
Learning to Choose Instance-Specific Macro Operators

Maher Alhossaini
Department of Computer Science

University of Toronto

Abstract

The acquisition and use of macro actions has been shown to
be effective in improving the speed of AI planners. Current
macro acquisition work focuses on finding macro sets that,
when added to the domain, can improve theaveragesolv-
ing performance. In this paper, we present Instance-specific
macro learning. This kind of macro filtering depends on
building a predictor that can be used to estimate, for each
planning instance, the best subset of a previously collected
set of macros to speed up the planning. Learning the predic-
tor is done off-line based on the observed correlation between
problem instance features and planner performance in macro-
augmented domains. Our empirical results over five stan-
dard planning domains demonstrate that our predictors per-
form as well as the non-instance-specific method that chooses
the best-on-average macro, and that there is a chance of im-
proving the performance significantly using instance specific
macros. Also in this paper, we tackle the problem of choosing
macros from a large set of initial macros as well. We show
that in this case approximate methods can produce macro sets
that are comparable to the best macro sets.

Introduction
The use of macro action acquisition methods in AI plan-
ning has been in the planning literature since its early begin-
nings (Fikes and Nilsson 1971). They depend on remodeling
the planning domains by adding uninstantiated sequences of
domain actions, or macros operators, to the domain as an
atomic operator. These methods have empirically proved to
be useful in improving the planning speed (Coles and Smith
2004). Work that involves automation of macro action gen-
eration is common in the planning literature. Many tools
have been developed to acquire macros from previously gen-
erated plans, such as Wizard (Newton and Levine 2007).
There are other tools that generate macros and also use them
in their built-in planner, such as Marvin (Coles and Smith
2004) and Macro-FF (Botea et al. 2005). However, most of
the existing macro tools help to find macros that work for
the domain in general, not focusing on the specific instances
within the domain and using previous knowledge. For ex-
ample, Marvin finds useful macros on-line for the problem
instance, but does not save information for future use, and

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Macro-FF does not remodel the domain for each new prob-
lem instances.

Instance-specific macro learning, in contrast, aims to find
sets of macros that best improve performance for solving an
individual instance based on the analysis of the instance’s
features. Such instance-specific macro sets are subsets of
an original set of macros that were found to be useful for
the domain. In rich domains, it may be better to use differ-
ent macro subsets to solve different instances as opposed to
using a fixed set for all instances.

Our approach is to use machine learning to develop a pre-
diction model that relates the problem instance features to
the performance of a planner on domains augmented with
the different macro subsets. This is done off-line, using a
training set of problem instances. Online, the predictor mea-
sures the given instance’s features and selects a macro subset
to be added to the domain to solve the given instance.

In the following, we describe the approaches we took to
learn how to predict instance-specific macro actions within
a given planning domain. There are two parts of our work:

1. Instead of adding a set of macro operators to the domain
permanently, we present a method that only adds macros
that are suitable for the individual problem instances. This
is done using supervised machine learning techniques and
an initial set of macros that are acquired using an existing
macro acquisition tool. A prediction model is trained for
a given domain such that it maps the domain problem in-
stance’s features to different macro subsets based on how
well the subset improves the planning speed.

2. One problem that we face in (1) is that as the size of the
initial macro set used increases, the learning becomes ex-
ponentially harder. To tackle this problem, we use local
search in the space of macro sets. This is done using a tool
that, for the given problem instances, suggests a macro
set, with which we can correlate the instances’ features.
The prediction model this time is trained to predict what
macro subset the local search tool will suggest for the in-
stance rather than what is really best for the instance. The
learning is done in a way similar to (1)’s.

Exhaustive Instance-specific Macros
In the planning literature, remodelling the planning domain
in general has been the main focus of the macro acquisi-



tion works. The goal of our work, in contrast, is to improve
the performance of planners on macro-enhanced domains by
trying to predict which macro sets are relevant and useful to
a given problem instance based on the features of that in-
stance. To do this, we need to address two issues: a source
of macros and the features that will be used for learning and
prediction.

To begin our work, we need to have a set of macros to
choose from. We tried to obtain our original set of macros
from the macro acquisition tool Wizard for some domains.
There are two phases in Wizard: achunkingphase, which
is an intermediate phase that produces unfiltered macros,
and abunchingphase, that tries to find the best subset of
the chunking macros. We used the macros resulting from
the chunking phase as our initial set of macros. However,
realizing that these initial macro set must be useful in the
instance-specific context rather than the domain context, and
that Wizard actually aims to find the best average macros
set, we have, alternatively, tried to come up with macros
manually, such that they can exploit differences between in-
stances.

