — this challenging
handwriting was deciphered step by step, with output of one
worker feeding as the input to the next. Additional ballot
jobs were used to assess whether a worker actually improved
the transcription compared to the prior effort.

From an AI perspective, crowdsourced workflows offer a
new, exciting and impactful application area for intelligent
control. While the handwriting example shows the power
of collaborative workflows, we still do not know answers to
many questions: (1) what is the optimal number of iterations
for such a task? (2) how many ballots should be used for
voting? (3) how do these answers change if the workers are
skilled (or very error prone)?

Decision Theoretic Optimization
We motivate our work from the iterative workflow example
introduced by Little et al.. Little’s chosen task is iterative
text improvement. There is an initial job, which presents the
worker with an image and requests an English description of
the picture’s contents. A subsequent iterative process con-
sists of an improvement job and ballot jobs. In the improve-
ment job, a (different) worker is shown this same image as
well as the current description and is requested to generate
an improved English description. Next n ≥ 1 ballot jobs

are posted (“Which text best describes the picture?”). Based
on a majority opinion the best description is selected and the
loop continues.

The agent’s control problem for a workflow like iterative
text improvement is defined as follows. As input the agent
is given an initial artifact, and the agent is asked to return an
artifact which maximizes some payoff based on the quality
of the submission.

We measure quality of an artifact in terms of units, which
we denote by q ∈ [0, 1]. An artifact with quality q means an
average dedicated worker has probability 1− q of improving
the artifact. We assume that requesters will express their
utility as a function U from quality to dollars. The quality
of an artifact is never exactly known – it is at best estimated
based on domain dynamics and observations.

The agent control problem is a POMDP problem [3], as
the current state, (q, q′), of the problem is only partially
observable, and can be best approximated by a belief state
(Q,Q′). Moreover, since quality is a real number, it is a
POMDP in continuous state space. These kind of POMDPs
are especially hard to solve for realistic problems. We over-
come the computational bottleneck by performing limited
lookahead search to make planning more tractable.

Figure 2 summarizes a high level flow for our
planner,TURKONTROL [1]. At each step we track our be-
lief in qualities (q and q′) of the previous (α) and the current
artifact (α′). Each decision or observation gives us new in-
formation, reflected in the quality posteriors. These distri-
butions also depend on the accuracy of workers, which we
also incrementally estimate based on their previous work.
Quality Tracking Suppose we have an artifact α, with an
unknown quality q and a prior1 density function fQ(q). Sup-
pose a worker x takes an improvement job and submits an-
other artifact α′, with quality q′. We define fQ′ |q,x as the con-
ditional quality distribution of q′ when worker x improved
an artifact of quality q. With a known fQ′ |q,x we compute
the prior on q′ from the law of total probability:

fQ′(q′) =
∫ 1

0
fQ′ |q,x(q′) fQ(q)dq. (1)

While we do have priors on the qualities of both the new
and the old artifacts, whether the new artifact is an improve-
ment over the old is not known for sure. Our workflow at
this point tries to gather evidence to answer these questions
by generating ballot jobs. Say n workers give their votes−→
bn = b1, . . . , bn, where bi ∈ {1, 0}. Based on these votes
we compute the posteriors in quality, f

Q|
−→
bn and f

Q′ |
−→
bn . To

accomplish this we make some assumptions. First, we as-
sume each worker x is diligent, so she answers all ballots
to the best of her ability. Still she may make mistakes, and
we have full knowledge of her accuracy. Second, we assume
that several workers will not collaborate adversarially to de-
feat the system.

We are close to conclude the worker responses (P(bi))
are independent of each other. Notice however, a mistake

1We will estimate a quality distribution for the very first artifact
by a limited training data. Later, posteriors of the previous iteration
will become priors of the next.

gives evidence that the question may be intrinsically hard
and hence, difficult for others to get it right also. To get
around this we introduce intrinsic difficulty (d) of our ques-
tion (d ∈ [0, 1]). It depends on whether the two qualities are
very close or not. Closer the two artifacts the more difficult
it is to judge whether one is better or not:

d(q, q′) = 1− |q− q′|M (2)
We can safely assume that given d the probability distribu-
tions will be independent of each other.

