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Introduction
Consider Ann’s morning scheduling problem. Ann is a grad-
uate student, who, among many other objectives, would like
to both exercise and work on research during her morning.
I summarize possible morning activities in Table 1. Even
for these two simple objectives, selecting a feasible sched-
ule from the many possible schedules (run then generate ex-
perimental results, write then bike, swim then read some re-
lated work, etc.) may be non-trivial. However, suppose Ann
wants to run with her friend Bill, who notoriously oversleeps
his alarm. Additionally, suppose also that Ann must coordi-
nate the use of her lab’s computational cluster with her lab
mate Claire.

Without further information from Bill and Claire, it is im-
possible for Ann to determine which candidate schedules
will successfully achieve her morning goals. One option
for Ann would be to myopically select her schedule any-
way, with the risk that her attempt to run with Bill or to
use the computational cluster could result in a failed goal.
As another option, Ann could also volunteer to collect the
scheduling constraints of both Bill and Claire and generate
a single joint morning schedule. However, this puts addi-
tional scheduling burden on Ann while requiring both Bill
and Claire to reveal other scheduling commitments they may
prefer to keep private. Even if Ann employed a centralized
computational agent to solve this global scheduling prob-
lem, the resulting combinatorics may limit the scalability
of such a centralized approach. Instead, the pervasiveness
of personal computational devices, coupled with desires for
scalability and privacy, argue for decentrally solving such
problems using multiagent algorithms.

My thesis focuses on providing scalable, multiagent algo-
rithms for solving rich, complex multiagent activity schedul-
ing and selection problems, while retaining as much privacy
as possible on behalf of the human users. My approach is
distinct from other recent multiagent scheduling approaches
(Hunsberger 2002; Smith et al. 2007; Shah, Conrad, and
Williams 2009) in that it uses a constraint-based representa-
tion of selection (finite-domain) aspects of scheduling prob-
lems in addition to the scheduling aspects. I proceed by in-
troducing the Multiagent Selection and Scheduling Problem

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Activity Objective Duration External
Constraints

Run Exercise [30,45] Synch w/ Bill
Swim Exercise [45,75] Pool Hours
Bike Exercise [60,90] -

Experiment Research [120,180] Mutex w/ Claire
Read Research [90,120] -
Write Research [180,240] -

Table 1: Summary of Ann’s morning activities.

(MASSP), explaining my approach for solving the MASSP
and methodology for evaluating my approach, presenting
preliminary results, and concluding with expected contribu-
tions.

Problem Statement
In this section, I introduce a novel problem representa-
tion, the Multiagent Selection and Scheduling Problem
(MASSP), which generalizes Schwartz’s (2007) Hybrid
Scheduling Problem (HSP) representation to a multiagent
setting. Ann’s local problem can be represented as an HSP,
depicted graphically in Figure 1. As background, the HSP
formulation combines the typical finite-domain Constraint
Satisfaction Problem (CSP) formulation with the Disjunc-
tive Temporal Problem (DTP) formulation and can be used
to represent Ann’s scheduling problem. An HSP is defined
as the tuple 〈V,C〉. The set of variables V is partitioned into
two sets. VF is a set of finite-domain variables (unshaded
nodes in Figure 1), each of which has an associated domain
with a finite number of possible values. In the current exam-
ple, Ann’s HSP might include finite-domain variables E (ex-
ercise) and R (research) with domains {run, swim, bike}
and {write, read, experiment} (represented by unary con-
straints) respectively. VT is a set of timepoint variables
(shaded nodes in Figure 1), each of which represents an
event and has an implicit, continuous domain of times. Ann
may specify timepoint variables EST , EET , RST , and RET

representing the start and end times of her exercise and re-
search activities. These timepoints are grounded against a
special zero reference timepoint variable (i.e. clock).