The second important issue in learning is the selection
of problem instance features to be measured and correlated
with planner performance. In this work, we have chosen
to use straightforward domain-specific features (e.g., in the
Logistics domain, the number of cities, number of airplanes,
number of packages, etc.). Although this approach is likely
to be reflective of underlying problem structure, it has some
drawbacks: more insightful problem features must be de-
rived for each domain (which may be a challenge in itself
(Carchrae and Beck 2005)).

In the next subsections, we will explain the system in de-
tail, then we will show our experimental results.

System details
At a high-level, this system’s design is straightforward and
similar to previous work (i.e., (Leyton-Brown et al. 2003)).
In an off-line, training phase, we learn a prediction model
that relates measures of problem instance features to the per-
formance of the planner in a domain augmented with a given
macro set. Online, the features of a new instance are mea-
sured and the predictor is used to identify an appropriate
macro subset. That subset is added to the domain and the
problem instance is solved.

We built two prediction models: theDirect model, which
predicts the best macro subset directly based on the problem
features, and theTimemodel which predicts the run-time of
the planner on the problem instance with each of the macro
subsets, and chooses the macro subset that it predicts will
give the smallest run-time.

We used the off-the-shelf machine-learning tool, WEKA
(Witten and Frank 2002), to train the models. We also used
the FF planner (Hoffmann and Nebel 2001) in our experi-
ments. Figure 1 shows the training phase for both models.
For a given planning domain, the training phase is as follows
for the Time predictor:

1. The original domain and planner is provided to Wizard
and the output of its chunking phase is obtained. To re-

Figure 1: A schematic diagram of the training phase for the
Time and Direct predictors.

duce the subsequent combinatorics, we limit the number
of macros to the topn ranked macros, wheren ≤ 5,
though none of the problem domains resulted in more than
five macros.

2. The domain generator createsk macro subsets from the
original n macros augmenting the original domain with
each subset in turn. This producesk different domains. In
this system, we exhaustively generated allk = 2n subsets.

3. A problem generator for the domain is used to create
training instances that span our chosen range of param-
eter settings.

4. Each of the training instances are solved with the same
planner for each of the augmented domains. The run-time
for each macro subset and problem domain is recorded.

5. Independently for each augmented domain, a Time pre-
diction model is generated using the M5P (Witten and
Frank 2002; Wang and Witten 1997) learning model in
the WEKA package. A predictori attempts to learn to
predict the solving time in augmented domaini of prob-
lem instances based on their features.

6. The final Time predictor is created by combining each of
the individual predictors. When provided with a new in-
stance, the predictor runs each of the individual predictors
and chooses the macro subset with the smallest predicted
run-time.



The Direct predictor training is done in a similar way,
sharing steps 1 through 4 with the Time model and following
the subsequent steps, 7 and 8 in in Figure 1, are as follows:

7. The Direct Macro set selector processes the results of
running the planner on each training instance with each
macro subset. It outputs the problem instance feature
measurements and the index of the macro subset which
had the lowest run-time.

8. The Direct model is built by WEKA’s logistic regression
algorithm (Bishop 2006) relating instance feature mea-
surements to macro subset index.

The system produces an on-line predictor of the best
macro subset for a given problem instance. The inputs to the
predictor are the problem instance features and the output is
a new domain consisting of the original domain augmented
with macro subset that is estimated to perform best with the
instance.

Experimental Results
To evaluate our approach to learning instance-specific
macros, we conducted an experiment with five well-known
domains: logistics, miconic, blocksworld, mprime, and free-
cell. These domains vary from easy domains (e.g., miconic)
to hard domains (e.g., freecell) with respect to the FF plan-
ner (Hoffmann 2001). Each of these domains has a prob-
lem generator that is used with difference parameters for the
training and testing instances of our experiments.

We used Wizard only in the logistics and miconic domains
to come up with the initial macro set. The experiment on
these domains were repeated 10 times with different train-
ing and test instances. This design allows Wizard to generate
different initial macro set in each repetition. In the experi-
ment of the remaining domains, we did not use the Wizard
tool to create the macros. We rather generated them manu-
ally, trying to find the macros that work well over different
instances.

In order to evaluate the performance of our models, we
had to measure the performance of other selected models
and common macro subsets. We compared the following
five models/macro subsets:

1. Emptysubset: This subset is the original domain, not aug-
mented by any macros.

2. Direct predictor (see above)

3. Timepredictor (see above)

4. Best-on-averagesubset: This macro subset is the one
which has the smallest mean run-time on thetraining in-
stances. This macro subset represents the standard ap-
proach to macro learning in the literature, and might be
thought of as the goal of most of that current macro ac-
quision systems.

