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1 Introduction
Our goal is to solve a large class of very large Markov de-
cision processes (MDPs), necessarily sacrificing optimality
for feasibility. It is widely believed that hierarchical de-
composition is the key to solving very large planning prob-
lems. Several approaches have shown that, given an ap-
propriate hierarchical decomposition in advance, it can in-
deed provide considerable speed-up in solving an MDP (Parr
1998; Hauskrecht et al. 1998; Lane and Kaelbling 2002)
or doing reinforcement learning (Parr and Russell 1997;
Sutton, Precup, and Singh 1999; Dietterich 1998). Finding
an appropriate hierarchy has proved challenging, however.
There are recent approaches to learning hierarchies (Mc-
Govern and Barto 2001; Simsek, Wolfe, and Barto 2005;
Mehta et al. 2008); they operate over a relatively long time-
scale as the agent has to learn the world dynamics in the pro-
cess, making this problem substantially more difficult. The
expectation is that the work associated with learning the hi-
erarchy will pay off over the course of solving several related
problems in the same or similar domains.

Our goal in this work is somewhat different. We would
like to solve a single large MDP very quickly. As the size of
the MDP increases, exact solution becomes intractable, so
we expect only to find an approximate solution. If we are
to use hierarchy to solve this problem, we must be able to
construct and solve the hierarchical model in less time than
it would have taken to simply solve the original flat model.

Bakker et al. (Bakker, Zivkovic, and Krose 2005) pre-
sented an approach to this problem, which works well on
two-dimensional navigation problems but does not seem to
generalize well to other types of domains, sometimes failing
to find any strategy, even a suboptimal one, for an achiev-
able goal. Jonsson and Barto’s VISA algorithm (Jonsson
and Barto 2006) addresses the problem by taking as input a
factored MDP model described as a DBN, and doing causal
analysis to find a good hierarchical decomposition. The
work of Maggioni and Mahadevan (Mahadevan 2008) finds
a multi-scale basis for representing value functions in MDPs
and other problems; this basis can serve as an effective rep-
resentation for solving the MDP efficiently, but is not hier-
archical in the same sense as the other methods discussed
here.

Typical approaches to solving hierarchical MDPs work
bottom-up. But the problem is that because it is not yet

known what high-level actions will be selected, the low-
level problems must be solved many times with many dif-
ferent possible high-level objectives. We take advantage of
a quick bottom-up pass based on a deterministic approxima-
tion of expected costs to move from one state to another, and
use that to derive a policy from the top down, which avoids
solving low-level MDPs for multiple objectives. The result-
ing policy may be suboptimal but it is guaranteed to reach a
goal state in any problem in which it is reachable under the
optimal policy.

We begin by describing our conception of a hierarchical
model of an MDP and how we can create and solve this
model for enumerated-states MDPs. We will then briefly
discuss our current work on factored MDPs.

2 Hierarchical Model
A Markov decision process (MDP) is defined by
〈S,A, T,R〉, where S is a finite set of states, A is a finite set
of actions, T is the transition model with T (i′, a, j′) speci-
fying the probability of a transition to i′ given that the sys-
tem starts in state j′ and selects action a, and R is the re-
ward model with R(i′, a) specifying the real-valued reward
of taking action a in state i′. In addition, we assume a pre-
specified set of goal states, G ⊂ S. Goal states are zero-
reward absorbing states: for every g ∈ G, T (g, a, g) = 1
and R(g, a) = 0, for all a. Further, we assume that all other
reward values are strictly negative. We solve this problem
under the undiscounted total reward criterion, making it a
‘stochastic shortest path’ problem. Any MDP can be trans-
formed into an ‘equivalent’ stochastic shortest path problem,
which can then be solved to produce the optimal policy for
the original MDP (Bertsekas and Tsitsiklis 1996).

From the input MDP, we construct and then solve a hier-
archically determinized MDP (HDMDP). An HDMDP with
L levels is given by a depth-L tree. The leaves of the tree,
at level 0, are the states of the original MDP, referred to as
primitive states. Internal nodes of the tree represent (possi-
bly overlapping) sets of nodes at the lower levels. We refer
to nodes of the HDMDP as macro-states. The set of macro-
states at level l is represented by Sl.