The set of constraints C is partitioned into three sets. CF

is the set of finite-domain constraints, each of which is repre-
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Figure 1: An HSP representation Ann’s morning schedule

sented in Figure 1 as a solid edge. Each finite-domain con-
straint is defined over some subset of VF and specifies the
allowable (or alternatively impermissible) combinations of
values that can be assigned to the variables in the subset. For
example, Ann may prohibit herself from both swimming and
conducting experiments (E 6= swim ∨ R 6= experiment),
since the pool and research lab are in opposite corners of
campus compared to her centrally-located office.

CT is the set of disjunctive temporal constraints, repre-
sented in Figure 1 as dotted edges. A disjunctive temporal
constraint is defined over timepoint variables, and is satis-
fied when at least one of a disjunctive set of possible tempo-
ral difference constraints is satisfied. A temporal difference
constraint is a constraint of the form (vi−vj ∈ [−Bji, Bij ]),
where vi, vj ∈ VT and Bij (≥ vi − vj) and Bji (≥ vj − vi)
are bounds on the difference between vi and vj . For exam-
ple, the constraint (EST − RET ∈ [0,∞] ∨ RST − EET ∈
[0,∞]) represents that Ann cannot exercise and research at
the same time. I represent disjunction graphically in Fig-
ure 1 by appending each temporal difference disjunct with
a diamond, connecting all disjuncts that belong to the same
disjunctive constraint. Together, the temporal variables and
constraints form a DTP, 〈VT , CT 〉. An important, special
case of the DTP is the Simple Temporal Problem (STP),
which is a DTP where all the disjunctive constraints in CT

contain only a single disjunct. The STP is important since it
is polynomial-time solvable and often solved as a subprob-
lem of more complex scheduling problems.

Finally, CH is the set of hybrid constraints, represented
in Figure 1 as dashed edges. A hybrid constraint is com-
posed of a finite-domain constraint and a disjunctive tempo-
ral constraint, and is satisfied when at least one of its asso-
ciated constraints is satisfied. For example, (E = run →
EET − EST ∈ [30, 45]) represents, in implicative form,
that Ann will exercise for between 30 and 45 minutes if she
chooses to run. A solution schedule for an HSP is a complete
assignment of values to variables that is consistent with all
constraints.

Having reviewed the HSP formulation, a MASSP is eas-

ily defined as the tuple 〈A,C〉. A is the set of agent prob-
lems, {A1, . . . , Ai, . . . , An} for the n agents, where an
agent problem, Ai, is specified by an HSP,

〈
V i, Ci

〉
. C is

the set of interagent constraints where each constraint in C
is specified over variables from at least two different agents.
For example, C would include the interagent, hybrid con-
straint that dictates if both Ann and Claire plan to use the
computing cluster, they must do it at mutually exclusive
times. A solution to the MASSP is composed of solutions
to each individual agent problem that jointly respect the in-
teragent constraints. Further we are interested in algorithms
that solve this problem without revealing private timepoints,
timepoints involved in no interagent constraints, or private
constraints, constraints involving at least one private vari-
able.

Approach
In this section, I describe how I adapt the typical CSP-based
approach of interleaving consistency maintenance with vari-
able assignment to solve the MASSP.

Implicit Constraint Elucidation
The MASSP is defined as the composition of agent HSP sub-
problems, coupled by a set of interagent constraints. Simi-
larly, each agent HSP subproblem is composed of a CSP and
DTP subproblem, connected by hybrid constraints. Thus, a
MASSP is naturally decomposable into many single-agent
CSPs and DTPs. There exist many highly efficient variable
assignment heuristics and consistency maintenance tech-
niques for solving single-agent CSPs and DTPs. To take
advantage of these techniques in my MASSP solution al-
gorithms requires effectively communicating implications
of constraints between subproblems. Using Ann’s morning
scheduling problem as an example, as Ann selects the activ-
ities she would like to schedule (Ann’s finite-domain CSP),
she should consider if she can consistently schedule the ac-
tivities she is selecting (Ann’s DTP) and vice-versa. Sim-
ilarly, as Ann solves her morning scheduling problem, she
should take account how her decisions will affect Bill and
Claire’s scheduling decisions, and vice-versa.