5. Perfect predictor: This imaginary predictor correctly
identifies the macro subset that will have the minimum
run-time on the instance. This predictor is createda pos-
teriori after having run all the macro subsets on all test
instances. The performance of this model is the best that
can be achieved by any instance-specific predictor.

Table 1: Average run-times for the models/ macro sets used
in the experiment

Domain Empty
set

Time
model

Direct
model

Best-
on-
average

Perfect

logistics 6.08 2.94 2.6 2.51 2.32
miconic 1.29 1.48 1.18 1.19 1.18
blocksworld 595.25 54.51 232.69 51.96 30.71
mprime 268.6 209.94 247.6 224.75 51.94
freecell 365.6 347.69 383.84 365.6 104.64

We looked at the mean time taken to solve the test in-
stances using the models/subsets in each of the domains.
For the timed-out instances, we registered the cut-off time
as their run-time and included that data point in the calcu-
lation of the mean. However, the nature of some domains
made it very hard for us to come up with a good parameter-
ization that can produce hard-enough instances for the test-
ing. In these domains, namely the blocksworld, mprime, and
freecell, we decided (before using the runtimes) to remove
the test instance that are too easy, and too hard (instances
whose maximum run time is less than a small constant, and
instances whose minimum run time is grater than a large
constant, where the constants are decided before doing the
experiment.)

Table 1 shows the empirical results of our experiments.
Our results over five standard planning domains demon-
strate that our predictors performs relatively better than un-
augmented domain in general. However, results also show
that the models perform as well as the non-instance-specific
method that chooses the best-on-average macro subset.

We can show using ANOVA tests that in the harder do-
mains (mprime and freecell), the perfect predictor model
was significantly better than any other non-instance-specific
macro set, that also include the best-on-average macro set.
This means that the maximum achievable performance using
instance-specific macros (presented by the perfect model)
is significantly better than the maximum achievable perfor-
mance using only fixed macro subset (presented by the best-
on-average macro set) in the hard domains. These two do-
mains happened to be the hard domains for the FF planner.
This leads us to asking questions about the relation between
the domain topology and the instance-specific macros learn-
ability.

Using Local search for Large Macro Sets
The obvious problem with the previous approach is that it
becomes impractical when the number of macros in the orig-
inal macro set is large. This is because the number of runs
needed to train the models grows exponentially with the
number of macros. However, we need sometimes to con-
sider a large number of macros for the domain. Also, we
know that adding too many macros to the domain will neg-
atively affect the performance, and hence we should not in-
clude macros that negatively affect performance.

To maintain the instance-specific context that we have fol-



lowed, we need to come up with a method that can find the
best macro subset of a huge macros set such that this sub-
set can solve the problem instance as quickly as possible.
Obviously, since we do not know any method that can find
us the best macro subset unless we try all the combinations,
we need to find an approximation. One of the ways that can
help us come up with a good macro subset for the instance is
to use local search techniques in the space of macro subsets.
To do this kind of search, we used an algorithm tuning tool
called ParamILS (Hutter, Hoos, and Stutzle 2007).

System details
ParamILS takes as an input: the algorithm to be tuned, the
algorithm’s parameters, the algorithm’s parameters values,
and some training and testing instances to be run using the
algorithm. It gives as an output: a parameter configuration
for the algorithm that improves its performance as much as
possible.1 To use ParamILS in our work, we can think of a
macro subset as a vector of binary parameters, where each
parameter is 1 if and only if we choose its corresponding
macro to solve the problem instances. Our goal then be-
comes finding the best binary vector value for different fea-
ture settings, and training our models with this.

In the following we explain how we use ParamILS to find
the macro subsets for the problem instances. The training
phase of this learning technique is summarized in the fol-
lowing steps:

1. We are given a big number (N ) of macros, and we have
M different features settings of the domain instances. A
feature setting is an instantiation to each feature variable.
It is impractical now to enumerate all of the2N macro
subsets and run the training instances with them.

2. To train the model, we generate a set of training instances
from the domain. Normally, a domain instance generator
or benchmark examples can be used for the training.

3. For a possible features settingi, we pick a non-empty set
of instancesS from the set of training instances whose
feature setting isi. If there is no such set, we do not need
to include this feature setting in the learning, since we can
only learn from the available data.