The solution process computes a hierarchical policy π
with L levels, each of which prescribes behavior for each
level l state. At levels l > 0, the policy πl maps each level
l macro-state i to some other level l macro-state j, signify-



Algorithm 1
Input: Sl−1: level l − 1 states, A: primitive actions, T : transition
function, G: primitive goal states
Output: A g-connected clustering of level l macro-states

ESCLUSTER(Sl−1, A, T,G)

1 Sl ←
˘
{i′} | i′ ∈ Sl−1

¯
2 // create “goal macro-state” for level 1

if l = 1, g ← {i′ | i′ ∈ G}, S1 ←
`
S1 \ {{i′} | i′ ∈ G}

´
∪ g

3 else g ← {l − 1 goal macro-state} // goal state already exists
4 Adj l ← ADJMATRIX(Sl, A, T ) // adjacency defn in Sec. 2
5 set g adjacent to every state
6 while |Sl| > MINCLUSTES and Sl

max < MAXSIZEES

7 {y1, y2, ..., yn} ← FINDCYCLE(Sl,Adj l)
8 Y ← {y1, ..., yn} \ g
9 create new macro-state u← Y

10 Sl ←
`
Sl \ Y

´
∪ u, remove Y from Adj l and add u

11 if g 6∈ {y1, ..., yn}
12 for i adjacent to some y ∈ Y , set i adjacent to u
13 else set only g adjacent to u
14 for i s.t. ∃y ∈ Y adjacent to i, set u adjacent to i
15 return Sl

ing that when the system is in a primitive state contained in
macro-state i it should attempt to move to some primitive
state in macro-state j. At level 0, the policy π0 is a stan-
dard MDP policy mapping the primitive states to primitive
actions.

At the primitive level, a state i′ is adjacent to a state j′ if
there is some action a such that T (j′, a, i′) > 0. At levels
l > 0, a macro-state i is adjacent to a macro-state j if there
is some i′ ∈ i and j′ ∈ j such that i′ is adjacent to j′. A
state j is reachable from a state i if j is adjacent to i or j is
adjacent to some state k which is reachable from i. If i′ ∈ i
is a level l − 1 sub-state of i then a level l − 1 state j′ is
reachable from i′ if j′ is adjacent to some state k′ ∈ i and k′
is reachable from i′ without leaving i.

3 Enumerated-States MDPs
3.1 Clustering Algorithm

We begin by discussing how we create and solve the hi-
erarchical model for an enumerated-states MDP. We view
creating the hierarchical model as clustering: macro-states
at level l of the tree are clusters of level l − 1 states. There
are many plausible criteria for clustering states of an MDP,
but we base our algorithm on one tenet: we want a structure
in which every state that could reach a goal state in the flat
MDP can reach a goal state under some hierarchical policy.

This criterion is not guaranteed by an arbitrary hierarchy
and the type of hierarchical policy described in Section 2.
That policy requires all sub-states of macro-state i at level
l to find a path through i to some sub-state of πl(i). In a
hierarchy where there is no level l state reachable from all
sub-states of i, there is no hierarchical policy under which
every sub-state of i can reach a goal state. To avoid such
hierarchies, we require that, at each level, all macro-states
be g-connected. A set U of macro-states with goal macro-

state g is g-connected if there exists a policy π : U → U
such that: (1) for all i ∈ U , i can reach g under π, and (2)
for all i ∈ U , for each i′ ∈ i that can reach a goal state in
the flat MDP, there exists j′ ∈ π(i) such that j′ is reachable
from i′.

Theorem 1: Let S0, ..., SL−1 be a hierarchical model for
M such that the macro-states at each level are g-connected.
Then there exists a hierarchical policy π such that for each
i′ ∈ S that can reach a goal state in the flat MDP, i′ can
reach a goal state under π.
Proof: For a proof of this and all other theorems see (Barry,
Kaelbling, and Lozano-Pérez 2010).

To create g-connected macro-states at level l from a set
of l − 1 macro-states, we run ESCLUSTER shown in Algo-
rithm 1, which creates macro-states consisting of cycles of
level l − 1 states after setting the level l goal macro-state
adjacent to all other level l macro-states. Setting the goal
macro-state adjacent to all other states allows domains that
contain few cycles to still be viewed hierarchically by group-
ing sets of states that are close together and lead to the goal.

Theorem 2: ESCLUSTER creates a g-connected clustering.
Proof Sketch: Each level l macro-state i is composed of a
cycle of level l− 1 states. If this is a true cycle, then all sub-
states of i can reach all other sub-states in i and therefore
a sub-state in any level l macro-state adjacent to i. Thus,
in this case, all sub-states of i can comply with any policy
that maps i to an adjacent macro-state. If i is composed of
a “cycle” that goes through the goal macro-state g, all sub-
states of i will be able to reach g. In this case, all sub-states
of i will be able to comply with a policy that maps i to g.
There is one subtlety: if i is composed of a cycle that goes
through g, all sub-states of i can reach g, but may not be able
to reach all macro-states adjacent to i. We acknowledge this
in line 13 by marking only g as adjacent to i.