The success that maintaining high levels of consistency
between variable assignments has had for solving single-
agent CSPs and DTPs argues for taking a similar approach
for solving the MASSP. However, since techniques for main-
taining high levels of consistency within single-agent CSPs
and DTPs are relatively well established, I propose a process
that I call Implicit Constraint Elucidation (ICE) for increas-
ing consistency between the subproblems of the MASSP. I
hypothesize that agents can reduce overall solution time by
orders of magnitude when applying ICE in conjunction with
off-the-shelf, single-agent consistency maintenance tech-
niques.

ICE encourages an agent to spend time introspectively
quantifying how the internal constraints of its subprob-
lems affect other subproblems and then elucidating these ef-
fects as additional explicit constraints over the other sub-
problems. This approach is similar to marginalization in
Bayesian learning algorithms, where instead of calculating



a prior probability given all possible hypotheses, we elicit
inevitable constraints on one subproblem given all possi-
ble variable assignments to another subproblem. This ap-
proach has many advantages. First, by exchanging explicit
constraints, two agents sharing an interagent constraint may
realize that these explicit constraints render the original in-
teragent constraint superfluous, and thus decouple their sub-
problems from each other. Second, since an agent receives
explicit constraints from other agents expressed in terms of
its own subproblem, it can use these constraints to prune its
search space, inform its heuristics, and mitigate the chances
of making a globally infeasible variable assignment.

A third advantage of the ICE approach is a key one: pri-
vacy. As mentioned before, an agent can naturally partition
its variables into a private subset, those involved in no in-
teragent constraints, and a shared subset, those involved in
at least one interagent constraint. An agent using ICE can
proactively ‘marginalize’ away all information about private
variables before communicating with another agent. So an
agent using ICE never needs to reveal any information about
its private variables or any constraints specified over one or
more of its private variables. Instead, agent messages con-
sist of constraints composed entirely of shared variables. For
any given MASSP instance, these constraints are sufficient
for determining global MASSP consistency. So if a person
wishes to keep aspects of her schedule private, she can do so
naturally by not involving them in any interagent constraints.

Guiding Search in the MASSP
Consistency maintenance prunes provably infeasible values
from variable domains. Because of this, agents can asyn-
chronously execute MASSP consistency maintenance tech-
niques without concerns about eliminating sound sched-
ules or proposing unsound schedules. When an agent as-
signs a value to a variable, on the other hand, it does so
without guarantees that such an assignment will lead to a
sound schedule or that it will not eliminate sound schedules.
In single-agent CSP search algorithms, this is addressed
through a backtracking search that systematically guaran-
tees that the entire search space is explored. However, if
agents make such variable assignments asynchronously, this
task becomes much more challenging, though such an ap-
proach is the foundation of many distributed CSP solution
techniques (Yokoo et al. 1998).

An alternative to an asynchronous backtracking search is
to introduce a decoupling. A decoupling is a set of local
agent constraints that make the set of interagent constraints
superfluous. As a special case, Hunsberger (2002) defined
the temporal decoupling problem for an STP instance dis-
tributed across multiple agents. In terms of Ann’s morning
scheduling problem, Ann and Claire’s schedules are neces-
sarily coupled by their use of a common resource. However,
suppose that Claire agrees to complete her use of the com-
putational cluster by 10:00 AM (a local constraint) and that
Ann agrees to wait to begin her use of the cluster until 10:00
AM (another local constraint). At this point, the interagent
constraint preventing Ann and Claire’s use of the cluster
from overlapping becomes unnecessary, since the two local
constraints already imply that Ann and Claire will never use

the cluster at the same time. Further, once Ann and Claire
agree to these local constraints, Ann’s can proceed to solve
the remainder of her scheduling problem without concern
for how her decision will affect Claire. So, once all inter-
agent constraints have been decoupled, agents can perform
search over their local problems in an asynchronous manner.