4. We use ParamILS to find the best parameter settingxS for
the instances inS. The parameter setting represents the
macro subset to be chosen for the instances inS and it is
represented as a binary vector of sizeN . So, for example,
if N = 5, then the parameter setting01011 means that we
chose only the macros number 2, 4, and 5, to add to the
domain and run on the planner.

5. After ParamILS finds the appropriate set of macros for the
feature setting, we register the features settingi with the
chosen macro numbers from the parameter settingxS in
the training file.

6. We repeat steps (3) to (5) for all possible feature settings
i. Notice that it is possible to have more than one setS
that have the same feature setting. In this case, there will

1ParamILS can also be used to improve other aspects of an al-
gorithm like the solution quality.

be more that one entry with the same feature setting in the
training file.

7. Now we have a training file that relates the problem in-
stance’s feature to the macro subset that ParamILS thinks
is best for it. So, we feed the training file to a learning
tool. The learning tool will use a supervised learning
technique to come up with a prediction model using the
training data. The prediction model will be used to pre-
dict which macro subset ParamILS will suggest based on
the given instance’s features.

This kind of learning is similar to the direct model ap-
proach discussed in the previous section to predict the best
macro given the features. We cannot use the time model now
because we do not have the time of every training instance
on every macro subset.

As a primary step to test the feasibility of such technique,
we conducted a small experiment to see how useful the
macro subsets that ParamILS suggests are for the whole do-
main. The experiment was conducted on the mprime domain
with a set of hand-written macros. Due to the limited space,
we cannot explain all of the results, but the initial results
of this experiment show that the difference in mean-time be-
tween the real best-on-average macro set and ParamILS sug-
gested macro set was small, which can positively impact the
performance when using instance-specific learning.

Conclusion
In this paper, we presented a novel approach to maximize the
performance of planners using macro actions. The approach
depends on machine learning methods to suggest macro sets
based on the measurement of the features of a given problem
instance. Off-line, a set of initial macros is provided. All
subsets of this initial set are then evaluated by adding them
to the original domain and solving a set of training instances.
The resulting data is used to learn a predictor that can re-
late problem instance features to augmented-domain perfor-
mance. We demonstrate that our models perform as well
as thea posterioriperfect predictor in some domains. We
also show that in 2 of the 5 domains, the maximum achiev-
able performance using instance-specific macros (presented
by the perfect model) is significantly better than the maxi-
mum achievable performance using only fixed macro sub-
set (presented by the best-on-average macro set.) We also
show another approach to solve the same problem with large
initial macro set. The approach depends on approximating
the best macro set for a problem instance by applying local
search in the space of macro subsets. We also mention that
the difference in performance between the real best macros
set and the the approximate one was found insignificant.

References
Bishop, C. 2006.Pattern recognition and machine learn-
ing. Springer.

Botea, A.; Enzenberger, M.; Muller, M.; and Schaeffer,
J. 2005. Macro-FF: Improving AI Planning with Auto-
matically Learned Macro-Operators.Journal of Artificial
Intelligence Research24:581–621.



Carchrae, T., and Beck, J. C. 2005. Applying machine
learning to low knowledge control of optimization algo-
rithms. Computational Intelligence21(4):372–387.
Coles, A., and Smith, A. 2004. Marvin: macro-actions
from reduced versions of the instance.International Plan-
ning Competition.
Fikes, R., and Nilsson, N. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence2(3/4):189–208.
Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation Through Heuristic Search.Jour-
nal of Artificial Intelligence Research14:253–302.
Hoffmann, J. 2001. Local search topology in planning
benchmarks: An empirical analysis.Proceedings of the
17th International Joint Conference on Artificial Intelli-
gence (IJCAI-01)453–458.
Hutter, F.; Hoos, H.; and Stutzle, T. 2007. Automatic algo-
rithm configuration based on local search. InProceedings
of the 22nd national conference on Artificial intelligence-
Volume 2, 1152–1157. AAAI Press.
Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden,
J.; and Shoham, Y. 2003. Boosting as a metaphor for algo-
rithm design. InConstraint Programming, 899–903.
Newton, M. A. H., and Levine, J. 2007. Wizard: Suggest-
ing macro-actions comprehensively. InProceedings of the
Doctoral Consortium held at ICAPS 07.
Wang, Y., and Witten, I. 1997. Induction of model trees for
predicting continuous classes. InProceedings of the poster
papers of the European Conference on Machine Learning,
128–137.
Witten, I., and Frank, E. 2002. Data mining: practical ma-
chine learning tools and techniques with Java implementa-
tions. ACM SIGMOD Record31(1):76–77.