The complexity of ESCLUSTER is dominated by finding
cycles, which is worst-case quadratic, but can be linear in
domains where many states can reach a goal state.

Theorem 3: If a fraction p of the states in the MDP can
reach a goal state, ESCLUSTER terminates in timeO(p|S|+
(1− p)p|S|2) where |S| is the size of the state space.

ESCLUSTER relies on two user-defined parameters,
MINCLUSTES and MAXSIZEES , defining the minimum
number of macro-states allowed and the maximum size of
those macro-states respectively. These parameters can be
set to control the time/accuracy trade-off of the algorithm,
as we will discuss in Section 3.3.

3.2 Solver
The hierarchical model created in ESCLUSTER is input

for a solver that uses the g-connectedness to quickly find an
approximate solution for the MDP. In solving, we approx-
imate the cost of transitioning between upper-level macro-
states as deterministic. This allows us to find policies for
l > 0 quickly using a deterministic shortest path algorithm.

We run the algorithm in two passes as shown in Algo-
rithm 2. In UPWARDPASS, we compute an approximation
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Algorithm 2
Input: S0, ..., SL−1: hierarchical model, A: primitive actions, T :
transition function, R: reward function, G: primitive goal states
Output: A hierarchical policy for S0, ..., SL−1

UPWARDPASS(S0, ..., SL−1, A, T,R)

1 for l = 0 to L− 1
2 for i ∈ Sl

3 for j adjacent to i
4 if l = 0, C0(i, j)← mina∈A− R(i,a)

T (i,a,j)

5 else Cl(i, j)←
1
|i|
P

i′∈i minj′∈j [DIJKSTRA(i′, j′, Cl−1)]

6 return C

DOWNWARDPASS(S0, ..., SL−1, A, T,R,G,C)

1 for l = L− 1 to 1
2 for i′ ∈ Sl contained in i ∈ Sl+1

3 if l = L− 1, g ← level L− 1 goal macro-state
4 else g ← πl+1(i)
5 πl(i′)←

arg minj′∈Sl Cl(i′, j′) + DIJKSTRA(j′, g, Cl)
6 for i ∈ S1

7 M ← CREATEMDP(i, π1(i), A, T,R,∆)
8 π0

i ← VALUEITERATION(M)
9 for i′ ∈ S0, π0(i′)← π0

arg min{i∈S1|i′∈i} D1(i)(i
′)

10 return π

for the cost of transitioning between two macro-states. We
assume that, at the primitive level, any action a taken in state
iwith the goal of ending in state j does make a transition to j
with probability T (i, a, j); but that with the remaining prob-
ability mass, it stays in state i. Executing such an action
a repeatedly will, in expectation, take 1/T (i, a, j) steps to
move to state j, each of which costs −R(i, a). We can se-
lect whichever action would minimize this cost, yielding the
cost estimate shown on line 4 of UPWARDPASS. Once we
have level 0 costs, we can solve deterministic shortest path
problems to compute costs at all levels.

Next, we execute DOWNWARDPASS to find the hierarchi-
cal policy π. At the top levels, we use a deterministic short-
est path algorithm to assign the policy. At level 0, rather than
using the expected costs to solve a shortest-paths problem,
we take the actual transition probabilities over the primitive
states into account. In order to do this, we construct an MDP
that represents the problem of moving from a macro-state i
to a macro-state π1(i). Most of the transition probabilities
and reward values have already been defined in the origi-
nal MDP model. We treat all states in π1(i) as zero-reward
absorbing local goal states. We model transitions to states
that are neither in π1(i) nor in node i itself as going to a
single special out state and incurring a fixed, large, negative
penalty ∆. We use value iteration to solve for the policy.

The cost of solving at the upper levels is dominated by a
quadratic deterministic shortest path algorithm. The time at
the bottom level is dominated by value iteration, which Bert-
sekas (1995) showed is cubic in the size of the state space for
stochastic shortest path problems.
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Figure 1: Average deviation from the optimal policy as a func-
tion of uncertainty in the grid world domain. Here x% uncertainty
refers to the probability an action transitions to a wrong square.
The probability of transitioning to the correct square is 1− 0.03x.

Theorem 4: Algorithm 2 has time complexity quadratic in
the size of the largest macro-state and the number of L −
1 macro-states and cubic in the size of the largest level 1
macro-state.