Unfortunately, Planken, de Weerdt, and Witteveen (2010)
prove that finding such a decoupling is, in general, as hard
as solving the underlying problem. However, I believe that
for loosely coupled problems, agents can exploit both asyn-
chronous consistency maintenance techniques and concur-
rent agent search to quickly evaluate many such decou-
plings. This reduces the problem into two stages: 1) find-
ing a decoupling and 2) solving local agent problems in re-
sponse to this decoupling. The rest of this section focuses on
techniques for finding a decoupling, since techniques for ef-
ficiently solving single-agent HSPs already exist (Schwartz
2007; Boerkoel and Durfee 2008).

I hypothesize that finding a MASSP decoupling is best
done incrementally, by interleaving the decoupling of indi-
vidual interagent constraints with the MASSP consistency
maintenance techniques described in the previous section.
Finding a decoupling incrementally allows inconsistent de-
couplings to be pruned prior to committing to a complete de-
coupling. Next, I will evaluate heuristics for deciding which
interagent constraint to decouple next. Candidate heuristics
include an adaptation of graph partitioning algorithms for
selecting decoupling points that lead to the greatest amount
of partitioning in the agent network. Alternatively, I can
adapt most-constrained variable style heuristics to identify
the most coupled variables. Similarly, I can adapt least-
constrained value style heuristics for identifying which de-
coupling constraints will least reduce search space of agent
subproblems.

Methodology
The distributed CSP literature defines a variety of metrics
for evaluating the efficiency of solution algorithms. Two of
the most widely accepted metrics are consumed communica-
tion bandwidth and nonconcurrent constraint checks. These
two metrics quantify two major costs of real multiagent sys-
tems: the amount of necessary communication and how well
agents can exploit computational concurrency. Since agents
in real-world multiagent systems may have differing com-
munication and computational abilities, these metrics allow
neutral comparison across distinct multiagent systems and
for experimentation in simulation. I will evaluate my hy-
potheses by comparing the performance of my techniques
for solving MASSP to current centralized solvers as well as
more naı̈ve versions of MASSP search using these metrics.

Preliminary Results
In this section, I briefly discuss a few of my preliminary re-
sults and their roles in my dissertation.

Hybrid Constraint Tightening
My ICE-inspired Hybrid Constraint Tightening (HCT) pre-
processing algorithm (Boerkoel and Durfee 2008; 2009) re-
formulates hybrid constraints by lifting information from



the structure of an HSP instance. These reformulated con-
straints elucidate implied constraints between the CSP and
DTP subproblems of an HSP earlier in the search pro-
cess, leading to significant search space pruning. Despite
the computational costs associated with applying the HCT
preprocessing algorithm, HCT leads to orders of magni-
tude speedup when used in conjunction with off-the-shelf,
state-of-the-art solvers, as compared to solving the same
problem instance without applying HCT. Additionally, I
have explored properties of HSPs that influence HCT’s ef-
ficacy, quantifying the influence empirically. I believe that
HCT will continue to play an important role for solving the
MASSP, since an agent that can more quickly understand
the temporal implications of a selection decision (and vice-
versa) can use this information to more quickly express new,
precise, and otherwise implicit interagent constraints.

The Multiagent Simple Temporal Problem
Another positive result is my extension of STP solution tech-
niques to multiagent problems (Boerkoel and Durfee 2010).
My multiagent STP algorithms achieve impressive speedup
over centralized approaches, especially as problems become
more weakly coupled. This is achieved by partitioning the
STP into private components for each agent and a single
shared STP component. Then, agents are able to work on
their private components independently and concurrently,
using ICE principles to quantify how their local subprob-
lem affects other agents. This partitioning leads to impor-
tant privacy and computational concurrency gains. Solv-
ing the multiagent STP is an important precursor for solv-
ing the multiagent versions of more complicated scheduling
formulations such as DTPs and HSPs because many solu-
tion methods for solving the DTP and HSP involve evaluat-
ing partial and candidate assignments that form component
STPs, which need to be quickly evaluated for consistency
(Tsamardinos and Pollack 2003).