Moreover, each worker’s accuracy will vary with the
problem’s difficulty. We define ax(d) as the accuracy of the
worker x on a question of difficulty d. We will expect every-
one’s accuracy to be monotonically decreasing in d. It will
approach random behavior as questions get really hard, i.e.,
ax(d) → 0.5 as d → 1. Similarly, as d → 0, ax(d) → 1.
We use a group of polynomial functions 1

2 [1 + (1− d)γx]
for γx > 0 to model ax(d) under these constraints.

Note that given knowledge of d one can compute the like-
lihood of a worker answering “Yes”. If the ith worker xi has
accuracy axi (d), we calculate P(bi = 1 | q, q′) as:

If q′ > q P(bi = 1|q, q′) = axi (d(q, q′)), (3)

If q′ ≤ q P(bi = 1|q, q′) = 1− axi (d(q, q′)).

We first derive the posterior distribution given one more
ballot bn+1, f

Q|
−−→
bn+1

(q) based on existing distributions

f
Q|
−→
bn (q) and f

Q′ |
−→
bn (q). We abuse notation slightly, using

−−→
bn+1 to symbolically denote that n ballots are known and
we will receive another ballot (value currently unknown) in
the future. By applying the Bayes rule we get

f
Q|
−−→
bn+1

(q) ∝ P(bn+1 | q,
−→
bn) f

Q|
−→
bn (q) (4)

= P(bn+1 | q) f
Q|
−→
bn (q) (5)

Equation 5 is based on the independence of workers. Now
we apply the law of total probability on P(bn+1 | q) :

P(bn+1 | q) =
∫ 1

0
P(bn+1 | q, q′) f

Q′ |
−→
bn (q′)dq′ (6)

The same sequence of steps can be used to compute the
posterior of α′. This computation helps us determine the
prior quality for the artifact in the the next iteration. It will
be either f

Q|
−→b or f

Q′ |
−→b , depending on whether we decide

to keep α or α′.

Utility Estimations We now discuss the computation for the
utility of an additional ballot. We use U−→

bn to denote the ex-

pected utility of stopping now, i.e., without another ballot
and U−−→

bn+1
to denote the utility after another ballot. U−→

bn

can be easily computed as the maximum expected utility
from the two artifacts α and α′:

U−→
bn = max{E[U(Q|−→bn)], E[U(Q′|−→bn)]}, where (7)

E[U(Q | −→bn)] =
∫ 1

0

(
∑
bn

U(q) f
Q|
−→
bn (q)P(bn)

)
dq

Improvement
needed?

Estimate
prior for𝛼

𝛼’

Generate
improvement

job

Generate
ballot job

Update
posteriors
for 𝛼, 𝛼’

 Voting
needed?

𝛼

𝛼’ 𝛼 𝛼’ bk

submit 𝛼

Y

N

Y

N
𝛼 ← better of 𝛼 and 𝛼 ’

initial
artifact (𝛼)

Figure 2: Computations needed by TURKONTROL for control of an iterative-improvement workflow.

The n + 1th ballot, bn+1, could be either “Yes” or “No”.
The probability distribution P(bn+1 | q, q′) governs this,
which also depends on the accuracy of the worker (see Equa-
tion 3). Because q and q′ are not exactly known, probability
of getting the next ballot is computed by applying law of
total probability on the joint probability fQ,Q′(q, q′)

P(bn+1) =
∫ 1

0

[∫ 1

0
P(bn+1|q, q′) f

Q′ |
−→
bn (q′)dq′

]
f
Q|
−→
bn (q)dq.

These allow us to compute U−−→
bn+1

as follows (cb is the

cost of a ballot)

U−−→
bn+1

= max{E[U(Q|−−→bn+1)], E[U(Q′ | −−→bn+1)]} − cb

Similarly, we can compute the utility of an improvement
step. Based on Equation 7 we can choose α or α′ to start the
improvement with. The belief of the chosen artifact acts as
fQ for Equation 1 and we estimate a new prior fQ′ after an
improvement step. Expected utility of improvement will be
max

(∫ 1
0 U(q) fQ(q)d(q),

∫ 1
0 U(q′) fQ′(q′)d(q′)

)
− cimp.

Here cimp is the cost an improvement job.