3.3 Results
We tested the algorithm described above (consisting first of
clustering and then of solving), called HDet for hierarchi-
cally determinized, on several different enumerated-states
domains, and compared its performance to that of value it-
eration and HVI (Bakker, Zivkovic, and Krose 2005). HVI
originally used spectral clustering, reported as HVI (S); we
also tried it with g-connected clustering, reported as HVI
(G). We also tried a version of HDet, Det, which does not run
the clustering algorithm at all but instead treats each state as
its own cluster. Det never solves any MDPs.

We used three experimental domains. Grid world is a typ-
ical grid world with four actions each with an 85% chance
of transitioning to the expected square and a 5% chance of
transitioning to each of the other adjacent squares. The Grid
World had 1040 states and the Large Grid World had 62500
states. Factory is a version of the common Builder factored
MDP problem (Dearden and Boutilier 1997), run on the
fully enumerated state space of 1024 states. Mountain Car
is a discretized, randomized version of the Mountain Car do-
main ((Sutton and Barto 1998), section 8.2) with 1024 states.
For full explanations of these domains see (Barry 2009).

We evaluated the policies in each domain by running 1000
simulations of each policy starting from each state in the do-
main and averaging together the total reward from the sim-
ulations to find a policy value for every state in the domain.
We report the average deviation of these policy values from
the optimal values. Results on the algorithms on each of the
domains are shown in Table 1.

Running time vs. accuracy The results show that HDet is
substantially faster than value iteration with a modest de-
crease in the quality of the solution. HDet also substantially
outperforms HVI. The closest competitor to HDet is, in fact,
Det, the purely deterministic, non-hierarchical, version of
HDet. The speed of execution of Det on most of the prob-
lems is due to the relatively small size of these problems,
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Grid World Large Grid World Factory Mountain Car
Algorithm Run Time (s) Avg. Dev. Run Time (s) Avg. Dev. Run Time (s) Avg. Dev. Run Time (s) Avg. Dev.

Value Iteration 20.46 0 > 104 – 25.22 0 83.00 0
HDet 1.41 0.48 74.21 0 2.58 0.49 25.79 4.14
Det 0.19 0.18 94.73 0.2 0.25 0.35 0.51 15.55

HVI (G) 10.66 0.84 > 104 – 40.72 0.62 78.94 12.94
HVI (S) 24.40 0.66 > 104 – 81.32 2.36 124.08 236.58

Table 1: Results for three domains. Run time gives the total running times, which for HDet and HVI includes clustering time as well as
solution time. Avg. Dev. is the deviation from the reward of the optimal policy divided by the length of the corresponding path. HVI and
value iteration did not converge on the large grid world so we report average deviation from the policy found by HDet, which had the highest
value. All algorithms were implemented by us and run on the same computer.

chosen to enable value iteration to terminate in reasonable
time. In the larger Grid World problem, Det required more
time than HDet. We expect HDet’s advantage to increase
with the size of the problem.

Similarly, as the non-determinism in the domain in-
creases, we expect the accuracy of both Det and HDet to
suffer, but the average deviation of Det increases faster than
that of HDet, so that when there is only a 40% chance of end-
ing up in the intended square, the average deviation of Det
is close to 5, but that of HDet is closer to 3 (Figure 1). We
can control how accurate HDet is by setting the parameters
MINCLUST and MAXSIZE. With fewer and larger clusters
HDet will be more accurate, but slower.

Thus, when run on enumerated-states MDPs, HDet finds
good approximate solutions and has total running times (for
clustering and solving) that improve substantially on com-
peting methods. It is important to note that the time taken
to create the hierarchy need not be amortized over several
problem instances: it pays off on a single instance.

4 Future Work
We are currently adapting this algorithm to work on factored
MDPs. A factored MDP is an MDP M = 〈X,A, T,R,G〉
where X is a set of state variables. The state space S of the
MDP can be obtained from X; a state of the MDP i′ ∈ S is
an assignment to all state variables.

HDet relies on being able to look at every state in the
domain, but in a factored MDP that is no longer possi-
ble. Therefore, rather than make g-connected macro-states
of primitive states, we are developing an algorithm that
makes g-connected macro-states of sets of states or “aggre-
gate states”. We try to create the aggregate states in such a
way that we do not have many of them, but that all states in
an aggregate state behave similarly.

We currently have a working implementation of HDet ex-
tended to factored domains, FHDet, but are still attempting
to characterize the accuracy and running time of the algo-
rithm and optimize the implementation.
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