Preference-based Decoupled Constrained
Optimization with CP-nets
Conditional preference networks (CP-nets) are models of
utility that allow people to naturally express qualitative pref-
erences using ceteris paribus semantics (Boutilier et al.
2004). Using CP-nets allows me to find a solution that not
only satisfies the constraints, but also is optimal relative to
the CP-net. I demonstrate (Boerkoel, Durfee, and Purring-
ton 2010) that CSP-centric variable ordering heuristics can
be replaced with CP-net inspired heuristics. This leads to
an interleaving of preference with constraint reasoning that
dominates other approaches, which either allow the CSP rea-
soning to make additional unsolicited scheduling decisions
based on computational efficiency or which allow the user to
exert multiple preferences before refining the search space.

Expected Contributions
To summarize, in addition to the contributions mentioned in
the preliminary results, I expect to contribute the following:
1) a constraint-based formulation for representing multia-
gent problems involving both activity selection and schedul-

ing; 2) an algorithm, and evaluation thereof, for maintaining
consistency of multiagent CSPs, multiagent DTPs, and the
MASSP using ICE principles; 3) a decoupling strategy for
multiagent CSPs, multiagent DTPs, and the MASSP; and
finally 4) an evaluation of an algorithm combining all tech-
niques in simulated multiagent environments.

Acknowledgments
I thank the anonymous reviewers and my advisor, Ed Dur-
fee, for their comments and suggestions. This work was sup-
ported, in part, by the NSF under grant IIS-0534280 and by
the AFOSR under Contract No. FA9550-07-1-0262.

References
Boerkoel, J., and Durfee, E. 2008. Hybrid Constraint
Tightening for Hybrid Constraint Scheduling. In Proc. of
AAAI 2008, 1446–1449.
Boerkoel, J., and Durfee, E. 2009. Evaluating hybrid con-
straint tightening for scheduling agents. In Proc. of AAMAS
2009, 673–680.
Boerkoel, J., and Durfee, E. 2010. Algorithms for Solv-
ing the Multiagent Simple Temporal Problem. In Proc. of
ICAPS 2010, To Appear.
Boerkoel, J.; Durfee, E.; and Purrington, K. 2010. General-
ized Solution Techniques for Preference-Based Constraint
Optimization with CP-nets. In Proc. of AAMAS 2010, To
Appear.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. JAIR 21:135–191.
Hunsberger, L. 2002. Algorithms for a temporal decou-
pling problem in multi-agent planning. In Proc. of AAAI
2002, 468–475.
Planken, L.; de Weerdt, M.; and Witteveen, C. 2010. Opti-
mal Temporal Decoupling in Multiagent Systems. In Proc.
of AAMAS 2010, To Appear.
Schwartz, P. 2007. Managing complex scheduling prob-
lems with dynamic and hybrid constraints. Ph.D. Disserta-
tion, University of Michigan.
Shah, J.; Conrad, P.; and Williams, B. 2009. Fast dis-
tributed multi-agent plan execution with dynamic task as-
signment and scheduling. In Proc. of ICAPS 2009, 289–
296.
Smith, S.; Gallagher, A.; Zimmerman, T.; Barbulescu, L.;
and Rubinstein, Z. 2007. Distributed management of flex-
ible times schedules. In Proc. of AAMAS 2007, 472–479.
Tsamardinos, I., and Pollack, M. 2003. Efficient solu-
tion techniques for disjunctive temporal reasoning prob-
lems. Artificial Intelligence 151(1-2):43–89.
Yokoo, M.; Durfee, E.; Ishida, T.; and Kuwabara, K. 1998.
The distributed constraint satisfaction problem: Formaliza-
tion and algorithms. IEEE TKDE 10(5):673–685.