Decision Making At any step we can either choose to do
an additional vote, choose the better artifact and attempt an-
other improvement or submit the artifact. We already de-
scribed computations for utilities for each option. For a
greedy 1-step lookahead policy we can simply pick the best
of the three options. A greedy policy may be much worse
than the optimal. We can compute a better policy by an l-
step lookahead algorithm where we evaluate all sequences
of l decisions, find the best sequence based on our utilities
and then execute the first action of the sequence and repeat.

Experiments
This section aims to empirically answer the following ques-
tions: 1) How deep should be an agent’s lookahead to best
tradeoff between computation time and utility? 2) Does
TURKONTROL make better decisions compared to TurKit?
3) Can our planner outperform an agent following a well-
informed, fixed policy?
Experimental Setup We set the maximum utility to be 1000
and use a convex utility function U(q) = 1000 eq−1

e−1 with
U(0) = 0 and U(1) = 1000. We assume the quality
of the initial artifact follows a Beta distribution Beta(1, 9),
which implies that the mean quality of the first artifact
is 0.1. Suppose the quality of the current artifact is q,

200

250

300

350

400

450

500

550

600

0.1 1 10 100Improvement cost

m
ea

n
ut

ili
ty

TurKontrol(1)

TurKontrol(2)

TurKontrol(3)

TurKontrol(4)

Figure 3: Average net utility of TURKONTROL with various
lookahead depths calculated using 10,000 simulation trials on three
sets of (improvement, ballot) costs: (30,10), (3,1), and (0.3,0.1).
Longer lookahead produces better results, but 2-step lookahead is
good enough when costs are relatively high: (30,10).

-200

-100

0

100

200

300

400

500

0.1 1 10

m
ea

n
ne

t
ut

ili
ty

Average error coefficient (γ) for Workers

TurKontrol(2)

TurKit

TurKontrol(fixed)

Figure 4: Net utility of three control policies averaged over 10,000
simulation trials, varying mean error coefficient, γ. TurKontrol(2)
produces the best policy in every cases.

we assume the conditional distribution fQ′ |q,x is Beta dis-
tributed, with mean µQ′ |q,x = q + 0.5[(1− q)× (ax(q)−
0.5) + q × (ax(q) − 1)]. The conditional distribution is
Beta(10µQ′ |q,x, 10(1 − µQ′ |q,x)). We fix the ratio of the
costs of improvements and ballots, cimp/cb = 3, because
ballots take less time. We set the difficulty constantM =
0.5. In each of the simulation runs, we build a pool of 1000
workers, whose error coefficients, γx, follow a bell shaped
distribution with a fixed mean γ. We also distinguish the
accuracies of performing an improvement and answering a
ballot by using one half of γx when worker x is answering a
ballot, since answering a ballot is an easier task, and there-
fore a worker should have higher accuracy.
Picking the Best Lookahead Depth We first run 10,000
simulation trials with average error coefficient γ=1 on three
pairs of improvement and ballot costs — (30,10), (3,1),
and (0.3,0.1) — trying to find the best lookahead depth l
for TURKONTROL. Figure 3 shows the average net util-
ity, the utility of the submitted artifact minus the payment

to the workers, of TURKONTROL with different lookahead
depths, denoted by TurKontrol(l). Note that there is always a
performance gap between TurKontrol(1) and TurKontrol(2),
but the curves of TurKontrol(3) and TurKontrol(4) generally
overlap. We also observe that when the costs are high, the
performance difference between TurKontrol(2) and deeper
step lookaheads is negligible. Since each additional step of
lookahead increases the computational overhead by an order
of magnitude, we limit TURKONTROL’ lookahead to depth
2 in subsequent experiments.
The Effect of Poor Workers We now consider the effect of
worker accuracy on the effectiveness of agent control poli-
cies. Using fixed costs of (30,10), we compare the average
net utility of three control policies. The first is TurKon-
trol(2). The second, TurKit, is a fixed policy from the lit-
erature [4]; it performs as many iterations as possible un-
til its fixed allowance (400 in our experiment) is depleted
and on each iteration it does at least two ballots, invoking a
third only if the first two disagree. Our third policy, TurKon-
trol(fixed), combines elements from decision theory with a
fixed policy. After simulating the behavior of TurKontrol(2),
we compute the integer mean number of iterations, µimp and
mean number of ballots, µb, and use these values to drive a
fixed control policy (µimp iterations each with µb ballots),
whose parameters are tuned to worker fees and accuracies.

Figure 4 shows that both decision-theoretic methods work
better than the TurKit policy, partly because TurKit runs
more iterations than needed. A Student’s t-test show all
differences are statistically significant with p value 0.01.
We also note that the performance of TurKontrol(fixed) is
very similar to that of TurKontrol(2), when workers are very
inaccurate, γ=4. Indeed, in this case TurKontrol(2) exe-
cutes a nearly fixed policy itself. In all other cases, how-
ever, TurKontrol(fixed) consistently underperforms TurKon-
trol(2). A Student’s t-test results confirm the differences are
all statistically significant for γ < 4. We attribute this differ-
ence to the fact that the dynamic policy makes better use of
ballots, e.g., it requests more ballots in late iterations, when
the (harder) improvement tasks are more error-prone. The
biggest performance gap between the two policies manifests
when γ=2, where TurKontrol(2) generates 19.7% more util-
ity than TurKontrol(fixed).

Conclusions and Future Work
We introduce an exciting new application for artificial in-
telligence — control of crowd-sourced workflows. We use
decision-theory to model a popular class of iterative work-
flows and define equations that govern the various steps of
the process. We show that our agent, TURKONTROL, which
implements our mathematical framework and uses it to op-
timize and control the workflow is robust in a variety of sce-
narios and parameter settings, and results in higher utilities
than previous, fixed policies. To make our model more gen-
eral and realistic we plan to perform three important, next
steps.

First, we need to develop schemes to quickly and cheaply
learn the two sets of parameters required by our decision-
theoretic model, the accuracy of an improvement job and of
a ballot job per worker. We can divide the learning task into

two steps, learning the ballot accuracy models in the first
step and the improvement accuracy models in the second.
In both steps we use several pictures with one artifact each
and let multiple workers improve an artifact. After improve-
ments, we let several other workers vote on the two artifacts.
Given the results, we plan to infer the model by solving con-
vex optimization problems.

Second, we hope to generalize our ballot questions to get
more informed feedback from the voters. In general a ballot
job could ask about the workers confidence, such as, “How
sure are you that α is better than α′?” Or one could get an
estimate of the quality difference, such as, “Do you think
α significantly improves/marginally improves/is no different
from/marginally downgrades/messes up α′?” If we could use
such questions to our advantage we can save on significant
cost and increase the total throughput of the platform.

Third, we want to look at how to set up an intelligent pay-
ment structure to get the most qualified results and achieve
the fastest throughput. For an automated agent the decision
question will be (1) when to pay a bonus, and (2) what mag-
nitude bonus should be paid. Intuitively, if we had an ex-
pectation on the total cost of a job, and we ended up saving
some of that money, a fraction of the savings could be used
to reward the workers who did well in this task.

As the long term goal, we plan to move beyond simula-
tions, validating our approach on actual MTurk workflows.
Finally, we plan to release a user-friendly toolkit that imple-
ments our decision-theoretic control regime and which can
be used by requesters on MTurk and other crowd-sourcing
platforms.

Acknowledgments
This work was supported by Office of Naval Research grant
N00014-06-1-0147 and the WRF / TJ Cable Professorship.
We thank James Fogarty and Greg Little for helpful discus-
sions and Greg Little for providing the TurKit code. We
benefitted from data provided by Smartsheet.com. Com-
ments from Andrey Kolobov and anonymous reviewers sig-
nificantly improved the paper.

References
[1] Peng Dai, Mausam, and Daniel S. Weld. Decision-theoretic

control for crowd-sourced workflows. In AAAI, 2010.
[2] L. Hoffmann. Crowd control. C. ACM, 52(3):16–17, March

2009.
[3] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R.

Cassandra. Planning and acting in partially observable stochas-
tic domains. Artificial Intelligence, 101:99–134, 1995.

[4] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C.
Miller. TurKit: Tools for Iterative Tasks on Mechanical Turk.
In Human Computation Workshop (HComp2009), 2009.

[5] Contact center in the cloud, December 2009.
http://liveops.com.

[6] Mechanical turk is a marketplace for work, December 2009.
http://www.mturk.com/mturk/welcome.

[7] Topcoder, December 2009. http://topcoder.com.
[8] Crowdsourcing, December 2009.

http://en.wikipedia.org/wiki/Crowdsourcing.

